Commit
·
4798f78
1
Parent(s):
0908ace
Update model/retrain.py
Browse filesAdding LightGBM for Ensemble Model
- model/retrain.py +587 -623
model/retrain.py
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
-
# Enhanced version with comprehensive cross-validation
|
| 2 |
-
|
| 3 |
|
| 4 |
import json
|
| 5 |
import shutil
|
| 6 |
import joblib
|
| 7 |
-
import asyncio
|
| 8 |
import logging
|
| 9 |
import hashlib
|
| 10 |
import schedule
|
|
@@ -27,15 +25,18 @@ from sklearn.metrics import (
|
|
| 27 |
roc_auc_score, confusion_matrix, classification_report
|
| 28 |
)
|
| 29 |
from sklearn.model_selection import (
|
| 30 |
-
cross_val_score, StratifiedKFold, cross_validate, train_test_split
|
| 31 |
)
|
| 32 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 33 |
from sklearn.linear_model import LogisticRegression
|
| 34 |
-
from sklearn.ensemble import RandomForestClassifier
|
| 35 |
from sklearn.pipeline import Pipeline
|
| 36 |
from sklearn.preprocessing import FunctionTransformer
|
| 37 |
from sklearn.feature_selection import SelectKBest, chi2
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
# Import enhanced feature engineering components
|
| 40 |
try:
|
| 41 |
from features.feature_engineer import AdvancedFeatureEngineer, create_enhanced_pipeline, analyze_feature_importance
|
|
@@ -433,74 +434,141 @@ class CVModelComparator:
|
|
| 433 |
except Exception as e:
|
| 434 |
logger.error(f"Metric comparison failed for {metric}: {e}")
|
| 435 |
return {'metric': metric, 'error': str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
-
def
|
| 438 |
-
|
| 439 |
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
consistency_score = improved_metrics / total_metrics
|
| 466 |
-
confidence_factors.append(consistency_score * 0.3)
|
| 467 |
-
|
| 468 |
-
# Check effect sizes
|
| 469 |
-
effect_sizes = []
|
| 470 |
-
for metric_comp in comparison_results['metric_comparisons'].values():
|
| 471 |
-
if isinstance(metric_comp, dict) and 'effect_size' in metric_comp:
|
| 472 |
-
effect_sizes.append(abs(metric_comp['effect_size']))
|
| 473 |
-
|
| 474 |
-
if effect_sizes:
|
| 475 |
-
avg_effect_size = np.mean(effect_sizes)
|
| 476 |
-
if avg_effect_size > 0.5: # Large effect
|
| 477 |
-
confidence_factors.append(0.2)
|
| 478 |
-
elif avg_effect_size > 0.2: # Medium effect
|
| 479 |
-
confidence_factors.append(0.1)
|
| 480 |
-
|
| 481 |
-
# Calculate final confidence
|
| 482 |
-
total_confidence = sum(confidence_factors)
|
| 483 |
-
return min(1.0, max(0.0, total_confidence))
|
| 484 |
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
|
| 489 |
|
| 490 |
class EnhancedModelRetrainer:
|
| 491 |
-
"""Production-ready model retraining with enhanced
|
| 492 |
|
| 493 |
def __init__(self):
|
| 494 |
self.setup_paths()
|
| 495 |
self.setup_retraining_config()
|
| 496 |
self.setup_statistical_tests()
|
|
|
|
| 497 |
self.cv_comparator = CVModelComparator()
|
|
|
|
| 498 |
|
| 499 |
# Enhanced feature engineering settings
|
| 500 |
self.enhanced_features_available = ENHANCED_FEATURES_AVAILABLE
|
| 501 |
self.use_enhanced_features = ENHANCED_FEATURES_AVAILABLE # Default to enhanced if available
|
|
|
|
| 502 |
|
| 503 |
-
logger.info(f"Enhanced retraining initialized with features: {'enhanced' if self.use_enhanced_features else 'standard'}")
|
| 504 |
|
| 505 |
def setup_paths(self):
|
| 506 |
"""Setup all necessary paths"""
|
|
@@ -549,18 +617,19 @@ class EnhancedModelRetrainer:
|
|
| 549 |
self.max_retries = 3
|
| 550 |
self.backup_retention_days = 30
|
| 551 |
|
| 552 |
-
# Enhanced feature configuration
|
| 553 |
-
self.
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
|
|
|
| 564 |
|
| 565 |
def setup_statistical_tests(self):
|
| 566 |
"""Setup statistical test configurations"""
|
|
@@ -570,6 +639,54 @@ class EnhancedModelRetrainer:
|
|
| 570 |
'mcnemar': {'alpha': 0.05, 'name': "McNemar's Test"}
|
| 571 |
}
|
| 572 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 573 |
def detect_production_feature_type(self) -> str:
|
| 574 |
"""Detect what type of features the production model uses"""
|
| 575 |
try:
|
|
@@ -717,36 +834,32 @@ class EnhancedModelRetrainer:
|
|
| 717 |
logger.info(f"Data cleaning: {initial_count} -> {len(df)} samples")
|
| 718 |
return df
|
| 719 |
|
| 720 |
-
def
|
| 721 |
-
"""Create
|
| 722 |
|
| 723 |
-
if
|
| 724 |
-
|
| 725 |
|
| 726 |
-
if
|
| 727 |
logger.info("Creating enhanced feature engineering pipeline for retraining...")
|
| 728 |
|
| 729 |
-
# Create enhanced feature engineer
|
| 730 |
feature_engineer = AdvancedFeatureEngineer(
|
| 731 |
-
enable_sentiment=
|
| 732 |
-
enable_readability=
|
| 733 |
-
enable_entities=
|
| 734 |
-
enable_linguistic=
|
| 735 |
-
feature_selection_k=self.
|
| 736 |
-
tfidf_max_features=self.
|
| 737 |
-
ngram_range=self.
|
| 738 |
-
min_df=self.
|
| 739 |
-
max_df=self.
|
| 740 |
)
|
| 741 |
|
| 742 |
# Create pipeline with enhanced features
|
| 743 |
pipeline = Pipeline([
|
| 744 |
('enhanced_features', feature_engineer),
|
| 745 |
-
('model',
|
| 746 |
-
max_iter=1000,
|
| 747 |
-
class_weight='balanced',
|
| 748 |
-
random_state=self.random_state
|
| 749 |
-
))
|
| 750 |
])
|
| 751 |
|
| 752 |
return pipeline
|
|
@@ -754,34 +867,279 @@ class EnhancedModelRetrainer:
|
|
| 754 |
else:
|
| 755 |
logger.info("Creating standard TF-IDF pipeline for retraining...")
|
| 756 |
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 760 |
# Create standard pipeline
|
| 761 |
pipeline = Pipeline([
|
| 762 |
-
('preprocess',
|
| 763 |
-
('vectorize',
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
max_df=0.95,
|
| 767 |
-
ngram_range=(1, 3),
|
| 768 |
-
stop_words='english',
|
| 769 |
-
sublinear_tf=True
|
| 770 |
-
)),
|
| 771 |
-
('feature_select', SelectKBest(chi2, k=5000)),
|
| 772 |
-
('model', LogisticRegression(
|
| 773 |
-
max_iter=1000,
|
| 774 |
-
class_weight='balanced',
|
| 775 |
-
random_state=self.random_state
|
| 776 |
-
))
|
| 777 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 778 |
|
| 779 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 780 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 781 |
def train_candidate_model(self, df: pd.DataFrame) -> Tuple[bool, Optional[Any], Dict]:
|
| 782 |
"""Train candidate model with enhanced features and comprehensive CV evaluation"""
|
| 783 |
try:
|
| 784 |
-
logger.info("Training candidate model with enhanced feature engineering...")
|
| 785 |
|
| 786 |
# Prepare data
|
| 787 |
X = df['text'].values
|
|
@@ -793,40 +1151,50 @@ class EnhancedModelRetrainer:
|
|
| 793 |
|
| 794 |
logger.info(f"Training candidate with {candidate_feature_type} features (production uses {prod_feature_type})")
|
| 795 |
|
| 796 |
-
# Create and train pipeline
|
| 797 |
-
pipeline = self.create_enhanced_pipeline(self.use_enhanced_features)
|
| 798 |
-
|
| 799 |
-
# Perform cross-validation before final training
|
| 800 |
-
logger.info("Performing cross-validation on candidate model...")
|
| 801 |
-
cv_results = self.cv_comparator.perform_model_cv_evaluation(pipeline, X, y)
|
| 802 |
-
|
| 803 |
-
# Train on full dataset for final model
|
| 804 |
-
pipeline.fit(X, y)
|
| 805 |
-
|
| 806 |
# Additional holdout evaluation
|
| 807 |
X_train, X_test, y_train, y_test = train_test_split(
|
| 808 |
X, y, test_size=self.test_size, stratify=y, random_state=self.random_state
|
| 809 |
)
|
| 810 |
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
#
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 825 |
|
| 826 |
# Extract feature information if using enhanced features
|
| 827 |
feature_analysis = {}
|
| 828 |
-
if self.use_enhanced_features and hasattr(
|
| 829 |
-
feature_engineer =
|
| 830 |
if feature_engineer and hasattr(feature_engineer, 'get_feature_metadata'):
|
| 831 |
try:
|
| 832 |
feature_analysis = {
|
|
@@ -834,29 +1202,36 @@ class EnhancedModelRetrainer:
|
|
| 834 |
'feature_importance': feature_engineer.get_feature_importance(top_k=20) if hasattr(feature_engineer, 'get_feature_importance') else {},
|
| 835 |
'total_features': len(feature_engineer.get_feature_names()) if hasattr(feature_engineer, 'get_feature_names') else 0
|
| 836 |
}
|
| 837 |
-
logger.info(f"Enhanced features extracted: {feature_analysis
|
| 838 |
except Exception as e:
|
| 839 |
logger.warning(f"Could not extract feature analysis: {e}")
|
| 840 |
|
| 841 |
-
#
|
|
|
|
|
|
|
|
|
|
| 842 |
evaluation_results = {
|
| 843 |
'cross_validation': cv_results,
|
| 844 |
-
'holdout_evaluation': holdout_metrics,
|
| 845 |
'feature_analysis': feature_analysis,
|
| 846 |
'feature_type': candidate_feature_type,
|
| 847 |
'training_samples': len(X),
|
| 848 |
-
'test_samples': len(X_test)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 849 |
}
|
| 850 |
|
| 851 |
# Save candidate model
|
| 852 |
-
joblib.dump(
|
| 853 |
-
if hasattr(
|
| 854 |
-
if 'model' in
|
| 855 |
-
joblib.dump(
|
| 856 |
|
| 857 |
# Save enhanced features or vectorizer
|
| 858 |
-
if 'enhanced_features' in
|
| 859 |
-
feature_engineer =
|
| 860 |
if hasattr(feature_engineer, 'save_pipeline'):
|
| 861 |
feature_engineer.save_pipeline(self.candidate_feature_engineer_path)
|
| 862 |
|
|
@@ -868,19 +1243,24 @@ class EnhancedModelRetrainer:
|
|
| 868 |
}
|
| 869 |
joblib.dump(enhanced_ref, self.candidate_vectorizer_path)
|
| 870 |
|
| 871 |
-
elif 'vectorize' in
|
| 872 |
-
joblib.dump(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 873 |
|
| 874 |
# Log results
|
| 875 |
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 876 |
cv_f1_mean = cv_results['test_scores']['f1']['mean']
|
| 877 |
cv_f1_std = cv_results['test_scores']['f1']['std']
|
| 878 |
-
logger.info(f"Candidate model CV F1: {cv_f1_mean:.4f} (±{cv_f1_std:.4f})")
|
| 879 |
|
| 880 |
-
logger.info(f"Candidate model holdout F1: {holdout_metrics['f1']:.4f}")
|
| 881 |
logger.info(f"Candidate model training completed with {candidate_feature_type} features")
|
| 882 |
|
| 883 |
-
return True,
|
| 884 |
|
| 885 |
except Exception as e:
|
| 886 |
error_msg = f"Candidate model training failed: {str(e)}"
|
|
@@ -1013,18 +1393,19 @@ class EnhancedModelRetrainer:
|
|
| 1013 |
|
| 1014 |
# Extract metrics from candidate evaluation
|
| 1015 |
cv_results = candidate_metrics.get('cross_validation', {})
|
| 1016 |
-
holdout_results = candidate_metrics.get('holdout_evaluation', {})
|
| 1017 |
feature_analysis = candidate_metrics.get('feature_analysis', {})
|
|
|
|
| 1018 |
|
| 1019 |
# Update metadata with comprehensive information
|
| 1020 |
metadata.update({
|
| 1021 |
'model_version': new_version,
|
| 1022 |
-
'model_type': '
|
| 1023 |
'previous_version': old_version,
|
| 1024 |
'promotion_timestamp': datetime.now().isoformat(),
|
| 1025 |
-
'retrain_trigger': '
|
| 1026 |
'training_samples': candidate_metrics.get('training_samples', 'Unknown'),
|
| 1027 |
-
'test_samples': candidate_metrics.get('test_samples', 'Unknown')
|
|
|
|
| 1028 |
})
|
| 1029 |
|
| 1030 |
# Enhanced feature engineering metadata
|
|
@@ -1068,16 +1449,6 @@ class EnhancedModelRetrainer:
|
|
| 1068 |
except Exception as e:
|
| 1069 |
logger.warning(f"Could not save feature analysis: {e}")
|
| 1070 |
|
| 1071 |
-
# Add holdout evaluation results
|
| 1072 |
-
if holdout_results:
|
| 1073 |
-
metadata.update({
|
| 1074 |
-
'test_accuracy': holdout_results.get('accuracy', 'Unknown'),
|
| 1075 |
-
'test_f1': holdout_results.get('f1', 'Unknown'),
|
| 1076 |
-
'test_precision': holdout_results.get('precision', 'Unknown'),
|
| 1077 |
-
'test_recall': holdout_results.get('recall', 'Unknown'),
|
| 1078 |
-
'test_roc_auc': holdout_results.get('roc_auc', 'Unknown')
|
| 1079 |
-
})
|
| 1080 |
-
|
| 1081 |
# Add comprehensive CV results
|
| 1082 |
if cv_results and 'test_scores' in cv_results:
|
| 1083 |
metadata['cross_validation'] = {
|
|
@@ -1096,7 +1467,9 @@ class EnhancedModelRetrainer:
|
|
| 1096 |
'cv_f1_mean': cv_results['test_scores']['f1']['mean'],
|
| 1097 |
'cv_f1_std': cv_results['test_scores']['f1']['std'],
|
| 1098 |
'cv_f1_min': cv_results['test_scores']['f1']['min'],
|
| 1099 |
-
'cv_f1_max': cv_results['test_scores']['f1']['max']
|
|
|
|
|
|
|
| 1100 |
})
|
| 1101 |
|
| 1102 |
# Add enhanced model comparison results
|
|
@@ -1104,7 +1477,7 @@ class EnhancedModelRetrainer:
|
|
| 1104 |
metadata['promotion_validation'] = {
|
| 1105 |
'decision_confidence': promotion_decision.get('confidence', 'Unknown'),
|
| 1106 |
'promotion_reason': promotion_decision.get('reason', 'Unknown'),
|
| 1107 |
-
'comparison_method': '
|
| 1108 |
'feature_engineering_factor': promotion_decision.get('feature_engineering_factor', False),
|
| 1109 |
'feature_upgrade_details': promotion_decision.get('feature_upgrade_details', {})
|
| 1110 |
}
|
|
@@ -1122,6 +1495,11 @@ class EnhancedModelRetrainer:
|
|
| 1122 |
'tests': comparison.get('tests', {})
|
| 1123 |
}
|
| 1124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1125 |
# Save updated metadata
|
| 1126 |
with open(self.metadata_path, 'w') as f:
|
| 1127 |
json.dump(metadata, f, indent=2)
|
|
@@ -1132,7 +1510,8 @@ class EnhancedModelRetrainer:
|
|
| 1132 |
total_features = feature_analysis.get('total_features', 0)
|
| 1133 |
feature_info = f" with {total_features} enhanced features"
|
| 1134 |
|
| 1135 |
-
|
|
|
|
| 1136 |
logger.info(f"Promotion reason: {promotion_decision.get('reason', 'Enhanced CV validation passed')}")
|
| 1137 |
|
| 1138 |
return True
|
|
@@ -1148,9 +1527,10 @@ class EnhancedModelRetrainer:
|
|
| 1148 |
'timestamp': datetime.now().isoformat(),
|
| 1149 |
'results': results,
|
| 1150 |
'session_id': hashlib.md5(str(datetime.now()).encode()).hexdigest()[:8],
|
| 1151 |
-
'retraining_type': '
|
| 1152 |
'enhanced_features_used': self.use_enhanced_features,
|
| 1153 |
-
'enhanced_features_available': ENHANCED_FEATURES_AVAILABLE
|
|
|
|
| 1154 |
}
|
| 1155 |
|
| 1156 |
# Load existing logs
|
|
@@ -1190,7 +1570,8 @@ class EnhancedModelRetrainer:
|
|
| 1190 |
'enhanced_features_info': {
|
| 1191 |
'used': self.use_enhanced_features,
|
| 1192 |
'available': ENHANCED_FEATURES_AVAILABLE,
|
| 1193 |
-
'feature_comparison': results['comparison_results'].get('feature_engineering_comparison', {})
|
|
|
|
| 1194 |
}
|
| 1195 |
}
|
| 1196 |
|
|
@@ -1205,9 +1586,9 @@ class EnhancedModelRetrainer:
|
|
| 1205 |
logger.error(f"Failed to log enhanced retraining session: {str(e)}")
|
| 1206 |
|
| 1207 |
def retrain_model(self) -> Tuple[bool, str]:
|
| 1208 |
-
"""Main retraining function with enhanced feature engineering and
|
| 1209 |
try:
|
| 1210 |
-
logger.info("Starting enhanced model retraining with
|
| 1211 |
|
| 1212 |
# Load existing metadata
|
| 1213 |
existing_metadata = self.load_existing_metadata()
|
|
@@ -1218,7 +1599,7 @@ class EnhancedModelRetrainer:
|
|
| 1218 |
logger.warning(f"No production model found: {prod_msg}")
|
| 1219 |
# Fall back to initial training
|
| 1220 |
try:
|
| 1221 |
-
from
|
| 1222 |
train_main()
|
| 1223 |
return True, "Initial enhanced training completed"
|
| 1224 |
except ImportError:
|
|
@@ -1238,8 +1619,10 @@ class EnhancedModelRetrainer:
|
|
| 1238 |
candidate_feature_type = 'enhanced' if self.use_enhanced_features else 'standard'
|
| 1239 |
|
| 1240 |
logger.info(f"Retraining strategy: {prod_feature_type} -> {candidate_feature_type}")
|
|
|
|
|
|
|
| 1241 |
|
| 1242 |
-
# Train candidate model with enhanced features
|
| 1243 |
candidate_success, candidate_model, candidate_metrics = self.train_candidate_model(df)
|
| 1244 |
if not candidate_success:
|
| 1245 |
return False, f"Enhanced candidate training failed: {candidate_metrics.get('error', 'Unknown error')}"
|
|
@@ -1259,12 +1642,15 @@ class EnhancedModelRetrainer:
|
|
| 1259 |
'comparison_results': comparison_results,
|
| 1260 |
'data_size': len(df),
|
| 1261 |
'cv_folds': self.cv_folds,
|
| 1262 |
-
'retraining_method': '
|
| 1263 |
'feature_engineering': {
|
| 1264 |
'production_type': prod_feature_type,
|
| 1265 |
'candidate_type': candidate_feature_type,
|
| 1266 |
'feature_upgrade': comparison_results.get('feature_engineering_comparison', {})
|
| 1267 |
-
}
|
|
|
|
|
|
|
|
|
|
| 1268 |
}
|
| 1269 |
|
| 1270 |
self.log_retraining_session(session_results)
|
|
@@ -1285,6 +1671,7 @@ class EnhancedModelRetrainer:
|
|
| 1285 |
improvement = f1_comp.get('improvement', 0)
|
| 1286 |
confidence = promotion_decision.get('confidence', 0)
|
| 1287 |
feature_upgrade = promotion_decision.get('feature_engineering_factor', False)
|
|
|
|
| 1288 |
|
| 1289 |
feature_info = ""
|
| 1290 |
if feature_upgrade:
|
|
@@ -1292,8 +1679,12 @@ class EnhancedModelRetrainer:
|
|
| 1292 |
elif candidate_feature_type == 'enhanced':
|
| 1293 |
feature_info = " using enhanced features"
|
| 1294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1295 |
success_msg = (
|
| 1296 |
-
f"Enhanced model promoted successfully{feature_info}! "
|
| 1297 |
f"F1 improvement: {improvement:.4f}, "
|
| 1298 |
f"Confidence: {confidence:.2f}, "
|
| 1299 |
f"Reason: {promotion_decision.get('reason', 'Enhanced CV validation passed')}"
|
|
@@ -1306,9 +1697,11 @@ class EnhancedModelRetrainer:
|
|
| 1306 |
# Keep current model
|
| 1307 |
reason = promotion_decision.get('reason', 'No significant improvement detected')
|
| 1308 |
confidence = promotion_decision.get('confidence', 0)
|
|
|
|
| 1309 |
|
| 1310 |
keep_msg = (
|
| 1311 |
f"Keeping current model based on enhanced CV analysis. "
|
|
|
|
| 1312 |
f"Reason: {reason}, "
|
| 1313 |
f"Confidence: {confidence:.2f}"
|
| 1314 |
)
|
|
@@ -1340,487 +1733,57 @@ class EnhancedModelRetrainer:
|
|
| 1340 |
return False, f"Automated enhanced retraining failed: {str(e)}"
|
| 1341 |
|
| 1342 |
|
|
|
|
| 1343 |
class AutomatedRetrainingManager:
|
| 1344 |
"""Manages automated retraining triggers and scheduling with enhanced features"""
|
| 1345 |
|
| 1346 |
def __init__(self, base_dir: Path = None):
|
| 1347 |
self.base_dir = base_dir or Path("/tmp")
|
| 1348 |
self.setup_automation_paths()
|
| 1349 |
-
self.setup_automation_config()
|
| 1350 |
self.drift_monitor = AdvancedDriftMonitor()
|
| 1351 |
self.retraining_active = False
|
| 1352 |
-
self.automation_thread = None
|
| 1353 |
-
self.last_check_time = None
|
| 1354 |
-
|
| 1355 |
-
# Enhanced feature settings
|
| 1356 |
self.enhanced_features_available = ENHANCED_FEATURES_AVAILABLE
|
| 1357 |
|
| 1358 |
-
self.automation_status = {
|
| 1359 |
-
'enabled': True,
|
| 1360 |
-
'last_automated_training': None,
|
| 1361 |
-
'total_automated_trainings': 0,
|
| 1362 |
-
'failed_attempts': 0,
|
| 1363 |
-
'enhanced_features_used': self.enhanced_features_available
|
| 1364 |
-
}
|
| 1365 |
-
|
| 1366 |
logger.info(f"Automated retraining manager initialized with enhanced features: {self.enhanced_features_available}")
|
| 1367 |
|
| 1368 |
def setup_automation_paths(self):
|
| 1369 |
"""Setup automation-specific paths"""
|
| 1370 |
self.automation_dir = self.base_dir / "automation"
|
| 1371 |
self.automation_dir.mkdir(parents=True, exist_ok=True)
|
| 1372 |
-
|
| 1373 |
self.automation_log_path = self.automation_dir / "automation_log.json"
|
| 1374 |
-
self.retraining_queue_path = self.automation_dir / "retraining_queue.json"
|
| 1375 |
-
self.automation_config_path = self.automation_dir / "automation_config.json"
|
| 1376 |
-
|
| 1377 |
-
def setup_automation_config(self):
|
| 1378 |
-
"""Setup automation configuration with enhanced feature considerations"""
|
| 1379 |
-
self.automation_config = {
|
| 1380 |
-
'monitoring_schedule': {
|
| 1381 |
-
'check_interval_minutes': 360, # 6 hours
|
| 1382 |
-
'force_check_interval_hours': 24,
|
| 1383 |
-
'max_daily_retrainings': 3,
|
| 1384 |
-
'cooldown_hours_after_training': 6
|
| 1385 |
-
},
|
| 1386 |
-
'retraining_conditions': {
|
| 1387 |
-
'require_data_quality_check': True,
|
| 1388 |
-
'min_time_between_trainings': timedelta(hours=6),
|
| 1389 |
-
'max_consecutive_failures': 3,
|
| 1390 |
-
'emergency_override': True,
|
| 1391 |
-
'prefer_enhanced_features': True # New setting
|
| 1392 |
-
},
|
| 1393 |
-
'notification_settings': {
|
| 1394 |
-
'notify_on_trigger': True,
|
| 1395 |
-
'notify_on_completion': True,
|
| 1396 |
-
'notify_on_failure': True,
|
| 1397 |
-
'notify_on_feature_upgrade': True # New setting
|
| 1398 |
-
}
|
| 1399 |
-
}
|
| 1400 |
-
|
| 1401 |
-
self.load_automation_config()
|
| 1402 |
-
|
| 1403 |
-
def load_automation_config(self):
|
| 1404 |
-
"""Load automation configuration from file"""
|
| 1405 |
-
try:
|
| 1406 |
-
if self.automation_config_path.exists():
|
| 1407 |
-
with open(self.automation_config_path, 'r') as f:
|
| 1408 |
-
saved_config = json.load(f)
|
| 1409 |
-
|
| 1410 |
-
# Update with saved settings
|
| 1411 |
-
self.automation_config.update(saved_config)
|
| 1412 |
-
logger.info("Loaded enhanced automation configuration")
|
| 1413 |
-
except Exception as e:
|
| 1414 |
-
logger.warning(f"Failed to load automation config: {e}")
|
| 1415 |
-
|
| 1416 |
-
def save_automation_config(self):
|
| 1417 |
-
"""Save automation configuration to file"""
|
| 1418 |
-
try:
|
| 1419 |
-
with open(self.automation_config_path, 'w') as f:
|
| 1420 |
-
# Convert timedelta objects to strings for JSON serialization
|
| 1421 |
-
config_to_save = json.loads(json.dumps(self.automation_config, default=str))
|
| 1422 |
-
json.dump(config_to_save, f, indent=2)
|
| 1423 |
-
except Exception as e:
|
| 1424 |
-
logger.error(f"Failed to save automation config: {e}")
|
| 1425 |
-
|
| 1426 |
-
def start_automated_monitoring(self):
|
| 1427 |
-
"""Start the automated monitoring and retraining system with enhanced features"""
|
| 1428 |
-
if self.retraining_active:
|
| 1429 |
-
logger.warning("Automated monitoring already active")
|
| 1430 |
-
return
|
| 1431 |
-
|
| 1432 |
-
self.retraining_active = True
|
| 1433 |
-
|
| 1434 |
-
# Schedule periodic checks
|
| 1435 |
-
check_interval = self.automation_config['monitoring_schedule']['check_interval_minutes']
|
| 1436 |
-
schedule.every(check_interval).minutes.do(self.perform_scheduled_check)
|
| 1437 |
-
|
| 1438 |
-
# Schedule daily forced check
|
| 1439 |
-
schedule.every().day.at("02:00").do(self.perform_forced_check)
|
| 1440 |
-
|
| 1441 |
-
# Start background thread
|
| 1442 |
-
self.automation_thread = threading.Thread(target=self.automation_loop, daemon=True)
|
| 1443 |
-
self.automation_thread.start()
|
| 1444 |
-
|
| 1445 |
-
logger.info("Enhanced automated retraining monitoring started")
|
| 1446 |
-
self.log_automation_event("monitoring_started", "Enhanced automated monitoring system started")
|
| 1447 |
-
|
| 1448 |
-
def stop_automated_monitoring(self):
|
| 1449 |
-
"""Stop the automated monitoring system"""
|
| 1450 |
-
self.retraining_active = False
|
| 1451 |
-
schedule.clear()
|
| 1452 |
-
|
| 1453 |
-
if self.automation_thread:
|
| 1454 |
-
self.automation_thread.join(timeout=10)
|
| 1455 |
-
|
| 1456 |
-
logger.info("Enhanced automated retraining monitoring stopped")
|
| 1457 |
-
self.log_automation_event("monitoring_stopped", "Enhanced automated monitoring system stopped")
|
| 1458 |
-
|
| 1459 |
-
def automation_loop(self):
|
| 1460 |
-
"""Main automation loop"""
|
| 1461 |
-
while self.retraining_active:
|
| 1462 |
-
try:
|
| 1463 |
-
schedule.run_pending()
|
| 1464 |
-
time_module.sleep(60) # Check every minute
|
| 1465 |
-
except Exception as e:
|
| 1466 |
-
logger.error(f"Enhanced automation loop error: {e}")
|
| 1467 |
-
time_module.sleep(300) # Wait 5 minutes on error
|
| 1468 |
-
|
| 1469 |
-
def perform_scheduled_check(self):
|
| 1470 |
-
"""Perform scheduled retraining trigger check"""
|
| 1471 |
-
try:
|
| 1472 |
-
logger.info("Performing scheduled enhanced retraining trigger check")
|
| 1473 |
-
|
| 1474 |
-
# Check if we're in cooldown period
|
| 1475 |
-
if self.is_in_cooldown_period():
|
| 1476 |
-
logger.info("Skipping check - in cooldown period after recent training")
|
| 1477 |
-
return
|
| 1478 |
-
|
| 1479 |
-
# Check daily limit
|
| 1480 |
-
if self.exceeded_daily_retraining_limit():
|
| 1481 |
-
logger.info("Skipping check - daily retraining limit exceeded")
|
| 1482 |
-
return
|
| 1483 |
-
|
| 1484 |
-
# Perform trigger evaluation
|
| 1485 |
-
trigger_results = self.drift_monitor.check_retraining_triggers()
|
| 1486 |
-
|
| 1487 |
-
self.last_check_time = datetime.now()
|
| 1488 |
-
|
| 1489 |
-
# Log the check
|
| 1490 |
-
self.log_automation_event("scheduled_check", "Performed scheduled enhanced trigger check", {
|
| 1491 |
-
'trigger_results': trigger_results,
|
| 1492 |
-
'should_retrain': trigger_results.get('should_retrain', False),
|
| 1493 |
-
'enhanced_features_available': self.enhanced_features_available
|
| 1494 |
-
})
|
| 1495 |
-
|
| 1496 |
-
# Trigger retraining if needed
|
| 1497 |
-
if trigger_results.get('should_retrain', False):
|
| 1498 |
-
self.queue_retraining(trigger_results)
|
| 1499 |
-
|
| 1500 |
-
except Exception as e:
|
| 1501 |
-
logger.error(f"Scheduled enhanced check failed: {e}")
|
| 1502 |
-
self.log_automation_event("check_failed", f"Scheduled enhanced check failed: {str(e)}")
|
| 1503 |
-
|
| 1504 |
-
def perform_forced_check(self):
|
| 1505 |
-
"""Perform forced daily check regardless of other conditions"""
|
| 1506 |
-
try:
|
| 1507 |
-
logger.info("Performing forced daily enhanced retraining check")
|
| 1508 |
-
|
| 1509 |
-
# Always perform drift monitoring
|
| 1510 |
-
trigger_results = self.drift_monitor.check_retraining_triggers()
|
| 1511 |
-
|
| 1512 |
-
self.log_automation_event("forced_check", "Performed forced daily enhanced check", {
|
| 1513 |
-
'trigger_results': trigger_results,
|
| 1514 |
-
'enhanced_features_available': self.enhanced_features_available
|
| 1515 |
-
})
|
| 1516 |
-
|
| 1517 |
-
# Only trigger retraining for urgent cases during forced check
|
| 1518 |
-
if trigger_results.get('urgency') in ['critical', 'high']:
|
| 1519 |
-
self.queue_retraining(trigger_results, forced=True)
|
| 1520 |
-
|
| 1521 |
-
except Exception as e:
|
| 1522 |
-
logger.error(f"Forced enhanced check failed: {e}")
|
| 1523 |
-
self.log_automation_event("forced_check_failed", f"Forced enhanced check failed: {str(e)}")
|
| 1524 |
-
|
| 1525 |
-
def queue_retraining(self, trigger_results: Dict, forced: bool = False):
|
| 1526 |
-
"""Queue a retraining job with enhanced feature considerations"""
|
| 1527 |
-
try:
|
| 1528 |
-
retraining_job = {
|
| 1529 |
-
'queued_at': datetime.now().isoformat(),
|
| 1530 |
-
'trigger_results': trigger_results,
|
| 1531 |
-
'urgency': trigger_results.get('urgency', 'medium'),
|
| 1532 |
-
'forced': forced,
|
| 1533 |
-
'status': 'queued',
|
| 1534 |
-
'attempts': 0,
|
| 1535 |
-
'enhanced_features_available': self.enhanced_features_available,
|
| 1536 |
-
'prefer_enhanced_features': self.automation_config['retraining_conditions'].get('prefer_enhanced_features', True)
|
| 1537 |
-
}
|
| 1538 |
-
|
| 1539 |
-
# Load existing queue
|
| 1540 |
-
queue = self.load_retraining_queue()
|
| 1541 |
-
queue.append(retraining_job)
|
| 1542 |
-
|
| 1543 |
-
# Save queue
|
| 1544 |
-
self.save_retraining_queue(queue)
|
| 1545 |
-
|
| 1546 |
-
logger.info(f"Enhanced retraining queued with urgency: {trigger_results.get('urgency', 'medium')}")
|
| 1547 |
-
self.log_automation_event("retraining_queued", "Enhanced retraining job queued", retraining_job)
|
| 1548 |
-
|
| 1549 |
-
# Execute immediately for critical cases
|
| 1550 |
-
if trigger_results.get('urgency') == 'critical' or forced:
|
| 1551 |
-
self.execute_queued_retraining()
|
| 1552 |
-
|
| 1553 |
-
except Exception as e:
|
| 1554 |
-
logger.error(f"Failed to queue enhanced retraining: {e}")
|
| 1555 |
-
self.log_automation_event("queue_failed", f"Failed to queue enhanced retraining: {str(e)}")
|
| 1556 |
-
|
| 1557 |
-
def execute_queued_retraining(self):
|
| 1558 |
-
"""Execute queued retraining jobs with enhanced features"""
|
| 1559 |
-
try:
|
| 1560 |
-
queue = self.load_retraining_queue()
|
| 1561 |
-
|
| 1562 |
-
# Sort by urgency (critical > high > medium > low)
|
| 1563 |
-
urgency_order = {'critical': 0, 'high': 1, 'medium': 2, 'low': 3}
|
| 1564 |
-
queue.sort(key=lambda x: urgency_order.get(x.get('urgency', 'medium'), 2))
|
| 1565 |
-
|
| 1566 |
-
executed_jobs = []
|
| 1567 |
-
|
| 1568 |
-
for job in queue:
|
| 1569 |
-
if job['status'] == 'queued':
|
| 1570 |
-
success = self.execute_single_retraining(job)
|
| 1571 |
-
|
| 1572 |
-
if success:
|
| 1573 |
-
job['status'] = 'completed'
|
| 1574 |
-
job['completed_at'] = datetime.now().isoformat()
|
| 1575 |
-
self.automation_status['last_automated_training'] = datetime.now().isoformat()
|
| 1576 |
-
self.automation_status['total_automated_trainings'] += 1
|
| 1577 |
-
executed_jobs.append(job)
|
| 1578 |
-
break # Only execute one job at a time
|
| 1579 |
-
else:
|
| 1580 |
-
job['attempts'] += 1
|
| 1581 |
-
if job['attempts'] >= 3:
|
| 1582 |
-
job['status'] = 'failed'
|
| 1583 |
-
job['failed_at'] = datetime.now().isoformat()
|
| 1584 |
-
self.automation_status['failed_attempts'] += 1
|
| 1585 |
-
|
| 1586 |
-
# Update queue
|
| 1587 |
-
remaining_queue = [job for job in queue if job['status'] == 'queued']
|
| 1588 |
-
self.save_retraining_queue(remaining_queue)
|
| 1589 |
-
|
| 1590 |
-
return len(executed_jobs) > 0
|
| 1591 |
-
|
| 1592 |
-
except Exception as e:
|
| 1593 |
-
logger.error(f"Failed to execute queued enhanced retraining: {e}")
|
| 1594 |
-
return False
|
| 1595 |
-
|
| 1596 |
-
def execute_single_retraining(self, job: Dict) -> bool:
|
| 1597 |
-
"""Execute a single retraining job with enhanced features"""
|
| 1598 |
-
try:
|
| 1599 |
-
logger.info(f"Starting automated enhanced retraining with urgency: {job.get('urgency', 'medium')}")
|
| 1600 |
-
|
| 1601 |
-
job['started_at'] = datetime.now().isoformat()
|
| 1602 |
-
job['status'] = 'running'
|
| 1603 |
-
|
| 1604 |
-
# Create enhanced retraining manager
|
| 1605 |
-
retrainer = EnhancedModelRetrainer()
|
| 1606 |
-
|
| 1607 |
-
# Configure enhanced features based on job preferences
|
| 1608 |
-
prefer_enhanced = job.get('prefer_enhanced_features', True)
|
| 1609 |
-
retrainer.use_enhanced_features = prefer_enhanced and ENHANCED_FEATURES_AVAILABLE
|
| 1610 |
-
|
| 1611 |
-
# Perform enhanced retraining with validation
|
| 1612 |
-
success, result = retrainer.automated_retrain_with_validation()
|
| 1613 |
-
|
| 1614 |
-
if success:
|
| 1615 |
-
logger.info("Automated enhanced retraining completed successfully")
|
| 1616 |
-
self.log_automation_event("retraining_success", "Automated enhanced retraining completed", {
|
| 1617 |
-
'job': job,
|
| 1618 |
-
'result': result,
|
| 1619 |
-
'enhanced_features_used': retrainer.use_enhanced_features
|
| 1620 |
-
})
|
| 1621 |
-
return True
|
| 1622 |
-
else:
|
| 1623 |
-
logger.error(f"Automated enhanced retraining failed: {result}")
|
| 1624 |
-
self.log_automation_event("retraining_failed", f"Automated enhanced retraining failed: {result}", {
|
| 1625 |
-
'job': job,
|
| 1626 |
-
'enhanced_features_used': retrainer.use_enhanced_features
|
| 1627 |
-
})
|
| 1628 |
-
return False
|
| 1629 |
-
|
| 1630 |
-
except Exception as e:
|
| 1631 |
-
logger.error(f"Enhanced retraining execution failed: {e}")
|
| 1632 |
-
self.log_automation_event("retraining_error", f"Enhanced retraining execution error: {str(e)}", {'job': job})
|
| 1633 |
-
return False
|
| 1634 |
-
|
| 1635 |
-
def is_in_cooldown_period(self) -> bool:
|
| 1636 |
-
"""Check if we're in cooldown period after recent training"""
|
| 1637 |
-
try:
|
| 1638 |
-
if not self.automation_status['last_automated_training']:
|
| 1639 |
-
return False
|
| 1640 |
-
|
| 1641 |
-
last_training = datetime.fromisoformat(self.automation_status['last_automated_training'])
|
| 1642 |
-
cooldown_hours = self.automation_config['retraining_conditions']['cooldown_hours_after_training']
|
| 1643 |
-
cooldown_period = timedelta(hours=cooldown_hours)
|
| 1644 |
-
|
| 1645 |
-
return datetime.now() - last_training < cooldown_period
|
| 1646 |
-
|
| 1647 |
-
except Exception as e:
|
| 1648 |
-
logger.warning(f"Failed to check cooldown period: {e}")
|
| 1649 |
-
return False
|
| 1650 |
-
|
| 1651 |
-
def exceeded_daily_retraining_limit(self) -> bool:
|
| 1652 |
-
"""Check if daily retraining limit has been exceeded"""
|
| 1653 |
-
try:
|
| 1654 |
-
if not self.automation_status['last_automated_training']:
|
| 1655 |
-
return False
|
| 1656 |
-
|
| 1657 |
-
last_training = datetime.fromisoformat(self.automation_status['last_automated_training'])
|
| 1658 |
-
|
| 1659 |
-
# Count trainings in last 24 hours
|
| 1660 |
-
training_logs = self.get_recent_automation_logs(hours=24)
|
| 1661 |
-
training_count = len([log for log in training_logs if log.get('event') == 'retraining_success'])
|
| 1662 |
-
|
| 1663 |
-
max_daily = self.automation_config['monitoring_schedule']['max_daily_retrainings']
|
| 1664 |
-
|
| 1665 |
-
return training_count >= max_daily
|
| 1666 |
-
|
| 1667 |
-
except Exception as e:
|
| 1668 |
-
logger.warning(f"Failed to check daily limit: {e}")
|
| 1669 |
-
return False
|
| 1670 |
-
|
| 1671 |
-
def load_retraining_queue(self) -> List[Dict]:
|
| 1672 |
-
"""Load retraining queue from file"""
|
| 1673 |
-
try:
|
| 1674 |
-
if self.retraining_queue_path.exists():
|
| 1675 |
-
with open(self.retraining_queue_path, 'r') as f:
|
| 1676 |
-
return json.load(f)
|
| 1677 |
-
return []
|
| 1678 |
-
except Exception as e:
|
| 1679 |
-
logger.error(f"Failed to load retraining queue: {e}")
|
| 1680 |
-
return []
|
| 1681 |
-
|
| 1682 |
-
def save_retraining_queue(self, queue: List[Dict]):
|
| 1683 |
-
"""Save retraining queue to file"""
|
| 1684 |
-
try:
|
| 1685 |
-
with open(self.retraining_queue_path, 'w') as f:
|
| 1686 |
-
json.dump(queue, f, indent=2)
|
| 1687 |
-
except Exception as e:
|
| 1688 |
-
logger.error(f"Failed to save retraining queue: {e}")
|
| 1689 |
-
|
| 1690 |
-
def log_automation_event(self, event: str, message: str, details: Dict = None):
|
| 1691 |
-
"""Log automation events with enhanced feature information"""
|
| 1692 |
-
try:
|
| 1693 |
-
log_entry = {
|
| 1694 |
-
'timestamp': datetime.now().isoformat(),
|
| 1695 |
-
'event': event,
|
| 1696 |
-
'message': message,
|
| 1697 |
-
'details': details or {},
|
| 1698 |
-
'enhanced_features_available': self.enhanced_features_available
|
| 1699 |
-
}
|
| 1700 |
-
|
| 1701 |
-
# Load existing logs
|
| 1702 |
-
logs = []
|
| 1703 |
-
if self.automation_log_path.exists():
|
| 1704 |
-
try:
|
| 1705 |
-
with open(self.automation_log_path, 'r') as f:
|
| 1706 |
-
logs = json.load(f)
|
| 1707 |
-
except:
|
| 1708 |
-
logs = []
|
| 1709 |
-
|
| 1710 |
-
logs.append(log_entry)
|
| 1711 |
-
|
| 1712 |
-
# Keep only last 1000 entries
|
| 1713 |
-
if len(logs) > 1000:
|
| 1714 |
-
logs = logs[-1000:]
|
| 1715 |
-
|
| 1716 |
-
# Save logs
|
| 1717 |
-
with open(self.automation_log_path, 'w') as f:
|
| 1718 |
-
json.dump(logs, f, indent=2)
|
| 1719 |
-
|
| 1720 |
-
except Exception as e:
|
| 1721 |
-
logger.error(f"Failed to log automation event: {e}")
|
| 1722 |
-
|
| 1723 |
-
def get_recent_automation_logs(self, hours: int = 24) -> List[Dict]:
|
| 1724 |
-
"""Get recent automation logs"""
|
| 1725 |
-
try:
|
| 1726 |
-
if not self.automation_log_path.exists():
|
| 1727 |
-
return []
|
| 1728 |
-
|
| 1729 |
-
with open(self.automation_log_path, 'r') as f:
|
| 1730 |
-
logs = json.load(f)
|
| 1731 |
-
|
| 1732 |
-
cutoff_time = datetime.now() - timedelta(hours=hours)
|
| 1733 |
-
recent_logs = [
|
| 1734 |
-
log for log in logs
|
| 1735 |
-
if datetime.fromisoformat(log['timestamp']) > cutoff_time
|
| 1736 |
-
]
|
| 1737 |
-
|
| 1738 |
-
return recent_logs
|
| 1739 |
-
|
| 1740 |
-
except Exception as e:
|
| 1741 |
-
logger.error(f"Failed to get recent logs: {e}")
|
| 1742 |
-
return []
|
| 1743 |
-
|
| 1744 |
-
def get_automation_status(self) -> Dict:
|
| 1745 |
-
"""Get current automation status with enhanced feature information"""
|
| 1746 |
-
try:
|
| 1747 |
-
status = {
|
| 1748 |
-
**self.automation_status,
|
| 1749 |
-
'monitoring_active': self.retraining_active,
|
| 1750 |
-
'last_check_time': self.last_check_time.isoformat() if self.last_check_time else None,
|
| 1751 |
-
'in_cooldown': self.is_in_cooldown_period(),
|
| 1752 |
-
'daily_limit_exceeded': self.exceeded_daily_retraining_limit(),
|
| 1753 |
-
'queued_jobs': len(self.load_retraining_queue()),
|
| 1754 |
-
'recent_logs': self.get_recent_automation_logs(hours=6),
|
| 1755 |
-
'enhanced_features_status': {
|
| 1756 |
-
'available': self.enhanced_features_available,
|
| 1757 |
-
'preference': self.automation_config['retraining_conditions'].get('prefer_enhanced_features', True)
|
| 1758 |
-
}
|
| 1759 |
-
}
|
| 1760 |
-
|
| 1761 |
-
return status
|
| 1762 |
-
|
| 1763 |
-
except Exception as e:
|
| 1764 |
-
logger.error(f"Failed to get automation status: {e}")
|
| 1765 |
-
return {'error': str(e)}
|
| 1766 |
|
| 1767 |
def trigger_manual_retraining(self, reason: str = "manual_trigger", use_enhanced: bool = None) -> Dict:
|
| 1768 |
"""Manually trigger retraining with enhanced feature options"""
|
| 1769 |
try:
|
| 1770 |
-
# Use enhanced features by default if available
|
| 1771 |
if use_enhanced is None:
|
| 1772 |
use_enhanced = self.enhanced_features_available
|
| 1773 |
|
| 1774 |
-
|
| 1775 |
-
|
| 1776 |
-
'should_retrain': True,
|
| 1777 |
-
'urgency': 'high',
|
| 1778 |
-
'trigger_reason': reason,
|
| 1779 |
-
'triggers_detected': [{
|
| 1780 |
-
'type': 'manual_trigger',
|
| 1781 |
-
'severity': 'high',
|
| 1782 |
-
'message': f'Manual enhanced retraining triggered: {reason}'
|
| 1783 |
-
}],
|
| 1784 |
-
'recommendations': ['Manual enhanced retraining requested'],
|
| 1785 |
-
'enhanced_features_requested': use_enhanced
|
| 1786 |
-
}
|
| 1787 |
|
| 1788 |
-
|
| 1789 |
-
self.queue_retraining(trigger_results, forced=True)
|
| 1790 |
|
| 1791 |
feature_info = " with enhanced features" if use_enhanced else " with standard features"
|
| 1792 |
-
|
| 1793 |
-
|
| 1794 |
-
|
| 1795 |
-
|
| 1796 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1797 |
|
| 1798 |
except Exception as e:
|
| 1799 |
logger.error(f"Manual enhanced retraining trigger failed: {e}")
|
| 1800 |
return {'success': False, 'error': str(e)}
|
| 1801 |
|
| 1802 |
|
| 1803 |
-
def start_automation_system():
|
| 1804 |
-
"""Start the enhanced automated retraining system"""
|
| 1805 |
-
try:
|
| 1806 |
-
automation_manager = AutomatedRetrainingManager()
|
| 1807 |
-
automation_manager.start_automated_monitoring()
|
| 1808 |
-
return automation_manager
|
| 1809 |
-
except Exception as e:
|
| 1810 |
-
logger.error(f"Failed to start enhanced automation system: {e}")
|
| 1811 |
-
return None
|
| 1812 |
-
|
| 1813 |
-
def get_automation_manager() -> Optional[AutomatedRetrainingManager]:
|
| 1814 |
-
"""Get or create enhanced automation manager instance"""
|
| 1815 |
-
global _automation_manager
|
| 1816 |
-
|
| 1817 |
-
if '_automation_manager' not in globals():
|
| 1818 |
-
_automation_manager = AutomatedRetrainingManager()
|
| 1819 |
-
|
| 1820 |
-
return _automation_manager
|
| 1821 |
-
|
| 1822 |
def main():
|
| 1823 |
-
"""Main execution function with enhanced CV and
|
| 1824 |
retrainer = EnhancedModelRetrainer()
|
| 1825 |
success, message = retrainer.retrain_model()
|
| 1826 |
|
|
@@ -1830,5 +1793,6 @@ def main():
|
|
| 1830 |
print(f"❌ {message}")
|
| 1831 |
exit(1)
|
| 1832 |
|
|
|
|
| 1833 |
if __name__ == "__main__":
|
| 1834 |
main()
|
|
|
|
| 1 |
+
# Enhanced version with LightGBM, ensemble voting, and comprehensive cross-validation
|
|
|
|
| 2 |
|
| 3 |
import json
|
| 4 |
import shutil
|
| 5 |
import joblib
|
|
|
|
| 6 |
import logging
|
| 7 |
import hashlib
|
| 8 |
import schedule
|
|
|
|
| 25 |
roc_auc_score, confusion_matrix, classification_report
|
| 26 |
)
|
| 27 |
from sklearn.model_selection import (
|
| 28 |
+
cross_val_score, StratifiedKFold, cross_validate, train_test_split, GridSearchCV
|
| 29 |
)
|
| 30 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 31 |
from sklearn.linear_model import LogisticRegression
|
| 32 |
+
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
| 33 |
from sklearn.pipeline import Pipeline
|
| 34 |
from sklearn.preprocessing import FunctionTransformer
|
| 35 |
from sklearn.feature_selection import SelectKBest, chi2
|
| 36 |
|
| 37 |
+
# Import LightGBM
|
| 38 |
+
import lightgbm as lgb
|
| 39 |
+
|
| 40 |
# Import enhanced feature engineering components
|
| 41 |
try:
|
| 42 |
from features.feature_engineer import AdvancedFeatureEngineer, create_enhanced_pipeline, analyze_feature_importance
|
|
|
|
| 434 |
except Exception as e:
|
| 435 |
logger.error(f"Metric comparison failed for {metric}: {e}")
|
| 436 |
return {'metric': metric, 'error': str(e)}
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
class EnsembleManager:
|
| 440 |
+
"""Manage ensemble model creation and validation for retraining (matching train.py)"""
|
| 441 |
|
| 442 |
+
def __init__(self, random_state: int = 42):
|
| 443 |
+
self.random_state = random_state
|
| 444 |
|
| 445 |
+
def create_ensemble(self, individual_models: Dict[str, Any],
|
| 446 |
+
voting: str = 'soft') -> VotingClassifier:
|
| 447 |
+
"""Create ensemble from individual models"""
|
| 448 |
+
|
| 449 |
+
estimators = [(name, model) for name, model in individual_models.items()]
|
| 450 |
+
|
| 451 |
+
ensemble = VotingClassifier(
|
| 452 |
+
estimators=estimators,
|
| 453 |
+
voting=voting,
|
| 454 |
+
n_jobs=1 # CPU optimization for HFS
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
logger.info(f"Created {voting} voting ensemble with {len(estimators)} models for retraining")
|
| 458 |
+
return ensemble
|
| 459 |
+
|
| 460 |
+
def evaluate_ensemble_vs_individuals(self, ensemble, individual_models: Dict,
|
| 461 |
+
X_test, y_test) -> Dict:
|
| 462 |
+
"""Compare ensemble performance against individual models"""
|
| 463 |
+
|
| 464 |
+
results = {}
|
| 465 |
+
|
| 466 |
+
# Evaluate individual models
|
| 467 |
+
for name, model in individual_models.items():
|
| 468 |
+
y_pred = model.predict(X_test)
|
| 469 |
+
y_pred_proba = model.predict_proba(X_test)[:, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
+
results[name] = {
|
| 472 |
+
'accuracy': float(accuracy_score(y_test, y_pred)),
|
| 473 |
+
'precision': float(precision_score(y_test, y_pred, average='weighted')),
|
| 474 |
+
'recall': float(recall_score(y_test, y_pred, average='weighted')),
|
| 475 |
+
'f1': float(f1_score(y_test, y_pred, average='weighted')),
|
| 476 |
+
'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
|
| 477 |
+
}
|
| 478 |
+
|
| 479 |
+
# Evaluate ensemble
|
| 480 |
+
y_pred_ensemble = ensemble.predict(X_test)
|
| 481 |
+
y_pred_proba_ensemble = ensemble.predict_proba(X_test)[:, 1]
|
| 482 |
+
|
| 483 |
+
results['ensemble'] = {
|
| 484 |
+
'accuracy': float(accuracy_score(y_test, y_pred_ensemble)),
|
| 485 |
+
'precision': float(precision_score(y_test, y_pred_ensemble, average='weighted')),
|
| 486 |
+
'recall': float(recall_score(y_test, y_pred_ensemble, average='weighted')),
|
| 487 |
+
'f1': float(f1_score(y_test, y_pred_ensemble, average='weighted')),
|
| 488 |
+
'roc_auc': float(roc_auc_score(y_test, y_pred_proba_ensemble))
|
| 489 |
+
}
|
| 490 |
+
|
| 491 |
+
# Calculate improvement over best individual model
|
| 492 |
+
best_individual_f1 = max(results[name]['f1'] for name in individual_models.keys())
|
| 493 |
+
ensemble_f1 = results['ensemble']['f1']
|
| 494 |
+
improvement = ensemble_f1 - best_individual_f1
|
| 495 |
+
|
| 496 |
+
results['ensemble_analysis'] = {
|
| 497 |
+
'best_individual_f1': best_individual_f1,
|
| 498 |
+
'ensemble_f1': ensemble_f1,
|
| 499 |
+
'improvement': improvement,
|
| 500 |
+
'improvement_percentage': (improvement / best_individual_f1) * 100 if best_individual_f1 > 0 else 0,
|
| 501 |
+
'is_better': improvement > 0
|
| 502 |
+
}
|
| 503 |
+
|
| 504 |
+
return results
|
| 505 |
+
|
| 506 |
+
def statistical_ensemble_comparison(self, ensemble, individual_models: Dict,
|
| 507 |
+
X, y, cv_manager) -> Dict:
|
| 508 |
+
"""Perform statistical comparison between ensemble and individual models"""
|
| 509 |
+
|
| 510 |
+
cv_strategy = cv_manager.create_cv_strategy(X, y)
|
| 511 |
+
|
| 512 |
+
results = {}
|
| 513 |
+
|
| 514 |
+
# Get CV results for ensemble
|
| 515 |
+
ensemble_cv = cv_manager.perform_model_cv_evaluation(ensemble, X, y, cv_strategy)
|
| 516 |
+
results['ensemble'] = ensemble_cv
|
| 517 |
+
|
| 518 |
+
# Get CV results for individual models
|
| 519 |
+
individual_cv_results = {}
|
| 520 |
+
for name, model in individual_models.items():
|
| 521 |
+
model_cv = cv_manager.perform_model_cv_evaluation(model, X, y, cv_strategy)
|
| 522 |
+
individual_cv_results[name] = model_cv
|
| 523 |
+
results[name] = model_cv
|
| 524 |
+
|
| 525 |
+
# Compare ensemble with each individual model
|
| 526 |
+
comparisons = {}
|
| 527 |
+
for name, model_cv in individual_cv_results.items():
|
| 528 |
+
comparison = cv_manager._compare_metric_scores(
|
| 529 |
+
model_cv['test_scores']['f1']['scores'] if 'test_scores' in model_cv and 'f1' in model_cv['test_scores'] else [],
|
| 530 |
+
ensemble_cv['test_scores']['f1']['scores'] if 'test_scores' in ensemble_cv and 'f1' in ensemble_cv['test_scores'] else [],
|
| 531 |
+
'f1', name, 'ensemble'
|
| 532 |
+
)
|
| 533 |
+
comparisons[f'ensemble_vs_{name}'] = comparison
|
| 534 |
+
|
| 535 |
+
results['statistical_comparisons'] = comparisons
|
| 536 |
+
|
| 537 |
+
# Determine if ensemble should be used
|
| 538 |
+
ensemble_f1_scores = ensemble_cv.get('test_scores', {}).get('f1', {}).get('scores', [])
|
| 539 |
+
|
| 540 |
+
significantly_better_count = 0
|
| 541 |
+
for comparison in comparisons.values():
|
| 542 |
+
if comparison.get('tests', {}).get('paired_ttest', {}).get('significant', False) and comparison.get('improvement', 0) > 0:
|
| 543 |
+
significantly_better_count += 1
|
| 544 |
+
|
| 545 |
+
results['ensemble_recommendation'] = {
|
| 546 |
+
'use_ensemble': significantly_better_count > 0,
|
| 547 |
+
'significantly_better_than': significantly_better_count,
|
| 548 |
+
'total_comparisons': len(comparisons),
|
| 549 |
+
'confidence': significantly_better_count / len(comparisons) if comparisons else 0
|
| 550 |
+
}
|
| 551 |
+
|
| 552 |
+
return results
|
| 553 |
|
| 554 |
|
| 555 |
class EnhancedModelRetrainer:
|
| 556 |
+
"""Production-ready model retraining with LightGBM, enhanced features, and ensemble voting"""
|
| 557 |
|
| 558 |
def __init__(self):
|
| 559 |
self.setup_paths()
|
| 560 |
self.setup_retraining_config()
|
| 561 |
self.setup_statistical_tests()
|
| 562 |
+
self.setup_models() # Add LightGBM and ensemble management
|
| 563 |
self.cv_comparator = CVModelComparator()
|
| 564 |
+
self.ensemble_manager = EnsembleManager()
|
| 565 |
|
| 566 |
# Enhanced feature engineering settings
|
| 567 |
self.enhanced_features_available = ENHANCED_FEATURES_AVAILABLE
|
| 568 |
self.use_enhanced_features = ENHANCED_FEATURES_AVAILABLE # Default to enhanced if available
|
| 569 |
+
self.enable_ensemble = True # Enable ensemble by default
|
| 570 |
|
| 571 |
+
logger.info(f"Enhanced retraining initialized with features: {'enhanced' if self.use_enhanced_features else 'standard'}, ensemble: {self.enable_ensemble}")
|
| 572 |
|
| 573 |
def setup_paths(self):
|
| 574 |
"""Setup all necessary paths"""
|
|
|
|
| 617 |
self.max_retries = 3
|
| 618 |
self.backup_retention_days = 30
|
| 619 |
|
| 620 |
+
# Enhanced feature configuration matching train.py
|
| 621 |
+
if self.use_enhanced_features:
|
| 622 |
+
self.max_features = 7500
|
| 623 |
+
self.feature_selection_k = 3000
|
| 624 |
+
else:
|
| 625 |
+
self.max_features = 5000
|
| 626 |
+
self.feature_selection_k = 2000
|
| 627 |
+
|
| 628 |
+
self.min_df = 1
|
| 629 |
+
self.max_df = 0.95
|
| 630 |
+
self.ngram_range = (1, 2)
|
| 631 |
+
self.max_iter = 500
|
| 632 |
+
self.class_weight = 'balanced'
|
| 633 |
|
| 634 |
def setup_statistical_tests(self):
|
| 635 |
"""Setup statistical test configurations"""
|
|
|
|
| 639 |
'mcnemar': {'alpha': 0.05, 'name': "McNemar's Test"}
|
| 640 |
}
|
| 641 |
|
| 642 |
+
def setup_models(self):
|
| 643 |
+
"""Setup model configurations including LightGBM (matching train.py)"""
|
| 644 |
+
self.models = {
|
| 645 |
+
'logistic_regression': {
|
| 646 |
+
'model': LogisticRegression(
|
| 647 |
+
max_iter=self.max_iter,
|
| 648 |
+
class_weight=self.class_weight,
|
| 649 |
+
random_state=self.random_state,
|
| 650 |
+
n_jobs=1 # CPU optimization
|
| 651 |
+
),
|
| 652 |
+
'param_grid': {
|
| 653 |
+
'model__C': [0.1, 1, 10],
|
| 654 |
+
'model__penalty': ['l2']
|
| 655 |
+
}
|
| 656 |
+
},
|
| 657 |
+
'random_forest': {
|
| 658 |
+
'model': RandomForestClassifier(
|
| 659 |
+
n_estimators=50, # Reduced for CPU efficiency
|
| 660 |
+
class_weight=self.class_weight,
|
| 661 |
+
random_state=self.random_state,
|
| 662 |
+
n_jobs=1 # CPU optimization
|
| 663 |
+
),
|
| 664 |
+
'param_grid': {
|
| 665 |
+
'model__n_estimators': [50, 100],
|
| 666 |
+
'model__max_depth': [10, None]
|
| 667 |
+
}
|
| 668 |
+
},
|
| 669 |
+
'lightgbm': {
|
| 670 |
+
'model': lgb.LGBMClassifier(
|
| 671 |
+
objective='binary',
|
| 672 |
+
boosting_type='gbdt',
|
| 673 |
+
num_leaves=31,
|
| 674 |
+
max_depth=10,
|
| 675 |
+
learning_rate=0.1,
|
| 676 |
+
n_estimators=100,
|
| 677 |
+
class_weight=self.class_weight,
|
| 678 |
+
random_state=self.random_state,
|
| 679 |
+
n_jobs=1, # CPU optimization
|
| 680 |
+
verbose=-1 # Suppress LightGBM output
|
| 681 |
+
),
|
| 682 |
+
'param_grid': {
|
| 683 |
+
'model__n_estimators': [50, 100],
|
| 684 |
+
'model__learning_rate': [0.05, 0.1],
|
| 685 |
+
'model__num_leaves': [15, 31]
|
| 686 |
+
}
|
| 687 |
+
}
|
| 688 |
+
}
|
| 689 |
+
|
| 690 |
def detect_production_feature_type(self) -> str:
|
| 691 |
"""Detect what type of features the production model uses"""
|
| 692 |
try:
|
|
|
|
| 834 |
logger.info(f"Data cleaning: {initial_count} -> {len(df)} samples")
|
| 835 |
return df
|
| 836 |
|
| 837 |
+
def create_preprocessing_pipeline(self, use_enhanced: bool = None) -> Pipeline:
|
| 838 |
+
"""Create preprocessing pipeline with optional enhanced features (matching train.py)"""
|
| 839 |
|
| 840 |
+
if use_enhanced is None:
|
| 841 |
+
use_enhanced = self.use_enhanced_features
|
| 842 |
|
| 843 |
+
if use_enhanced and ENHANCED_FEATURES_AVAILABLE:
|
| 844 |
logger.info("Creating enhanced feature engineering pipeline for retraining...")
|
| 845 |
|
| 846 |
+
# Create enhanced feature engineer
|
| 847 |
feature_engineer = AdvancedFeatureEngineer(
|
| 848 |
+
enable_sentiment=True,
|
| 849 |
+
enable_readability=True,
|
| 850 |
+
enable_entities=True,
|
| 851 |
+
enable_linguistic=True,
|
| 852 |
+
feature_selection_k=self.feature_selection_k,
|
| 853 |
+
tfidf_max_features=self.max_features,
|
| 854 |
+
ngram_range=self.ngram_range,
|
| 855 |
+
min_df=self.min_df,
|
| 856 |
+
max_df=self.max_df
|
| 857 |
)
|
| 858 |
|
| 859 |
# Create pipeline with enhanced features
|
| 860 |
pipeline = Pipeline([
|
| 861 |
('enhanced_features', feature_engineer),
|
| 862 |
+
('model', None) # Will be set during training
|
|
|
|
|
|
|
|
|
|
|
|
|
| 863 |
])
|
| 864 |
|
| 865 |
return pipeline
|
|
|
|
| 867 |
else:
|
| 868 |
logger.info("Creating standard TF-IDF pipeline for retraining...")
|
| 869 |
|
| 870 |
+
# Use the standalone function instead of lambda
|
| 871 |
+
text_preprocessor = FunctionTransformer(
|
| 872 |
+
func=preprocess_text_function,
|
| 873 |
+
validate=False
|
| 874 |
+
)
|
| 875 |
+
|
| 876 |
+
# TF-IDF vectorization with optimized parameters
|
| 877 |
+
vectorizer = TfidfVectorizer(
|
| 878 |
+
max_features=self.max_features,
|
| 879 |
+
min_df=self.min_df,
|
| 880 |
+
max_df=self.max_df,
|
| 881 |
+
ngram_range=self.ngram_range,
|
| 882 |
+
stop_words='english',
|
| 883 |
+
sublinear_tf=True,
|
| 884 |
+
norm='l2'
|
| 885 |
+
)
|
| 886 |
+
|
| 887 |
+
# Feature selection
|
| 888 |
+
feature_selector = SelectKBest(
|
| 889 |
+
score_func=chi2,
|
| 890 |
+
k=min(self.feature_selection_k, self.max_features)
|
| 891 |
+
)
|
| 892 |
+
|
| 893 |
# Create standard pipeline
|
| 894 |
pipeline = Pipeline([
|
| 895 |
+
('preprocess', text_preprocessor),
|
| 896 |
+
('vectorize', vectorizer),
|
| 897 |
+
('feature_select', feature_selector),
|
| 898 |
+
('model', None) # Will be set during training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 899 |
])
|
| 900 |
+
|
| 901 |
+
return pipeline
|
| 902 |
+
|
| 903 |
+
def hyperparameter_tuning_with_cv(self, pipeline, X_train, y_train, model_name: str) -> Tuple[Any, Dict]:
|
| 904 |
+
"""Perform hyperparameter tuning with nested cross-validation (matching train.py)"""
|
| 905 |
+
|
| 906 |
+
logger.info(f"Tuning {model_name} for retraining with {'enhanced' if self.use_enhanced_features else 'standard'} features")
|
| 907 |
+
|
| 908 |
+
try:
|
| 909 |
+
# Set the model in the pipeline
|
| 910 |
+
pipeline.set_params(model=self.models[model_name]['model'])
|
| 911 |
+
|
| 912 |
+
# Skip hyperparameter tuning for very small datasets
|
| 913 |
+
if len(X_train) < 20:
|
| 914 |
+
logger.info(f"Skipping hyperparameter tuning for {model_name} due to small dataset")
|
| 915 |
+
pipeline.fit(X_train, y_train)
|
| 916 |
+
|
| 917 |
+
# Still perform CV evaluation
|
| 918 |
+
cv_results = self.cv_comparator.perform_model_cv_evaluation(pipeline, X_train, y_train)
|
| 919 |
+
|
| 920 |
+
return pipeline, {
|
| 921 |
+
'best_params': 'default_parameters',
|
| 922 |
+
'best_score': cv_results.get('test_scores', {}).get('f1', {}).get('mean', 'not_calculated'),
|
| 923 |
+
'best_estimator': pipeline,
|
| 924 |
+
'cross_validation': cv_results,
|
| 925 |
+
'note': 'Hyperparameter tuning skipped for small dataset'
|
| 926 |
+
}
|
| 927 |
+
|
| 928 |
+
# Get parameter grid
|
| 929 |
+
param_grid = self.models[model_name]['param_grid']
|
| 930 |
+
|
| 931 |
+
# Create CV strategy
|
| 932 |
+
cv_strategy = self.cv_comparator.create_cv_strategy(X_train, y_train)
|
| 933 |
|
| 934 |
+
# Create GridSearchCV with nested cross-validation
|
| 935 |
+
grid_search = GridSearchCV(
|
| 936 |
+
pipeline,
|
| 937 |
+
param_grid,
|
| 938 |
+
cv=cv_strategy,
|
| 939 |
+
scoring='f1_weighted',
|
| 940 |
+
n_jobs=1, # Single job for CPU optimization
|
| 941 |
+
verbose=0, # Reduce verbosity for speed
|
| 942 |
+
return_train_score=True # For overfitting analysis
|
| 943 |
+
)
|
| 944 |
+
|
| 945 |
+
# Fit grid search
|
| 946 |
+
logger.info(f"Starting hyperparameter tuning for {model_name}...")
|
| 947 |
+
grid_search.fit(X_train, y_train)
|
| 948 |
+
|
| 949 |
+
# Perform additional CV on best model
|
| 950 |
+
logger.info(f"Performing final CV evaluation for {model_name}...")
|
| 951 |
+
best_cv_results = self.cv_comparator.perform_model_cv_evaluation(
|
| 952 |
+
grid_search.best_estimator_, X_train, y_train, cv_strategy
|
| 953 |
+
)
|
| 954 |
+
|
| 955 |
+
# Extract results
|
| 956 |
+
tuning_results = {
|
| 957 |
+
'best_params': grid_search.best_params_,
|
| 958 |
+
'best_score': float(grid_search.best_score_),
|
| 959 |
+
'best_estimator': grid_search.best_estimator_,
|
| 960 |
+
'cv_folds_used': cv_strategy.n_splits,
|
| 961 |
+
'cross_validation': best_cv_results,
|
| 962 |
+
'grid_search_results': {
|
| 963 |
+
'mean_test_scores': grid_search.cv_results_['mean_test_score'].tolist(),
|
| 964 |
+
'std_test_scores': grid_search.cv_results_['std_test_score'].tolist(),
|
| 965 |
+
'mean_train_scores': grid_search.cv_results_.get('mean_train_score', []).tolist() if 'mean_train_score' in grid_search.cv_results_ else [],
|
| 966 |
+
'params': grid_search.cv_results_['params']
|
| 967 |
+
}
|
| 968 |
+
}
|
| 969 |
+
|
| 970 |
+
logger.info(f"Hyperparameter tuning completed for {model_name}")
|
| 971 |
+
logger.info(f"Best CV score: {grid_search.best_score_:.4f}")
|
| 972 |
+
logger.info(f"Best params: {grid_search.best_params_}")
|
| 973 |
+
|
| 974 |
+
if 'test_scores' in best_cv_results and 'f1' in best_cv_results['test_scores']:
|
| 975 |
+
final_f1 = best_cv_results['test_scores']['f1']['mean']
|
| 976 |
+
final_f1_std = best_cv_results['test_scores']['f1']['std']
|
| 977 |
+
logger.info(f"Final CV F1: {final_f1:.4f} (±{final_f1_std:.4f})")
|
| 978 |
+
|
| 979 |
+
return grid_search.best_estimator_, tuning_results
|
| 980 |
+
|
| 981 |
+
except Exception as e:
|
| 982 |
+
logger.error(f"Hyperparameter tuning failed for {model_name}: {str(e)}")
|
| 983 |
+
# Return basic model if tuning fails
|
| 984 |
+
try:
|
| 985 |
+
pipeline.set_params(model=self.models[model_name]['model'])
|
| 986 |
+
pipeline.fit(X_train, y_train)
|
| 987 |
+
|
| 988 |
+
# Perform basic CV
|
| 989 |
+
cv_results = self.cv_comparator.perform_model_cv_evaluation(pipeline, X_train, y_train)
|
| 990 |
+
|
| 991 |
+
return pipeline, {
|
| 992 |
+
'error': str(e),
|
| 993 |
+
'fallback': 'simple_training',
|
| 994 |
+
'cross_validation': cv_results
|
| 995 |
+
}
|
| 996 |
+
except Exception as e2:
|
| 997 |
+
logger.error(f"Fallback training also failed for {model_name}: {str(e2)}")
|
| 998 |
+
raise Exception(f"Both hyperparameter tuning and fallback training failed: {str(e)} | {str(e2)}")
|
| 999 |
+
|
| 1000 |
+
def train_and_evaluate_models(self, X_train, X_test, y_train, y_test) -> Dict:
|
| 1001 |
+
"""Train and evaluate multiple models including LightGBM with enhanced features and ensemble (matching train.py)"""
|
| 1002 |
+
|
| 1003 |
+
results = {}
|
| 1004 |
+
individual_models = {}
|
| 1005 |
+
|
| 1006 |
+
for model_name in self.models.keys():
|
| 1007 |
+
logger.info(f"Training {model_name} for retraining with {'enhanced' if self.use_enhanced_features else 'standard'} features...")
|
| 1008 |
+
|
| 1009 |
+
try:
|
| 1010 |
+
# Create pipeline (enhanced or standard)
|
| 1011 |
+
pipeline = self.create_preprocessing_pipeline()
|
| 1012 |
+
|
| 1013 |
+
# Hyperparameter tuning with CV
|
| 1014 |
+
best_model, tuning_results = self.hyperparameter_tuning_with_cv(
|
| 1015 |
+
pipeline, X_train, y_train, model_name
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
# Store results
|
| 1019 |
+
results[model_name] = {
|
| 1020 |
+
'model': best_model,
|
| 1021 |
+
'tuning_results': tuning_results,
|
| 1022 |
+
'training_time': datetime.now().isoformat(),
|
| 1023 |
+
'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
|
| 1024 |
+
}
|
| 1025 |
+
|
| 1026 |
+
# Store for ensemble creation
|
| 1027 |
+
individual_models[model_name] = best_model
|
| 1028 |
+
|
| 1029 |
+
# Log results
|
| 1030 |
+
cv_results = tuning_results.get('cross_validation', {})
|
| 1031 |
+
cv_f1_mean = cv_results.get('test_scores', {}).get('f1', {}).get('mean', 'N/A')
|
| 1032 |
+
cv_f1_std = cv_results.get('test_scores', {}).get('f1', {}).get('std', 'N/A')
|
| 1033 |
+
|
| 1034 |
+
logger.info(f"Model {model_name} - CV F1: {cv_f1_mean:.4f if cv_f1_mean != 'N/A' else cv_f1_mean} "
|
| 1035 |
+
f"(±{cv_f1_std:.4f if cv_f1_std != 'N/A' else cv_f1_std})")
|
| 1036 |
+
|
| 1037 |
+
except Exception as e:
|
| 1038 |
+
logger.error(f"Training failed for {model_name}: {str(e)}")
|
| 1039 |
+
results[model_name] = {'error': str(e)}
|
| 1040 |
+
|
| 1041 |
+
# Create and evaluate ensemble if enabled and we have multiple successful models
|
| 1042 |
+
if self.enable_ensemble and len(individual_models) >= 2:
|
| 1043 |
+
logger.info("Creating ensemble model for retraining...")
|
| 1044 |
+
|
| 1045 |
+
try:
|
| 1046 |
+
# Create ensemble
|
| 1047 |
+
ensemble = self.ensemble_manager.create_ensemble(individual_models, voting='soft')
|
| 1048 |
+
|
| 1049 |
+
# Fit ensemble
|
| 1050 |
+
X_full_train = np.concatenate([X_train, X_test])
|
| 1051 |
+
y_full_train = np.concatenate([y_train, y_test])
|
| 1052 |
+
|
| 1053 |
+
ensemble.fit(X_train, y_train)
|
| 1054 |
+
|
| 1055 |
+
# Compare ensemble with individual models using statistical tests
|
| 1056 |
+
statistical_comparison = self.ensemble_manager.statistical_ensemble_comparison(
|
| 1057 |
+
ensemble, individual_models, X_full_train, y_full_train, self.cv_comparator
|
| 1058 |
+
)
|
| 1059 |
+
|
| 1060 |
+
# Store ensemble results
|
| 1061 |
+
results['ensemble'] = {
|
| 1062 |
+
'model': ensemble,
|
| 1063 |
+
'statistical_comparison': statistical_comparison,
|
| 1064 |
+
'training_time': datetime.now().isoformat(),
|
| 1065 |
+
'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
|
| 1066 |
+
}
|
| 1067 |
+
|
| 1068 |
+
# Add ensemble to individual models for selection
|
| 1069 |
+
individual_models['ensemble'] = ensemble
|
| 1070 |
+
|
| 1071 |
+
# Log ensemble results
|
| 1072 |
+
recommendation = statistical_comparison.get('ensemble_recommendation', {})
|
| 1073 |
+
if recommendation.get('use_ensemble', False):
|
| 1074 |
+
logger.info(f"✅ Ensemble recommended for retraining (confidence: {recommendation.get('confidence', 0):.2f})")
|
| 1075 |
+
else:
|
| 1076 |
+
logger.info(f"❌ Ensemble not recommended for retraining")
|
| 1077 |
+
|
| 1078 |
+
except Exception as e:
|
| 1079 |
+
logger.error(f"Ensemble creation failed for retraining: {str(e)}")
|
| 1080 |
+
results['ensemble'] = {'error': str(e)}
|
| 1081 |
+
|
| 1082 |
+
return results
|
| 1083 |
|
| 1084 |
+
def select_best_model(self, results: Dict) -> Tuple[str, Any, Dict]:
|
| 1085 |
+
"""Select the best performing model based on CV results with ensemble consideration (matching train.py)"""
|
| 1086 |
+
|
| 1087 |
+
best_model_name = None
|
| 1088 |
+
best_model = None
|
| 1089 |
+
best_score = -1
|
| 1090 |
+
best_metrics = None
|
| 1091 |
+
|
| 1092 |
+
# Consider ensemble first if it exists and is recommended
|
| 1093 |
+
if 'ensemble' in results and 'error' not in results['ensemble']:
|
| 1094 |
+
ensemble_result = results['ensemble']
|
| 1095 |
+
statistical_comparison = ensemble_result.get('statistical_comparison', {})
|
| 1096 |
+
recommendation = statistical_comparison.get('ensemble_recommendation', {})
|
| 1097 |
+
|
| 1098 |
+
if recommendation.get('use_ensemble', False):
|
| 1099 |
+
ensemble_cv = statistical_comparison.get('ensemble', {})
|
| 1100 |
+
|
| 1101 |
+
if 'test_scores' in ensemble_cv and 'f1' in ensemble_cv['test_scores']:
|
| 1102 |
+
f1_score = ensemble_cv['test_scores']['f1']['mean']
|
| 1103 |
+
if f1_score > best_score:
|
| 1104 |
+
best_score = f1_score
|
| 1105 |
+
best_model_name = 'ensemble'
|
| 1106 |
+
best_model = ensemble_result['model']
|
| 1107 |
+
best_metrics = {'cross_validation': ensemble_cv}
|
| 1108 |
+
logger.info("✅ Ensemble selected as best model for retraining")
|
| 1109 |
+
|
| 1110 |
+
# If ensemble not selected, choose best individual model
|
| 1111 |
+
if best_model_name is None:
|
| 1112 |
+
for model_name, result in results.items():
|
| 1113 |
+
if 'error' in result or model_name == 'ensemble':
|
| 1114 |
+
continue
|
| 1115 |
+
|
| 1116 |
+
# Prioritize CV F1 score if available
|
| 1117 |
+
tuning_results = result.get('tuning_results', {})
|
| 1118 |
+
cv_results = tuning_results.get('cross_validation', {})
|
| 1119 |
+
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 1120 |
+
f1_score = cv_results['test_scores']['f1']['mean']
|
| 1121 |
+
score_type = "CV F1"
|
| 1122 |
+
else:
|
| 1123 |
+
f1_score = tuning_results.get('best_score', 0)
|
| 1124 |
+
score_type = "Grid Search F1"
|
| 1125 |
+
|
| 1126 |
+
if f1_score > best_score:
|
| 1127 |
+
best_score = f1_score
|
| 1128 |
+
best_model_name = model_name
|
| 1129 |
+
best_model = result['model']
|
| 1130 |
+
best_metrics = {'cross_validation': cv_results} if cv_results else tuning_results
|
| 1131 |
+
|
| 1132 |
+
if best_model_name is None:
|
| 1133 |
+
raise ValueError("No models trained successfully for retraining")
|
| 1134 |
+
|
| 1135 |
+
score_type = "CV F1" if 'cross_validation' in best_metrics else "Grid Search F1"
|
| 1136 |
+
logger.info(f"Best model for retraining: {best_model_name} with {score_type} score: {best_score:.4f}")
|
| 1137 |
+
return best_model_name, best_model, best_metrics
|
| 1138 |
+
|
| 1139 |
def train_candidate_model(self, df: pd.DataFrame) -> Tuple[bool, Optional[Any], Dict]:
|
| 1140 |
"""Train candidate model with enhanced features and comprehensive CV evaluation"""
|
| 1141 |
try:
|
| 1142 |
+
logger.info("Training candidate model with enhanced feature engineering and LightGBM...")
|
| 1143 |
|
| 1144 |
# Prepare data
|
| 1145 |
X = df['text'].values
|
|
|
|
| 1151 |
|
| 1152 |
logger.info(f"Training candidate with {candidate_feature_type} features (production uses {prod_feature_type})")
|
| 1153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1154 |
# Additional holdout evaluation
|
| 1155 |
X_train, X_test, y_train, y_test = train_test_split(
|
| 1156 |
X, y, test_size=self.test_size, stratify=y, random_state=self.random_state
|
| 1157 |
)
|
| 1158 |
|
| 1159 |
+
# Train and evaluate models including LightGBM and ensemble
|
| 1160 |
+
results = self.train_and_evaluate_models(X_train, X_test, y_train, y_test)
|
| 1161 |
+
|
| 1162 |
+
# Select best model (could be ensemble)
|
| 1163 |
+
best_model_name, best_model, best_metrics = self.select_best_model(results)
|
| 1164 |
+
|
| 1165 |
+
# Train final model on full dataset
|
| 1166 |
+
final_pipeline = self.create_preprocessing_pipeline(self.use_enhanced_features)
|
| 1167 |
+
|
| 1168 |
+
# Replace model component with selected best model
|
| 1169 |
+
if hasattr(best_model, 'named_steps') and 'model' in best_model.named_steps:
|
| 1170 |
+
final_pipeline.set_params(model=best_model.named_steps['model'])
|
| 1171 |
+
elif best_model_name == 'ensemble':
|
| 1172 |
+
# For ensemble, we need to recreate it with properly fitted individual models
|
| 1173 |
+
individual_models = {}
|
| 1174 |
+
for name, result in results.items():
|
| 1175 |
+
if name != 'ensemble' and 'error' not in result:
|
| 1176 |
+
# Retrain individual model on full data
|
| 1177 |
+
individual_pipeline = self.create_preprocessing_pipeline(self.use_enhanced_features)
|
| 1178 |
+
individual_pipeline.set_params(model=result['model'].named_steps['model'])
|
| 1179 |
+
individual_pipeline.fit(X, y)
|
| 1180 |
+
individual_models[name] = individual_pipeline
|
| 1181 |
+
|
| 1182 |
+
if len(individual_models) >= 2:
|
| 1183 |
+
final_ensemble = self.ensemble_manager.create_ensemble(individual_models, voting='soft')
|
| 1184 |
+
final_ensemble.fit(X, y)
|
| 1185 |
+
best_model = final_ensemble
|
| 1186 |
+
else:
|
| 1187 |
+
# Fallback to best individual model
|
| 1188 |
+
final_pipeline.fit(X, y)
|
| 1189 |
+
best_model = final_pipeline
|
| 1190 |
+
else:
|
| 1191 |
+
final_pipeline.fit(X, y)
|
| 1192 |
+
best_model = final_pipeline
|
| 1193 |
|
| 1194 |
# Extract feature information if using enhanced features
|
| 1195 |
feature_analysis = {}
|
| 1196 |
+
if self.use_enhanced_features and hasattr(best_model, 'named_steps'):
|
| 1197 |
+
feature_engineer = best_model.named_steps.get('enhanced_features')
|
| 1198 |
if feature_engineer and hasattr(feature_engineer, 'get_feature_metadata'):
|
| 1199 |
try:
|
| 1200 |
feature_analysis = {
|
|
|
|
| 1202 |
'feature_importance': feature_engineer.get_feature_importance(top_k=20) if hasattr(feature_engineer, 'get_feature_importance') else {},
|
| 1203 |
'total_features': len(feature_engineer.get_feature_names()) if hasattr(feature_engineer, 'get_feature_names') else 0
|
| 1204 |
}
|
| 1205 |
+
logger.info(f"Enhanced features extracted: {feature_analysis.get('total_features', 0)} total features")
|
| 1206 |
except Exception as e:
|
| 1207 |
logger.warning(f"Could not extract feature analysis: {e}")
|
| 1208 |
|
| 1209 |
+
# Perform final CV evaluation on the selected model
|
| 1210 |
+
cv_results = self.cv_comparator.perform_model_cv_evaluation(best_model, X, y)
|
| 1211 |
+
|
| 1212 |
+
# Combine results
|
| 1213 |
evaluation_results = {
|
| 1214 |
'cross_validation': cv_results,
|
|
|
|
| 1215 |
'feature_analysis': feature_analysis,
|
| 1216 |
'feature_type': candidate_feature_type,
|
| 1217 |
'training_samples': len(X),
|
| 1218 |
+
'test_samples': len(X_test),
|
| 1219 |
+
'model_selection': {
|
| 1220 |
+
'selected_model': best_model_name,
|
| 1221 |
+
'selection_reason': f"Best {best_model_name} based on CV F1 score",
|
| 1222 |
+
'all_results': {k: v for k, v in results.items() if 'error' not in v}
|
| 1223 |
+
}
|
| 1224 |
}
|
| 1225 |
|
| 1226 |
# Save candidate model
|
| 1227 |
+
joblib.dump(best_model, self.candidate_pipeline_path)
|
| 1228 |
+
if hasattr(best_model, 'named_steps'):
|
| 1229 |
+
if 'model' in best_model.named_steps:
|
| 1230 |
+
joblib.dump(best_model.named_steps['model'], self.candidate_model_path)
|
| 1231 |
|
| 1232 |
# Save enhanced features or vectorizer
|
| 1233 |
+
if 'enhanced_features' in best_model.named_steps:
|
| 1234 |
+
feature_engineer = best_model.named_steps['enhanced_features']
|
| 1235 |
if hasattr(feature_engineer, 'save_pipeline'):
|
| 1236 |
feature_engineer.save_pipeline(self.candidate_feature_engineer_path)
|
| 1237 |
|
|
|
|
| 1243 |
}
|
| 1244 |
joblib.dump(enhanced_ref, self.candidate_vectorizer_path)
|
| 1245 |
|
| 1246 |
+
elif 'vectorize' in best_model.named_steps:
|
| 1247 |
+
joblib.dump(best_model.named_steps['vectorize'], self.candidate_vectorizer_path)
|
| 1248 |
+
elif best_model_name == 'ensemble':
|
| 1249 |
+
# Save ensemble directly
|
| 1250 |
+
joblib.dump(best_model, self.candidate_model_path)
|
| 1251 |
+
# Create dummy vectorizer reference for ensemble
|
| 1252 |
+
ensemble_ref = {'type': 'ensemble', 'model_type': best_model_name}
|
| 1253 |
+
joblib.dump(ensemble_ref, self.candidate_vectorizer_path)
|
| 1254 |
|
| 1255 |
# Log results
|
| 1256 |
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 1257 |
cv_f1_mean = cv_results['test_scores']['f1']['mean']
|
| 1258 |
cv_f1_std = cv_results['test_scores']['f1']['std']
|
| 1259 |
+
logger.info(f"Candidate model ({best_model_name}) CV F1: {cv_f1_mean:.4f} (±{cv_f1_std:.4f})")
|
| 1260 |
|
|
|
|
| 1261 |
logger.info(f"Candidate model training completed with {candidate_feature_type} features")
|
| 1262 |
|
| 1263 |
+
return True, best_model, evaluation_results
|
| 1264 |
|
| 1265 |
except Exception as e:
|
| 1266 |
error_msg = f"Candidate model training failed: {str(e)}"
|
|
|
|
| 1393 |
|
| 1394 |
# Extract metrics from candidate evaluation
|
| 1395 |
cv_results = candidate_metrics.get('cross_validation', {})
|
|
|
|
| 1396 |
feature_analysis = candidate_metrics.get('feature_analysis', {})
|
| 1397 |
+
model_selection = candidate_metrics.get('model_selection', {})
|
| 1398 |
|
| 1399 |
# Update metadata with comprehensive information
|
| 1400 |
metadata.update({
|
| 1401 |
'model_version': new_version,
|
| 1402 |
+
'model_type': 'enhanced_retrained_pipeline_cv_ensemble',
|
| 1403 |
'previous_version': old_version,
|
| 1404 |
'promotion_timestamp': datetime.now().isoformat(),
|
| 1405 |
+
'retrain_trigger': 'enhanced_cv_validated_retrain_with_lightgbm_ensemble',
|
| 1406 |
'training_samples': candidate_metrics.get('training_samples', 'Unknown'),
|
| 1407 |
+
'test_samples': candidate_metrics.get('test_samples', 'Unknown'),
|
| 1408 |
+
'selected_model': model_selection.get('selected_model', 'unknown')
|
| 1409 |
})
|
| 1410 |
|
| 1411 |
# Enhanced feature engineering metadata
|
|
|
|
| 1449 |
except Exception as e:
|
| 1450 |
logger.warning(f"Could not save feature analysis: {e}")
|
| 1451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1452 |
# Add comprehensive CV results
|
| 1453 |
if cv_results and 'test_scores' in cv_results:
|
| 1454 |
metadata['cross_validation'] = {
|
|
|
|
| 1467 |
'cv_f1_mean': cv_results['test_scores']['f1']['mean'],
|
| 1468 |
'cv_f1_std': cv_results['test_scores']['f1']['std'],
|
| 1469 |
'cv_f1_min': cv_results['test_scores']['f1']['min'],
|
| 1470 |
+
'cv_f1_max': cv_results['test_scores']['f1']['max'],
|
| 1471 |
+
'test_f1': cv_results['test_scores']['f1']['mean'], # For compatibility
|
| 1472 |
+
'test_accuracy': cv_results['test_scores'].get('accuracy', {}).get('mean', 'Unknown')
|
| 1473 |
})
|
| 1474 |
|
| 1475 |
# Add enhanced model comparison results
|
|
|
|
| 1477 |
metadata['promotion_validation'] = {
|
| 1478 |
'decision_confidence': promotion_decision.get('confidence', 'Unknown'),
|
| 1479 |
'promotion_reason': promotion_decision.get('reason', 'Unknown'),
|
| 1480 |
+
'comparison_method': 'enhanced_cv_statistical_tests_with_lightgbm_ensemble',
|
| 1481 |
'feature_engineering_factor': promotion_decision.get('feature_engineering_factor', False),
|
| 1482 |
'feature_upgrade_details': promotion_decision.get('feature_upgrade_details', {})
|
| 1483 |
}
|
|
|
|
| 1495 |
'tests': comparison.get('tests', {})
|
| 1496 |
}
|
| 1497 |
|
| 1498 |
+
# Add model selection information
|
| 1499 |
+
metadata['model_selection_details'] = model_selection
|
| 1500 |
+
metadata['ensemble_enabled'] = self.enable_ensemble
|
| 1501 |
+
metadata['models_trained'] = list(self.models.keys())
|
| 1502 |
+
|
| 1503 |
# Save updated metadata
|
| 1504 |
with open(self.metadata_path, 'w') as f:
|
| 1505 |
json.dump(metadata, f, indent=2)
|
|
|
|
| 1510 |
total_features = feature_analysis.get('total_features', 0)
|
| 1511 |
feature_info = f" with {total_features} enhanced features"
|
| 1512 |
|
| 1513 |
+
selected_model = model_selection.get('selected_model', 'unknown')
|
| 1514 |
+
logger.info(f"Model promoted successfully to {new_version} (selected: {selected_model}){feature_info}")
|
| 1515 |
logger.info(f"Promotion reason: {promotion_decision.get('reason', 'Enhanced CV validation passed')}")
|
| 1516 |
|
| 1517 |
return True
|
|
|
|
| 1527 |
'timestamp': datetime.now().isoformat(),
|
| 1528 |
'results': results,
|
| 1529 |
'session_id': hashlib.md5(str(datetime.now()).encode()).hexdigest()[:8],
|
| 1530 |
+
'retraining_type': 'enhanced_cv_features_lightgbm_ensemble',
|
| 1531 |
'enhanced_features_used': self.use_enhanced_features,
|
| 1532 |
+
'enhanced_features_available': ENHANCED_FEATURES_AVAILABLE,
|
| 1533 |
+
'ensemble_enabled': self.enable_ensemble
|
| 1534 |
}
|
| 1535 |
|
| 1536 |
# Load existing logs
|
|
|
|
| 1570 |
'enhanced_features_info': {
|
| 1571 |
'used': self.use_enhanced_features,
|
| 1572 |
'available': ENHANCED_FEATURES_AVAILABLE,
|
| 1573 |
+
'feature_comparison': results['comparison_results'].get('feature_engineering_comparison', {}),
|
| 1574 |
+
'ensemble_enabled': self.enable_ensemble
|
| 1575 |
}
|
| 1576 |
}
|
| 1577 |
|
|
|
|
| 1586 |
logger.error(f"Failed to log enhanced retraining session: {str(e)}")
|
| 1587 |
|
| 1588 |
def retrain_model(self) -> Tuple[bool, str]:
|
| 1589 |
+
"""Main retraining function with enhanced feature engineering, LightGBM, and ensemble voting"""
|
| 1590 |
try:
|
| 1591 |
+
logger.info("Starting enhanced model retraining with LightGBM and ensemble capabilities...")
|
| 1592 |
|
| 1593 |
# Load existing metadata
|
| 1594 |
existing_metadata = self.load_existing_metadata()
|
|
|
|
| 1599 |
logger.warning(f"No production model found: {prod_msg}")
|
| 1600 |
# Fall back to initial training
|
| 1601 |
try:
|
| 1602 |
+
from train import main as train_main
|
| 1603 |
train_main()
|
| 1604 |
return True, "Initial enhanced training completed"
|
| 1605 |
except ImportError:
|
|
|
|
| 1619 |
candidate_feature_type = 'enhanced' if self.use_enhanced_features else 'standard'
|
| 1620 |
|
| 1621 |
logger.info(f"Retraining strategy: {prod_feature_type} -> {candidate_feature_type}")
|
| 1622 |
+
logger.info(f"Models to train: {list(self.models.keys())}")
|
| 1623 |
+
logger.info(f"Ensemble enabled: {self.enable_ensemble}")
|
| 1624 |
|
| 1625 |
+
# Train candidate model with enhanced features, LightGBM, and ensemble
|
| 1626 |
candidate_success, candidate_model, candidate_metrics = self.train_candidate_model(df)
|
| 1627 |
if not candidate_success:
|
| 1628 |
return False, f"Enhanced candidate training failed: {candidate_metrics.get('error', 'Unknown error')}"
|
|
|
|
| 1642 |
'comparison_results': comparison_results,
|
| 1643 |
'data_size': len(df),
|
| 1644 |
'cv_folds': self.cv_folds,
|
| 1645 |
+
'retraining_method': 'enhanced_cv_features_lightgbm_ensemble',
|
| 1646 |
'feature_engineering': {
|
| 1647 |
'production_type': prod_feature_type,
|
| 1648 |
'candidate_type': candidate_feature_type,
|
| 1649 |
'feature_upgrade': comparison_results.get('feature_engineering_comparison', {})
|
| 1650 |
+
},
|
| 1651 |
+
'models_trained': list(self.models.keys()),
|
| 1652 |
+
'ensemble_enabled': self.enable_ensemble,
|
| 1653 |
+
'selected_model': candidate_metrics.get('model_selection', {}).get('selected_model', 'unknown')
|
| 1654 |
}
|
| 1655 |
|
| 1656 |
self.log_retraining_session(session_results)
|
|
|
|
| 1671 |
improvement = f1_comp.get('improvement', 0)
|
| 1672 |
confidence = promotion_decision.get('confidence', 0)
|
| 1673 |
feature_upgrade = promotion_decision.get('feature_engineering_factor', False)
|
| 1674 |
+
selected_model = candidate_metrics.get('model_selection', {}).get('selected_model', 'unknown')
|
| 1675 |
|
| 1676 |
feature_info = ""
|
| 1677 |
if feature_upgrade:
|
|
|
|
| 1679 |
elif candidate_feature_type == 'enhanced':
|
| 1680 |
feature_info = " using enhanced features"
|
| 1681 |
|
| 1682 |
+
model_info = f" (selected: {selected_model})"
|
| 1683 |
+
if self.enable_ensemble and selected_model == 'ensemble':
|
| 1684 |
+
model_info += " - ensemble model with LightGBM"
|
| 1685 |
+
|
| 1686 |
success_msg = (
|
| 1687 |
+
f"Enhanced model promoted successfully{feature_info}{model_info}! "
|
| 1688 |
f"F1 improvement: {improvement:.4f}, "
|
| 1689 |
f"Confidence: {confidence:.2f}, "
|
| 1690 |
f"Reason: {promotion_decision.get('reason', 'Enhanced CV validation passed')}"
|
|
|
|
| 1697 |
# Keep current model
|
| 1698 |
reason = promotion_decision.get('reason', 'No significant improvement detected')
|
| 1699 |
confidence = promotion_decision.get('confidence', 0)
|
| 1700 |
+
selected_model = candidate_metrics.get('model_selection', {}).get('selected_model', 'unknown')
|
| 1701 |
|
| 1702 |
keep_msg = (
|
| 1703 |
f"Keeping current model based on enhanced CV analysis. "
|
| 1704 |
+
f"Candidate was {selected_model}, "
|
| 1705 |
f"Reason: {reason}, "
|
| 1706 |
f"Confidence: {confidence:.2f}"
|
| 1707 |
)
|
|
|
|
| 1733 |
return False, f"Automated enhanced retraining failed: {str(e)}"
|
| 1734 |
|
| 1735 |
|
| 1736 |
+
# Simplified AutomatedRetrainingManager for brevity - keeping core functionality
|
| 1737 |
class AutomatedRetrainingManager:
|
| 1738 |
"""Manages automated retraining triggers and scheduling with enhanced features"""
|
| 1739 |
|
| 1740 |
def __init__(self, base_dir: Path = None):
|
| 1741 |
self.base_dir = base_dir or Path("/tmp")
|
| 1742 |
self.setup_automation_paths()
|
|
|
|
| 1743 |
self.drift_monitor = AdvancedDriftMonitor()
|
| 1744 |
self.retraining_active = False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1745 |
self.enhanced_features_available = ENHANCED_FEATURES_AVAILABLE
|
| 1746 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1747 |
logger.info(f"Automated retraining manager initialized with enhanced features: {self.enhanced_features_available}")
|
| 1748 |
|
| 1749 |
def setup_automation_paths(self):
|
| 1750 |
"""Setup automation-specific paths"""
|
| 1751 |
self.automation_dir = self.base_dir / "automation"
|
| 1752 |
self.automation_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
| 1753 |
self.automation_log_path = self.automation_dir / "automation_log.json"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1754 |
|
| 1755 |
def trigger_manual_retraining(self, reason: str = "manual_trigger", use_enhanced: bool = None) -> Dict:
|
| 1756 |
"""Manually trigger retraining with enhanced feature options"""
|
| 1757 |
try:
|
|
|
|
| 1758 |
if use_enhanced is None:
|
| 1759 |
use_enhanced = self.enhanced_features_available
|
| 1760 |
|
| 1761 |
+
retrainer = EnhancedModelRetrainer()
|
| 1762 |
+
retrainer.use_enhanced_features = use_enhanced and ENHANCED_FEATURES_AVAILABLE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1763 |
|
| 1764 |
+
success, result = retrainer.automated_retrain_with_validation()
|
|
|
|
| 1765 |
|
| 1766 |
feature_info = " with enhanced features" if use_enhanced else " with standard features"
|
| 1767 |
+
if success:
|
| 1768 |
+
return {
|
| 1769 |
+
'success': True,
|
| 1770 |
+
'message': f'Manual enhanced retraining completed{feature_info}: {result}',
|
| 1771 |
+
'enhanced_features': use_enhanced
|
| 1772 |
+
}
|
| 1773 |
+
else:
|
| 1774 |
+
return {
|
| 1775 |
+
'success': False,
|
| 1776 |
+
'message': f'Manual enhanced retraining failed{feature_info}: {result}',
|
| 1777 |
+
'enhanced_features': use_enhanced
|
| 1778 |
+
}
|
| 1779 |
|
| 1780 |
except Exception as e:
|
| 1781 |
logger.error(f"Manual enhanced retraining trigger failed: {e}")
|
| 1782 |
return {'success': False, 'error': str(e)}
|
| 1783 |
|
| 1784 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1785 |
def main():
|
| 1786 |
+
"""Main execution function with enhanced CV, LightGBM, and ensemble support"""
|
| 1787 |
retrainer = EnhancedModelRetrainer()
|
| 1788 |
success, message = retrainer.retrain_model()
|
| 1789 |
|
|
|
|
| 1793 |
print(f"❌ {message}")
|
| 1794 |
exit(1)
|
| 1795 |
|
| 1796 |
+
|
| 1797 |
if __name__ == "__main__":
|
| 1798 |
main()
|