Update initialize_system.py
Browse filesModified to run the ensemble training at the start
- initialize_system.py +99 -108
initialize_system.py
CHANGED
|
@@ -1,11 +1,19 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
import json
|
|
|
|
| 4 |
import shutil
|
| 5 |
import pandas as pd
|
| 6 |
from pathlib import Path
|
| 7 |
from datetime import datetime
|
|
|
|
|
|
|
| 8 |
from sklearn.model_selection import cross_validate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Import the new path manager
|
| 11 |
try:
|
|
@@ -181,7 +189,7 @@ def create_minimal_dataset():
|
|
| 181 |
|
| 182 |
|
| 183 |
def run_initial_training():
|
| 184 |
-
"""Run
|
| 185 |
log_step("Starting initial model training...")
|
| 186 |
|
| 187 |
try:
|
|
@@ -196,41 +204,92 @@ def run_initial_training():
|
|
| 196 |
|
| 197 |
# Check if model already exists
|
| 198 |
if pipeline_path.exists() or (model_path.exists() and vectorizer_path.exists()):
|
| 199 |
-
log_step("✅ Model files already exist,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
-
#
|
| 202 |
-
if
|
| 203 |
-
log_step("
|
|
|
|
|
|
|
| 204 |
try:
|
| 205 |
import joblib
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
model = joblib.load(model_path)
|
| 210 |
-
vectorizer = joblib.load(vectorizer_path)
|
| 211 |
-
|
| 212 |
-
# Create pipeline
|
| 213 |
-
pipeline = Pipeline([
|
| 214 |
-
('vectorizer', vectorizer),
|
| 215 |
-
('model', model)
|
| 216 |
-
])
|
| 217 |
-
|
| 218 |
-
# Save pipeline
|
| 219 |
-
joblib.dump(pipeline, pipeline_path)
|
| 220 |
-
log_step(f"✅ Created pipeline from existing components: {pipeline_path}")
|
| 221 |
-
|
| 222 |
except Exception as e:
|
| 223 |
-
log_step(f"⚠️
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
| 225 |
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 229 |
from sklearn.linear_model import LogisticRegression
|
| 230 |
-
from sklearn.model_selection import train_test_split
|
| 231 |
-
from sklearn.metrics import accuracy_score, f1_score
|
| 232 |
from sklearn.pipeline import Pipeline
|
|
|
|
| 233 |
import joblib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
# Load dataset
|
| 236 |
dataset_path = path_manager.get_combined_dataset_path()
|
|
@@ -259,7 +318,7 @@ def run_initial_training():
|
|
| 259 |
X, y, test_size=0.2, random_state=42, stratify=y if len(class_counts) > 1 else None
|
| 260 |
)
|
| 261 |
|
| 262 |
-
# Create pipeline
|
| 263 |
pipeline = Pipeline([
|
| 264 |
('vectorizer', TfidfVectorizer(
|
| 265 |
max_features=5000,
|
|
@@ -276,9 +335,9 @@ def run_initial_training():
|
|
| 276 |
])
|
| 277 |
|
| 278 |
# Train model with cross-validation
|
| 279 |
-
log_step("Training model with cross-validation...")
|
| 280 |
|
| 281 |
-
# Perform cross-validation
|
| 282 |
cv_results = cross_validate(
|
| 283 |
pipeline, X_train, y_train,
|
| 284 |
cv=3,
|
|
@@ -294,63 +353,11 @@ def run_initial_training():
|
|
| 294 |
accuracy = accuracy_score(y_test, y_pred)
|
| 295 |
f1 = f1_score(y_test, y_pred, average='weighted')
|
| 296 |
|
| 297 |
-
# Save
|
| 298 |
-
|
| 299 |
-
"n_splits": 3,
|
| 300 |
-
"test_scores": {
|
| 301 |
-
"accuracy": {
|
| 302 |
-
"mean": float(cv_results['test_accuracy'].mean()),
|
| 303 |
-
"std": float(cv_results['test_accuracy'].std()),
|
| 304 |
-
"scores": cv_results['test_accuracy'].tolist()
|
| 305 |
-
},
|
| 306 |
-
"f1": {
|
| 307 |
-
"mean": float(cv_results['test_f1_weighted'].mean()),
|
| 308 |
-
"std": float(cv_results['test_f1_weighted'].std()),
|
| 309 |
-
"scores": cv_results['test_f1_weighted'].tolist()
|
| 310 |
-
}
|
| 311 |
-
},
|
| 312 |
-
"train_scores": {
|
| 313 |
-
"accuracy": {
|
| 314 |
-
"mean": float(cv_results['train_accuracy'].mean()),
|
| 315 |
-
"std": float(cv_results['train_accuracy'].std()),
|
| 316 |
-
"scores": cv_results['train_accuracy'].tolist()
|
| 317 |
-
},
|
| 318 |
-
"f1": {
|
| 319 |
-
"mean": float(cv_results['train_f1_weighted'].mean()),
|
| 320 |
-
"std": float(cv_results['train_f1_weighted'].std()),
|
| 321 |
-
"scores": cv_results['train_f1_weighted'].tolist()
|
| 322 |
-
}
|
| 323 |
-
}
|
| 324 |
-
}
|
| 325 |
-
|
| 326 |
-
# Save CV results to file
|
| 327 |
-
cv_results_path = path_manager.get_logs_path("cv_results.json")
|
| 328 |
-
with open(cv_results_path, 'w') as f:
|
| 329 |
-
json.dump(cv_data, f, indent=2)
|
| 330 |
-
log_step(f"Saved CV results to: {cv_results_path}")
|
| 331 |
-
|
| 332 |
-
# Ensure model directory exists
|
| 333 |
-
model_path.parent.mkdir(parents=True, exist_ok=True)
|
| 334 |
-
|
| 335 |
-
# Save complete pipeline FIRST (this is the priority)
|
| 336 |
-
log_step(f"Saving pipeline to: {pipeline_path}")
|
| 337 |
joblib.dump(pipeline, pipeline_path)
|
| 338 |
-
|
| 339 |
-
#
|
| 340 |
-
if pipeline_path.exists():
|
| 341 |
-
log_step(f"✅ Pipeline saved successfully to {pipeline_path}")
|
| 342 |
-
|
| 343 |
-
# Test loading the pipeline
|
| 344 |
-
try:
|
| 345 |
-
test_pipeline = joblib.load(pipeline_path)
|
| 346 |
-
test_pred = test_pipeline.predict(["This is a test"])
|
| 347 |
-
log_step(f"✅ Pipeline verification successful: {test_pred}")
|
| 348 |
-
except Exception as e:
|
| 349 |
-
log_step(f"⚠️ Pipeline verification failed: {e}")
|
| 350 |
-
else:
|
| 351 |
-
log_step(f"❌ Pipeline was not saved to {pipeline_path}")
|
| 352 |
-
|
| 353 |
-
# Save individual components for backward compatibility
|
| 354 |
try:
|
| 355 |
joblib.dump(pipeline.named_steps['model'], model_path)
|
| 356 |
joblib.dump(pipeline.named_steps['vectorizer'], vectorizer_path)
|
|
@@ -358,45 +365,29 @@ def run_initial_training():
|
|
| 358 |
except Exception as e:
|
| 359 |
log_step(f"⚠️ Failed to save individual components: {e}")
|
| 360 |
|
| 361 |
-
# Save metadata
|
| 362 |
metadata = {
|
| 363 |
-
"model_version": "v1.
|
| 364 |
"model_type": "logistic_regression_pipeline",
|
| 365 |
"test_accuracy": float(accuracy),
|
| 366 |
"test_f1": float(f1),
|
| 367 |
-
"train_size": len(X_train),
|
| 368 |
-
"test_size": len(X_test),
|
| 369 |
"timestamp": datetime.now().isoformat(),
|
| 370 |
-
"training_method": "
|
| 371 |
-
"environment": path_manager.environment
|
| 372 |
-
"data_path": str(dataset_path),
|
| 373 |
-
"class_distribution": class_counts.to_dict(),
|
| 374 |
-
"pipeline_created": pipeline_path.exists(),
|
| 375 |
-
"individual_components_created": model_path.exists() and vectorizer_path.exists(),
|
| 376 |
-
# Add CV results to metadata
|
| 377 |
-
"cv_f1_mean": float(cv_results['test_f1_weighted'].mean()),
|
| 378 |
-
"cv_f1_std": float(cv_results['test_f1_weighted'].std()),
|
| 379 |
-
"cv_accuracy_mean": float(cv_results['test_accuracy'].mean()),
|
| 380 |
-
"cv_accuracy_std": float(cv_results['test_accuracy'].std())
|
| 381 |
}
|
| 382 |
|
| 383 |
metadata_path = path_manager.get_metadata_path()
|
| 384 |
with open(metadata_path, 'w') as f:
|
| 385 |
json.dump(metadata, f, indent=2)
|
| 386 |
|
| 387 |
-
log_step(f"✅
|
| 388 |
log_step(f" Accuracy: {accuracy:.4f}")
|
| 389 |
log_step(f" F1 Score: {f1:.4f}")
|
| 390 |
-
log_step(f" Pipeline saved: {pipeline_path.exists()}")
|
| 391 |
-
log_step(f" Model saved to: {model_path}")
|
| 392 |
-
log_step(f" Vectorizer saved to: {vectorizer_path}")
|
| 393 |
|
| 394 |
return True
|
| 395 |
-
|
| 396 |
except Exception as e:
|
| 397 |
-
log_step(f"❌
|
| 398 |
-
import traceback
|
| 399 |
-
log_step(f"❌ Traceback: {traceback.format_exc()}")
|
| 400 |
return False
|
| 401 |
|
| 402 |
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
import json
|
| 4 |
+
import joblib
|
| 5 |
import shutil
|
| 6 |
import pandas as pd
|
| 7 |
from pathlib import Path
|
| 8 |
from datetime import datetime
|
| 9 |
+
from sklearn.pipeline import Pipeline
|
| 10 |
+
from model.train import EnhancedModelTrainer
|
| 11 |
from sklearn.model_selection import cross_validate
|
| 12 |
+
from sklearn.linear_model import LogisticRegression
|
| 13 |
+
from sklearn.model_selection import train_test_split
|
| 14 |
+
from sklearn.metrics import accuracy_score, f1_score
|
| 15 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 16 |
+
|
| 17 |
|
| 18 |
# Import the new path manager
|
| 19 |
try:
|
|
|
|
| 189 |
|
| 190 |
|
| 191 |
def run_initial_training():
|
| 192 |
+
"""Run enhanced ensemble model training with LightGBM"""
|
| 193 |
log_step("Starting initial model training...")
|
| 194 |
|
| 195 |
try:
|
|
|
|
| 204 |
|
| 205 |
# Check if model already exists
|
| 206 |
if pipeline_path.exists() or (model_path.exists() and vectorizer_path.exists()):
|
| 207 |
+
log_step("✅ Model files already exist, skipping training")
|
| 208 |
+
return True
|
| 209 |
+
|
| 210 |
+
# Import enhanced training components
|
| 211 |
+
import sys
|
| 212 |
+
sys.path.append('/app')
|
| 213 |
+
from model.train import EnhancedModelTrainer
|
| 214 |
+
|
| 215 |
+
log_step("Using Enhanced Model Trainer with ensemble voting...")
|
| 216 |
+
|
| 217 |
+
# Create enhanced trainer with full ensemble configuration
|
| 218 |
+
trainer = EnhancedModelTrainer(
|
| 219 |
+
use_enhanced_features=True, # Enable sentiment, readability, entities, linguistic features
|
| 220 |
+
enable_ensemble=True # Enable LightGBM + Random Forest + Logistic Regression ensemble
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# Override paths to use the initialization system paths
|
| 224 |
+
trainer.data_path = path_manager.get_combined_dataset_path()
|
| 225 |
+
trainer.pipeline_path = pipeline_path
|
| 226 |
+
trainer.model_path = model_path
|
| 227 |
+
trainer.vectorizer_path = vectorizer_path
|
| 228 |
+
trainer.metadata_path = path_manager.get_metadata_path()
|
| 229 |
+
|
| 230 |
+
log_step("Starting enhanced ensemble training (this may take several minutes)...")
|
| 231 |
+
|
| 232 |
+
# Run the full enhanced training
|
| 233 |
+
success, message = trainer.train_model()
|
| 234 |
+
|
| 235 |
+
if success:
|
| 236 |
+
log_step(f"✅ Enhanced ensemble training completed: {message}")
|
| 237 |
|
| 238 |
+
# Verify pipeline was created
|
| 239 |
+
if pipeline_path.exists():
|
| 240 |
+
log_step(f"✅ Enhanced pipeline saved successfully to {pipeline_path}")
|
| 241 |
+
|
| 242 |
+
# Test loading the pipeline
|
| 243 |
try:
|
| 244 |
import joblib
|
| 245 |
+
test_pipeline = joblib.load(pipeline_path)
|
| 246 |
+
test_pred = test_pipeline.predict(["This is a test article"])
|
| 247 |
+
log_step(f"✅ Enhanced pipeline verification successful: {test_pred}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
except Exception as e:
|
| 249 |
+
log_step(f"⚠️ Enhanced pipeline verification failed: {e}")
|
| 250 |
+
else:
|
| 251 |
+
log_step(f"❌ Enhanced pipeline was not saved to {pipeline_path}")
|
| 252 |
+
return False
|
| 253 |
+
|
| 254 |
return True
|
| 255 |
+
else:
|
| 256 |
+
log_step(f"❌ Enhanced ensemble training failed: {message}")
|
| 257 |
+
# Fall back to basic training if enhanced training fails
|
| 258 |
+
log_step("Falling back to basic training...")
|
| 259 |
+
return run_initial_training()
|
| 260 |
+
|
| 261 |
+
except ImportError as e:
|
| 262 |
+
log_step(f"⚠️ Enhanced training components not available: {e}")
|
| 263 |
+
log_step("Falling back to basic training...")
|
| 264 |
+
return run_basic_training_fallback()
|
| 265 |
+
except Exception as e:
|
| 266 |
+
log_step(f"❌ Enhanced training failed: {str(e)}")
|
| 267 |
+
import traceback
|
| 268 |
+
log_step(f"❌ Traceback: {traceback.format_exc()}")
|
| 269 |
+
log_step("Falling back to basic training...")
|
| 270 |
+
return run_basic_training_fallback()
|
| 271 |
+
|
| 272 |
|
| 273 |
+
def run_basic_training_fallback():
|
| 274 |
+
"""Fallback to basic training if enhanced training fails"""
|
| 275 |
+
log_step("Running basic training fallback...")
|
| 276 |
+
|
| 277 |
+
try:
|
| 278 |
+
# Import required libraries for basic training
|
| 279 |
+
import pandas as pd
|
| 280 |
+
from sklearn.model_selection import train_test_split, cross_validate
|
| 281 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 282 |
from sklearn.linear_model import LogisticRegression
|
|
|
|
|
|
|
| 283 |
from sklearn.pipeline import Pipeline
|
| 284 |
+
from sklearn.metrics import accuracy_score, f1_score
|
| 285 |
import joblib
|
| 286 |
+
import json
|
| 287 |
+
from datetime import datetime
|
| 288 |
+
|
| 289 |
+
# Get paths
|
| 290 |
+
model_path = path_manager.get_model_file_path()
|
| 291 |
+
vectorizer_path = path_manager.get_vectorizer_path()
|
| 292 |
+
pipeline_path = path_manager.get_pipeline_path()
|
| 293 |
|
| 294 |
# Load dataset
|
| 295 |
dataset_path = path_manager.get_combined_dataset_path()
|
|
|
|
| 318 |
X, y, test_size=0.2, random_state=42, stratify=y if len(class_counts) > 1 else None
|
| 319 |
)
|
| 320 |
|
| 321 |
+
# Create basic pipeline
|
| 322 |
pipeline = Pipeline([
|
| 323 |
('vectorizer', TfidfVectorizer(
|
| 324 |
max_features=5000,
|
|
|
|
| 335 |
])
|
| 336 |
|
| 337 |
# Train model with cross-validation
|
| 338 |
+
log_step("Training basic model with cross-validation...")
|
| 339 |
|
| 340 |
+
# Perform cross-validation
|
| 341 |
cv_results = cross_validate(
|
| 342 |
pipeline, X_train, y_train,
|
| 343 |
cv=3,
|
|
|
|
| 353 |
accuracy = accuracy_score(y_test, y_pred)
|
| 354 |
f1 = f1_score(y_test, y_pred, average='weighted')
|
| 355 |
|
| 356 |
+
# Save pipeline
|
| 357 |
+
log_step(f"Saving basic pipeline to: {pipeline_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
joblib.dump(pipeline, pipeline_path)
|
| 359 |
+
|
| 360 |
+
# Save individual components for compatibility
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
try:
|
| 362 |
joblib.dump(pipeline.named_steps['model'], model_path)
|
| 363 |
joblib.dump(pipeline.named_steps['vectorizer'], vectorizer_path)
|
|
|
|
| 365 |
except Exception as e:
|
| 366 |
log_step(f"⚠️ Failed to save individual components: {e}")
|
| 367 |
|
| 368 |
+
# Save basic metadata
|
| 369 |
metadata = {
|
| 370 |
+
"model_version": "v1.0_basic_fallback",
|
| 371 |
"model_type": "logistic_regression_pipeline",
|
| 372 |
"test_accuracy": float(accuracy),
|
| 373 |
"test_f1": float(f1),
|
|
|
|
|
|
|
| 374 |
"timestamp": datetime.now().isoformat(),
|
| 375 |
+
"training_method": "basic_fallback",
|
| 376 |
+
"environment": path_manager.environment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
}
|
| 378 |
|
| 379 |
metadata_path = path_manager.get_metadata_path()
|
| 380 |
with open(metadata_path, 'w') as f:
|
| 381 |
json.dump(metadata, f, indent=2)
|
| 382 |
|
| 383 |
+
log_step(f"✅ Basic training completed successfully")
|
| 384 |
log_step(f" Accuracy: {accuracy:.4f}")
|
| 385 |
log_step(f" F1 Score: {f1:.4f}")
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
return True
|
| 388 |
+
|
| 389 |
except Exception as e:
|
| 390 |
+
log_step(f"❌ Basic training fallback also failed: {str(e)}")
|
|
|
|
|
|
|
| 391 |
return False
|
| 392 |
|
| 393 |
|