File size: 25,948 Bytes
0616f70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
# utils/structured_logger.py
# Production-ready structured logging system for MLOps grade enhancement

import logging
import json
import sys
import traceback
from datetime import datetime, timezone
from pathlib import Path
from typing import Dict, Any, Optional, Union
from contextlib import contextmanager
from dataclasses import dataclass, asdict
from enum import Enum
import threading
import time


class LogLevel(Enum):
    """Standardized log levels with numeric values for filtering"""
    DEBUG = 10
    INFO = 20
    WARNING = 30
    ERROR = 40
    CRITICAL = 50


class EventType(Enum):
    """Standardized event types for structured logging"""
    # Model lifecycle events
    MODEL_TRAINING_START = "model.training.start"
    MODEL_TRAINING_COMPLETE = "model.training.complete"
    MODEL_TRAINING_ERROR = "model.training.error"
    MODEL_VALIDATION = "model.validation"
    MODEL_PROMOTION = "model.promotion"
    MODEL_BACKUP = "model.backup"
    
    # Data processing events
    DATA_LOADING = "data.loading"
    DATA_VALIDATION = "data.validation" 
    DATA_PREPROCESSING = "data.preprocessing"
    DATA_QUALITY_CHECK = "data.quality.check"
    
    # Feature engineering events
    FEATURE_EXTRACTION = "features.extraction"
    FEATURE_SELECTION = "features.selection"
    FEATURE_VALIDATION = "features.validation"
    
    # Cross-validation and ensemble events
    CROSS_VALIDATION_START = "cv.start"
    CROSS_VALIDATION_COMPLETE = "cv.complete"
    ENSEMBLE_CREATION = "ensemble.creation"
    ENSEMBLE_VALIDATION = "ensemble.validation"
    STATISTICAL_COMPARISON = "model.statistical_comparison"
    
    # System performance events
    PERFORMANCE_METRIC = "system.performance"
    RESOURCE_USAGE = "system.resource_usage"
    CPU_CONSTRAINT_WARNING = "system.cpu_constraint"
    
    # API and application events
    API_REQUEST = "api.request"
    API_RESPONSE = "api.response"
    API_ERROR = "api.error"
    PREDICTION_REQUEST = "prediction.request"
    PREDICTION_RESPONSE = "prediction.response"
    
    # Monitoring and alerting events
    DRIFT_DETECTION = "monitor.drift"
    ALERT_TRIGGERED = "alert.triggered"
    HEALTH_CHECK = "health.check"
    
    # Security and access events
    ACCESS_GRANTED = "security.access_granted"
    ACCESS_DENIED = "security.access_denied"
    AUTHENTICATION = "security.authentication"


@dataclass
class LogEntry:
    """Structured log entry with standardized fields"""
    timestamp: str
    level: str
    event_type: str
    message: str
    component: str
    session_id: Optional[str] = None
    trace_id: Optional[str] = None
    user_id: Optional[str] = None
    duration_ms: Optional[float] = None
    metadata: Optional[Dict[str, Any]] = None
    tags: Optional[list] = None
    environment: str = "production"
    version: str = "1.0"
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert log entry to dictionary for JSON serialization"""
        return {k: v for k, v in asdict(self).items() if v is not None}
    
    def to_json(self) -> str:
        """Convert log entry to JSON string"""
        return json.dumps(self.to_dict(), default=str, ensure_ascii=False)


class StructuredLogger:
    """Production-ready structured logger with performance monitoring"""
    
    def __init__(self, 
                 name: str,
                 log_level: LogLevel = LogLevel.INFO,
                 log_file: Optional[Path] = None,
                 max_file_size_mb: int = 100,
                 backup_count: int = 5,
                 enable_console: bool = True,
                 enable_json_format: bool = True):
        
        self.name = name
        self.log_level = log_level
        self.enable_json_format = enable_json_format
        self.session_id = self._generate_session_id()
        self._local = threading.local()
        
        # Setup logging infrastructure
        self.logger = logging.getLogger(name)
        self.logger.setLevel(log_level.value)
        
        # Clear existing handlers to avoid duplicates
        self.logger.handlers.clear()
        
        # Setup file logging if specified
        if log_file:
            self._setup_file_handler(log_file, max_file_size_mb, backup_count)
        
        # Setup console logging if enabled
        if enable_console:
            self._setup_console_handler()
    
    def _generate_session_id(self) -> str:
        """Generate unique session ID for tracking related events"""
        timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S")
        thread_id = threading.current_thread().ident
        return f"session_{timestamp}_{thread_id}"
    
    def _setup_file_handler(self, log_file: Path, max_size_mb: int, backup_count: int):
        """Setup rotating file handler"""
        from logging.handlers import RotatingFileHandler
        
        log_file.parent.mkdir(parents=True, exist_ok=True)
        
        file_handler = RotatingFileHandler(
            log_file,
            maxBytes=max_size_mb * 1024 * 1024,
            backupCount=backup_count,
            encoding='utf-8'
        )
        
        if self.enable_json_format:
            file_handler.setFormatter(JsonFormatter())
        else:
            file_handler.setFormatter(self._create_standard_formatter())
        
        self.logger.addHandler(file_handler)
    
    def _setup_console_handler(self):
        """Setup console handler with appropriate formatting"""
        console_handler = logging.StreamHandler(sys.stdout)
        
        if self.enable_json_format:
            console_handler.setFormatter(JsonFormatter())
        else:
            console_handler.setFormatter(self._create_standard_formatter())
        
        self.logger.addHandler(console_handler)
    
    def _create_standard_formatter(self):
        """Create human-readable formatter for non-JSON output"""
        return logging.Formatter(
            '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
            datefmt='%Y-%m-%d %H:%M:%S'
        )
    
    def _get_trace_id(self) -> Optional[str]:
        """Get current trace ID from thread-local storage"""
        return getattr(self._local, 'trace_id', None)
    
    def set_trace_id(self, trace_id: str):
        """Set trace ID for current thread"""
        self._local.trace_id = trace_id
    
    def clear_trace_id(self):
        """Clear trace ID for current thread"""
        if hasattr(self._local, 'trace_id'):
            del self._local.trace_id
    
    def _create_log_entry(self, 
                         level: LogLevel,
                         event_type: EventType,
                         message: str,
                         component: str = None,
                         duration_ms: float = None,
                         metadata: Dict[str, Any] = None,
                         tags: list = None,
                         user_id: str = None) -> LogEntry:
        """Create structured log entry"""
        
        return LogEntry(
            timestamp=datetime.now(timezone.utc).isoformat(),
            level=level.name,
            event_type=event_type.value,
            message=message,
            component=component or self.name,
            session_id=self.session_id,
            trace_id=self._get_trace_id(),
            user_id=user_id,
            duration_ms=duration_ms,
            metadata=metadata or {},
            tags=tags or [],
            environment=self._detect_environment(),
            version=self._get_version()
        )
    
    def _detect_environment(self) -> str:
        """Detect current environment"""
        if any(env in str(Path.cwd()) for env in ['test', 'pytest']):
            return 'test'
        elif 'STREAMLIT_SERVER_PORT' in os.environ:
            return 'streamlit'
        elif 'SPACE_ID' in os.environ:
            return 'huggingface_spaces'
        elif 'DOCKER_CONTAINER' in os.environ:
            return 'docker'
        else:
            return 'local'
    
    def _get_version(self) -> str:
        """Get application version"""
        # Try to read from metadata or config
        try:
            metadata_path = Path("/tmp/metadata.json")
            if metadata_path.exists():
                with open(metadata_path) as f:
                    metadata = json.load(f)
                return metadata.get('model_version', '1.0')
        except:
            pass
        return '1.0'
    
    def log(self, 
            level: LogLevel,
            event_type: EventType,
            message: str,
            component: str = None,
            duration_ms: float = None,
            metadata: Dict[str, Any] = None,
            tags: list = None,
            user_id: str = None,
            exc_info: bool = False):
        """Core logging method"""
        
        if level.value < self.log_level.value:
            return
        
        # Create structured log entry
        log_entry = self._create_log_entry(
            level=level,
            event_type=event_type,
            message=message,
            component=component,
            duration_ms=duration_ms,
            metadata=metadata,
            tags=tags,
            user_id=user_id
        )
        
        # Add exception information if requested
        if exc_info:
            log_entry.metadata['exception'] = {
                'type': sys.exc_info()[0].__name__ if sys.exc_info()[0] else None,
                'message': str(sys.exc_info()[1]) if sys.exc_info()[1] else None,
                'traceback': traceback.format_exc() if sys.exc_info()[0] else None
            }
        
        # Log using Python's logging framework
        self.logger.log(
            level.value,
            log_entry.to_json() if self.enable_json_format else message,
            extra={'log_entry': log_entry}
        )
    
    # Convenience methods for different log levels
    def debug(self, event_type: EventType, message: str, **kwargs):
        """Log debug message"""
        self.log(LogLevel.DEBUG, event_type, message, **kwargs)
    
    def info(self, event_type: EventType, message: str, **kwargs):
        """Log info message"""
        self.log(LogLevel.INFO, event_type, message, **kwargs)
    
    def warning(self, event_type: EventType, message: str, **kwargs):
        """Log warning message"""
        self.log(LogLevel.WARNING, event_type, message, **kwargs)
    
    def error(self, event_type: EventType, message: str, **kwargs):
        """Log error message"""
        self.log(LogLevel.ERROR, event_type, message, exc_info=True, **kwargs)
    
    def critical(self, event_type: EventType, message: str, **kwargs):
        """Log critical message"""
        self.log(LogLevel.CRITICAL, event_type, message, exc_info=True, **kwargs)
    
    @contextmanager
    def operation(self, 
                  event_type: EventType,
                  operation_name: str,
                  component: str = None,
                  metadata: Dict[str, Any] = None):
        """Context manager for timing operations"""
        
        start_time = time.time()
        trace_id = f"{operation_name}_{int(start_time * 1000)}"
        
        # Set trace ID for operation
        self.set_trace_id(trace_id)
        
        # Log operation start
        self.info(
            event_type,
            f"Starting {operation_name}",
            component=component,
            metadata={**(metadata or {}), 'operation': operation_name, 'status': 'started'}
        )
        
        try:
            yield self
            
            # Log successful completion
            duration = (time.time() - start_time) * 1000
            self.info(
                event_type,
                f"Completed {operation_name}",
                component=component,
                duration_ms=duration,
                metadata={**(metadata or {}), 'operation': operation_name, 'status': 'completed'}
            )
            
        except Exception as e:
            # Log error
            duration = (time.time() - start_time) * 1000
            self.error(
                EventType.MODEL_TRAINING_ERROR,
                f"Failed {operation_name}: {str(e)}",
                component=component,
                duration_ms=duration,
                metadata={**(metadata or {}), 'operation': operation_name, 'status': 'failed'}
            )
            raise
        
        finally:
            # Clear trace ID
            self.clear_trace_id()
    
    def log_performance_metrics(self, 
                               component: str,
                               metrics: Dict[str, Union[int, float]],
                               tags: list = None):
        """Log performance metrics"""
        self.info(
            EventType.PERFORMANCE_METRIC,
            f"Performance metrics for {component}",
            component=component,
            metadata={'metrics': metrics},
            tags=tags or []
        )
    
    def log_model_metrics(self,
                         model_name: str,
                         metrics: Dict[str, float],
                         dataset_size: int = None,
                         cv_folds: int = None,
                         metadata: Dict[str, Any] = None):
        """Log model performance metrics"""
        model_metadata = {
            'model_name': model_name,
            'metrics': metrics,
            **(metadata or {})
        }
        
        if dataset_size:
            model_metadata['dataset_size'] = dataset_size
        if cv_folds:
            model_metadata['cv_folds'] = cv_folds
        
        self.info(
            EventType.MODEL_VALIDATION,
            f"Model validation completed for {model_name}",
            component="model_trainer",
            metadata=model_metadata,
            tags=['model_validation', 'metrics']
        )
    
    def log_cpu_constraint_warning(self, 
                                  component: str,
                                  operation: str,
                                  resource_usage: Dict[str, Any] = None):
        """Log CPU constraint warnings for HuggingFace Spaces"""
        self.warning(
            EventType.CPU_CONSTRAINT_WARNING,
            f"CPU constraint detected in {component} during {operation}",
            component=component,
            metadata={
                'operation': operation,
                'resource_usage': resource_usage or {},
                'optimization_applied': True,
                'environment': 'huggingface_spaces'
            },
            tags=['cpu_constraint', 'optimization', 'hfs']
        )


class JsonFormatter(logging.Formatter):
    """JSON formatter for structured logging"""
    
    def format(self, record):
        """Format log record as JSON"""
        if hasattr(record, 'log_entry'):
            return record.log_entry.to_json()
        
        # Fallback for non-structured logs
        log_data = {
            'timestamp': datetime.now(timezone.utc).isoformat(),
            'level': record.levelname,
            'message': record.getMessage(),
            'component': record.name,
            'environment': 'unknown'
        }
        
        if record.exc_info:
            log_data['exception'] = {
                'type': record.exc_info[0].__name__ if record.exc_info[0] else None,
                'message': str(record.exc_info[1]) if record.exc_info[1] else None,
                'traceback': self.formatException(record.exc_info)
            }
        
        return json.dumps(log_data, default=str, ensure_ascii=False)


# Singleton logger instances for different components
class MLOpsLoggers:
    """Centralized logger management for MLOps components"""
    
    _loggers: Dict[str, StructuredLogger] = {}
    
    @classmethod
    def get_logger(cls, 
                   component: str,
                   log_level: LogLevel = LogLevel.INFO,
                   log_file: Optional[Path] = None) -> StructuredLogger:
        """Get or create logger for component"""
        if component not in cls._loggers:
            if log_file is None:
                log_file = Path("/tmp/logs") / f"{component}.log"
            
            cls._loggers[component] = StructuredLogger(
                name=component,
                log_level=log_level,
                log_file=log_file,
                enable_console=True,
                enable_json_format=True
            )
        
        return cls._loggers[component]
    
    @classmethod
    def get_model_trainer_logger(cls) -> StructuredLogger:
        """Get logger for model training components"""
        return cls.get_logger("model_trainer", LogLevel.INFO)
    
    @classmethod
    def get_retraining_logger(cls) -> StructuredLogger:
        """Get logger for retraining components"""
        return cls.get_logger("model_retrainer", LogLevel.INFO)
    
    @classmethod
    def get_api_logger(cls) -> StructuredLogger:
        """Get logger for API components"""
        return cls.get_logger("api_server", LogLevel.INFO)
    
    @classmethod
    def get_monitoring_logger(cls) -> StructuredLogger:
        """Get logger for monitoring components"""
        return cls.get_logger("monitoring", LogLevel.INFO)
    
    @classmethod
    def get_data_logger(cls) -> StructuredLogger:
        """Get logger for data processing components"""
        return cls.get_logger("data_processing", LogLevel.INFO)


# Performance monitoring utilities
class PerformanceMonitor:
    """Monitor and log performance metrics for CPU-constrained environments"""
    
    def __init__(self, logger: StructuredLogger):
        self.logger = logger
    
    def monitor_training_performance(self, 
                                   model_name: str,
                                   dataset_size: int,
                                   training_time: float,
                                   memory_usage_mb: float = None):
        """Monitor and log training performance"""
        
        # Calculate performance metrics
        samples_per_second = dataset_size / training_time if training_time > 0 else 0
        
        performance_metrics = {
            'training_time_seconds': training_time,
            'dataset_size': dataset_size,
            'samples_per_second': samples_per_second,
            'model_name': model_name
        }
        
        if memory_usage_mb:
            performance_metrics['memory_usage_mb'] = memory_usage_mb
        
        # Log performance
        self.logger.log_performance_metrics(
            component="model_trainer",
            metrics=performance_metrics,
            tags=['training_performance', 'cpu_optimized']
        )
        
        # Check for performance issues
        if training_time > 300:  # 5 minutes
            self.logger.log_cpu_constraint_warning(
                component="model_trainer",
                operation="model_training",
                resource_usage={'training_time': training_time, 'dataset_size': dataset_size}
            )
    
    def monitor_cv_performance(self, 
                              cv_folds: int,
                              total_cv_time: float,
                              models_evaluated: int):
        """Monitor cross-validation performance"""
        
        avg_fold_time = total_cv_time / cv_folds if cv_folds > 0 else 0
        avg_model_time = total_cv_time / models_evaluated if models_evaluated > 0 else 0
        
        cv_metrics = {
            'cv_folds': cv_folds,
            'total_cv_time_seconds': total_cv_time,
            'avg_fold_time_seconds': avg_fold_time,
            'models_evaluated': models_evaluated,
            'avg_model_time_seconds': avg_model_time
        }
        
        self.logger.log_performance_metrics(
            component="cross_validation",
            metrics=cv_metrics,
            tags=['cv_performance', 'statistical_validation']
        )
    
    def monitor_ensemble_performance(self,
                                   individual_models_count: int,
                                   ensemble_training_time: float,
                                   statistical_test_time: float):
        """Monitor ensemble creation and validation performance"""
        
        ensemble_metrics = {
            'individual_models_count': individual_models_count,
            'ensemble_training_time_seconds': ensemble_training_time,
            'statistical_test_time_seconds': statistical_test_time,
            'total_ensemble_time_seconds': ensemble_training_time + statistical_test_time
        }
        
        self.logger.log_performance_metrics(
            component="ensemble_manager",
            metrics=ensemble_metrics,
            tags=['ensemble_performance', 'statistical_tests']
        )


# Integration helpers for existing codebase
def setup_mlops_logging():
    """Setup structured logging for MLOps components"""
    # Ensure log directory exists
    log_dir = Path("/tmp/logs")
    log_dir.mkdir(exist_ok=True)
    
    # Configure root logger to avoid interference
    root_logger = logging.getLogger()
    root_logger.setLevel(logging.INFO)
    
    # Clear any existing handlers
    for handler in root_logger.handlers[:]:
        root_logger.removeHandler(handler)
    
    return MLOpsLoggers


def get_component_logger(component_name: str) -> StructuredLogger:
    """Get logger for specific component (backwards compatibility)"""
    return MLOpsLoggers.get_logger(component_name)


# Decorators for automatic logging
def log_function_call(event_type: EventType, component: str = None):
    """Decorator to automatically log function calls"""
    def decorator(func):
        def wrapper(*args, **kwargs):
            logger = MLOpsLoggers.get_logger(component or func.__module__)
            
            with logger.operation(
                event_type=event_type,
                operation_name=func.__name__,
                component=component,
                metadata={'function': func.__name__, 'args_count': len(args), 'kwargs_count': len(kwargs)}
            ):
                return func(*args, **kwargs)
        
        return wrapper
    return decorator


# Example usage functions for integration
def integrate_with_retrain_py():
    """Example integration with retrain.py"""
    logger = MLOpsLoggers.get_retraining_logger()
    
    # Example: Log retraining session start
    logger.info(
        EventType.MODEL_TRAINING_START,
        "Enhanced retraining session started with LightGBM and ensemble",
        component="retrain",
        metadata={
            'models': ['logistic_regression', 'random_forest', 'lightgbm'],
            'ensemble_enabled': True,
            'enhanced_features': True
        },
        tags=['retraining', 'lightgbm', 'ensemble']
    )
    
    return logger


def integrate_with_train_py():
    """Example integration with train.py"""
    logger = MLOpsLoggers.get_model_trainer_logger()
    
    # Example: Log training session start
    logger.info(
        EventType.MODEL_TRAINING_START,
        "Enhanced training session started with comprehensive CV",
        component="train",
        metadata={
            'models': ['logistic_regression', 'random_forest', 'lightgbm'],
            'cv_folds': 5,
            'ensemble_enabled': True
        },
        tags=['training', 'cv', 'ensemble']
    )
    
    return logger


# CPU constraint monitoring
import os
import psutil

def monitor_cpu_constraints():
    """Monitor CPU usage and memory for HuggingFace Spaces constraints"""
    logger = MLOpsLoggers.get_monitoring_logger()
    
    try:
        # Get system metrics
        cpu_percent = psutil.cpu_percent(interval=1)
        memory = psutil.virtual_memory()
        process = psutil.Process()
        
        resource_metrics = {
            'cpu_percent': cpu_percent,
            'memory_percent': memory.percent,
            'memory_used_mb': memory.used / 1024 / 1024,
            'memory_available_mb': memory.available / 1024 / 1024,
            'process_memory_mb': process.memory_info().rss / 1024 / 1024,
            'process_cpu_percent': process.cpu_percent()
        }
        
        # Log resource usage
        logger.log_performance_metrics(
            component="system_monitor",
            metrics=resource_metrics,
            tags=['resource_monitoring', 'hfs_constraints']
        )
        
        # Alert on high usage (HFS constraints)
        if cpu_percent > 80 or memory.percent > 85:
            logger.log_cpu_constraint_warning(
                component="system_monitor", 
                operation="resource_monitoring",
                resource_usage=resource_metrics
            )
        
        return resource_metrics
        
    except Exception as e:
        logger.error(
            EventType.PERFORMANCE_METRIC,
            f"Failed to monitor CPU constraints: {str(e)}",
            component="system_monitor"
        )
        return None


if __name__ == "__main__":
    # Example usage and testing
    setup_mlops_logging()
    
    # Test structured logging
    logger = MLOpsLoggers.get_model_trainer_logger()
    
    # Test basic logging
    logger.info(
        EventType.MODEL_TRAINING_START,
        "Testing structured logging system",
        metadata={'test': True, 'version': '1.0'},
        tags=['test', 'structured_logging']
    )
    
    # Test operation timing
    with logger.operation(
        EventType.MODEL_VALIDATION,
        "test_operation",
        metadata={'test_data': 'example'}
    ):
        time.sleep(0.1)  # Simulate work
    
    # Test performance monitoring
    perf_monitor = PerformanceMonitor(logger)
    perf_monitor.monitor_training_performance(
        model_name="test_model",
        dataset_size=1000,
        training_time=5.0,
        memory_usage_mb=150.0
    )
    
    # Test CPU monitoring
    monitor_cpu_constraints()
    
    print("Structured logging system test completed successfully!")