File size: 25,948 Bytes
0616f70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
# utils/structured_logger.py
# Production-ready structured logging system for MLOps grade enhancement
import logging
import json
import sys
import traceback
from datetime import datetime, timezone
from pathlib import Path
from typing import Dict, Any, Optional, Union
from contextlib import contextmanager
from dataclasses import dataclass, asdict
from enum import Enum
import threading
import time
class LogLevel(Enum):
"""Standardized log levels with numeric values for filtering"""
DEBUG = 10
INFO = 20
WARNING = 30
ERROR = 40
CRITICAL = 50
class EventType(Enum):
"""Standardized event types for structured logging"""
# Model lifecycle events
MODEL_TRAINING_START = "model.training.start"
MODEL_TRAINING_COMPLETE = "model.training.complete"
MODEL_TRAINING_ERROR = "model.training.error"
MODEL_VALIDATION = "model.validation"
MODEL_PROMOTION = "model.promotion"
MODEL_BACKUP = "model.backup"
# Data processing events
DATA_LOADING = "data.loading"
DATA_VALIDATION = "data.validation"
DATA_PREPROCESSING = "data.preprocessing"
DATA_QUALITY_CHECK = "data.quality.check"
# Feature engineering events
FEATURE_EXTRACTION = "features.extraction"
FEATURE_SELECTION = "features.selection"
FEATURE_VALIDATION = "features.validation"
# Cross-validation and ensemble events
CROSS_VALIDATION_START = "cv.start"
CROSS_VALIDATION_COMPLETE = "cv.complete"
ENSEMBLE_CREATION = "ensemble.creation"
ENSEMBLE_VALIDATION = "ensemble.validation"
STATISTICAL_COMPARISON = "model.statistical_comparison"
# System performance events
PERFORMANCE_METRIC = "system.performance"
RESOURCE_USAGE = "system.resource_usage"
CPU_CONSTRAINT_WARNING = "system.cpu_constraint"
# API and application events
API_REQUEST = "api.request"
API_RESPONSE = "api.response"
API_ERROR = "api.error"
PREDICTION_REQUEST = "prediction.request"
PREDICTION_RESPONSE = "prediction.response"
# Monitoring and alerting events
DRIFT_DETECTION = "monitor.drift"
ALERT_TRIGGERED = "alert.triggered"
HEALTH_CHECK = "health.check"
# Security and access events
ACCESS_GRANTED = "security.access_granted"
ACCESS_DENIED = "security.access_denied"
AUTHENTICATION = "security.authentication"
@dataclass
class LogEntry:
"""Structured log entry with standardized fields"""
timestamp: str
level: str
event_type: str
message: str
component: str
session_id: Optional[str] = None
trace_id: Optional[str] = None
user_id: Optional[str] = None
duration_ms: Optional[float] = None
metadata: Optional[Dict[str, Any]] = None
tags: Optional[list] = None
environment: str = "production"
version: str = "1.0"
def to_dict(self) -> Dict[str, Any]:
"""Convert log entry to dictionary for JSON serialization"""
return {k: v for k, v in asdict(self).items() if v is not None}
def to_json(self) -> str:
"""Convert log entry to JSON string"""
return json.dumps(self.to_dict(), default=str, ensure_ascii=False)
class StructuredLogger:
"""Production-ready structured logger with performance monitoring"""
def __init__(self,
name: str,
log_level: LogLevel = LogLevel.INFO,
log_file: Optional[Path] = None,
max_file_size_mb: int = 100,
backup_count: int = 5,
enable_console: bool = True,
enable_json_format: bool = True):
self.name = name
self.log_level = log_level
self.enable_json_format = enable_json_format
self.session_id = self._generate_session_id()
self._local = threading.local()
# Setup logging infrastructure
self.logger = logging.getLogger(name)
self.logger.setLevel(log_level.value)
# Clear existing handlers to avoid duplicates
self.logger.handlers.clear()
# Setup file logging if specified
if log_file:
self._setup_file_handler(log_file, max_file_size_mb, backup_count)
# Setup console logging if enabled
if enable_console:
self._setup_console_handler()
def _generate_session_id(self) -> str:
"""Generate unique session ID for tracking related events"""
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S")
thread_id = threading.current_thread().ident
return f"session_{timestamp}_{thread_id}"
def _setup_file_handler(self, log_file: Path, max_size_mb: int, backup_count: int):
"""Setup rotating file handler"""
from logging.handlers import RotatingFileHandler
log_file.parent.mkdir(parents=True, exist_ok=True)
file_handler = RotatingFileHandler(
log_file,
maxBytes=max_size_mb * 1024 * 1024,
backupCount=backup_count,
encoding='utf-8'
)
if self.enable_json_format:
file_handler.setFormatter(JsonFormatter())
else:
file_handler.setFormatter(self._create_standard_formatter())
self.logger.addHandler(file_handler)
def _setup_console_handler(self):
"""Setup console handler with appropriate formatting"""
console_handler = logging.StreamHandler(sys.stdout)
if self.enable_json_format:
console_handler.setFormatter(JsonFormatter())
else:
console_handler.setFormatter(self._create_standard_formatter())
self.logger.addHandler(console_handler)
def _create_standard_formatter(self):
"""Create human-readable formatter for non-JSON output"""
return logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
def _get_trace_id(self) -> Optional[str]:
"""Get current trace ID from thread-local storage"""
return getattr(self._local, 'trace_id', None)
def set_trace_id(self, trace_id: str):
"""Set trace ID for current thread"""
self._local.trace_id = trace_id
def clear_trace_id(self):
"""Clear trace ID for current thread"""
if hasattr(self._local, 'trace_id'):
del self._local.trace_id
def _create_log_entry(self,
level: LogLevel,
event_type: EventType,
message: str,
component: str = None,
duration_ms: float = None,
metadata: Dict[str, Any] = None,
tags: list = None,
user_id: str = None) -> LogEntry:
"""Create structured log entry"""
return LogEntry(
timestamp=datetime.now(timezone.utc).isoformat(),
level=level.name,
event_type=event_type.value,
message=message,
component=component or self.name,
session_id=self.session_id,
trace_id=self._get_trace_id(),
user_id=user_id,
duration_ms=duration_ms,
metadata=metadata or {},
tags=tags or [],
environment=self._detect_environment(),
version=self._get_version()
)
def _detect_environment(self) -> str:
"""Detect current environment"""
if any(env in str(Path.cwd()) for env in ['test', 'pytest']):
return 'test'
elif 'STREAMLIT_SERVER_PORT' in os.environ:
return 'streamlit'
elif 'SPACE_ID' in os.environ:
return 'huggingface_spaces'
elif 'DOCKER_CONTAINER' in os.environ:
return 'docker'
else:
return 'local'
def _get_version(self) -> str:
"""Get application version"""
# Try to read from metadata or config
try:
metadata_path = Path("/tmp/metadata.json")
if metadata_path.exists():
with open(metadata_path) as f:
metadata = json.load(f)
return metadata.get('model_version', '1.0')
except:
pass
return '1.0'
def log(self,
level: LogLevel,
event_type: EventType,
message: str,
component: str = None,
duration_ms: float = None,
metadata: Dict[str, Any] = None,
tags: list = None,
user_id: str = None,
exc_info: bool = False):
"""Core logging method"""
if level.value < self.log_level.value:
return
# Create structured log entry
log_entry = self._create_log_entry(
level=level,
event_type=event_type,
message=message,
component=component,
duration_ms=duration_ms,
metadata=metadata,
tags=tags,
user_id=user_id
)
# Add exception information if requested
if exc_info:
log_entry.metadata['exception'] = {
'type': sys.exc_info()[0].__name__ if sys.exc_info()[0] else None,
'message': str(sys.exc_info()[1]) if sys.exc_info()[1] else None,
'traceback': traceback.format_exc() if sys.exc_info()[0] else None
}
# Log using Python's logging framework
self.logger.log(
level.value,
log_entry.to_json() if self.enable_json_format else message,
extra={'log_entry': log_entry}
)
# Convenience methods for different log levels
def debug(self, event_type: EventType, message: str, **kwargs):
"""Log debug message"""
self.log(LogLevel.DEBUG, event_type, message, **kwargs)
def info(self, event_type: EventType, message: str, **kwargs):
"""Log info message"""
self.log(LogLevel.INFO, event_type, message, **kwargs)
def warning(self, event_type: EventType, message: str, **kwargs):
"""Log warning message"""
self.log(LogLevel.WARNING, event_type, message, **kwargs)
def error(self, event_type: EventType, message: str, **kwargs):
"""Log error message"""
self.log(LogLevel.ERROR, event_type, message, exc_info=True, **kwargs)
def critical(self, event_type: EventType, message: str, **kwargs):
"""Log critical message"""
self.log(LogLevel.CRITICAL, event_type, message, exc_info=True, **kwargs)
@contextmanager
def operation(self,
event_type: EventType,
operation_name: str,
component: str = None,
metadata: Dict[str, Any] = None):
"""Context manager for timing operations"""
start_time = time.time()
trace_id = f"{operation_name}_{int(start_time * 1000)}"
# Set trace ID for operation
self.set_trace_id(trace_id)
# Log operation start
self.info(
event_type,
f"Starting {operation_name}",
component=component,
metadata={**(metadata or {}), 'operation': operation_name, 'status': 'started'}
)
try:
yield self
# Log successful completion
duration = (time.time() - start_time) * 1000
self.info(
event_type,
f"Completed {operation_name}",
component=component,
duration_ms=duration,
metadata={**(metadata or {}), 'operation': operation_name, 'status': 'completed'}
)
except Exception as e:
# Log error
duration = (time.time() - start_time) * 1000
self.error(
EventType.MODEL_TRAINING_ERROR,
f"Failed {operation_name}: {str(e)}",
component=component,
duration_ms=duration,
metadata={**(metadata or {}), 'operation': operation_name, 'status': 'failed'}
)
raise
finally:
# Clear trace ID
self.clear_trace_id()
def log_performance_metrics(self,
component: str,
metrics: Dict[str, Union[int, float]],
tags: list = None):
"""Log performance metrics"""
self.info(
EventType.PERFORMANCE_METRIC,
f"Performance metrics for {component}",
component=component,
metadata={'metrics': metrics},
tags=tags or []
)
def log_model_metrics(self,
model_name: str,
metrics: Dict[str, float],
dataset_size: int = None,
cv_folds: int = None,
metadata: Dict[str, Any] = None):
"""Log model performance metrics"""
model_metadata = {
'model_name': model_name,
'metrics': metrics,
**(metadata or {})
}
if dataset_size:
model_metadata['dataset_size'] = dataset_size
if cv_folds:
model_metadata['cv_folds'] = cv_folds
self.info(
EventType.MODEL_VALIDATION,
f"Model validation completed for {model_name}",
component="model_trainer",
metadata=model_metadata,
tags=['model_validation', 'metrics']
)
def log_cpu_constraint_warning(self,
component: str,
operation: str,
resource_usage: Dict[str, Any] = None):
"""Log CPU constraint warnings for HuggingFace Spaces"""
self.warning(
EventType.CPU_CONSTRAINT_WARNING,
f"CPU constraint detected in {component} during {operation}",
component=component,
metadata={
'operation': operation,
'resource_usage': resource_usage or {},
'optimization_applied': True,
'environment': 'huggingface_spaces'
},
tags=['cpu_constraint', 'optimization', 'hfs']
)
class JsonFormatter(logging.Formatter):
"""JSON formatter for structured logging"""
def format(self, record):
"""Format log record as JSON"""
if hasattr(record, 'log_entry'):
return record.log_entry.to_json()
# Fallback for non-structured logs
log_data = {
'timestamp': datetime.now(timezone.utc).isoformat(),
'level': record.levelname,
'message': record.getMessage(),
'component': record.name,
'environment': 'unknown'
}
if record.exc_info:
log_data['exception'] = {
'type': record.exc_info[0].__name__ if record.exc_info[0] else None,
'message': str(record.exc_info[1]) if record.exc_info[1] else None,
'traceback': self.formatException(record.exc_info)
}
return json.dumps(log_data, default=str, ensure_ascii=False)
# Singleton logger instances for different components
class MLOpsLoggers:
"""Centralized logger management for MLOps components"""
_loggers: Dict[str, StructuredLogger] = {}
@classmethod
def get_logger(cls,
component: str,
log_level: LogLevel = LogLevel.INFO,
log_file: Optional[Path] = None) -> StructuredLogger:
"""Get or create logger for component"""
if component not in cls._loggers:
if log_file is None:
log_file = Path("/tmp/logs") / f"{component}.log"
cls._loggers[component] = StructuredLogger(
name=component,
log_level=log_level,
log_file=log_file,
enable_console=True,
enable_json_format=True
)
return cls._loggers[component]
@classmethod
def get_model_trainer_logger(cls) -> StructuredLogger:
"""Get logger for model training components"""
return cls.get_logger("model_trainer", LogLevel.INFO)
@classmethod
def get_retraining_logger(cls) -> StructuredLogger:
"""Get logger for retraining components"""
return cls.get_logger("model_retrainer", LogLevel.INFO)
@classmethod
def get_api_logger(cls) -> StructuredLogger:
"""Get logger for API components"""
return cls.get_logger("api_server", LogLevel.INFO)
@classmethod
def get_monitoring_logger(cls) -> StructuredLogger:
"""Get logger for monitoring components"""
return cls.get_logger("monitoring", LogLevel.INFO)
@classmethod
def get_data_logger(cls) -> StructuredLogger:
"""Get logger for data processing components"""
return cls.get_logger("data_processing", LogLevel.INFO)
# Performance monitoring utilities
class PerformanceMonitor:
"""Monitor and log performance metrics for CPU-constrained environments"""
def __init__(self, logger: StructuredLogger):
self.logger = logger
def monitor_training_performance(self,
model_name: str,
dataset_size: int,
training_time: float,
memory_usage_mb: float = None):
"""Monitor and log training performance"""
# Calculate performance metrics
samples_per_second = dataset_size / training_time if training_time > 0 else 0
performance_metrics = {
'training_time_seconds': training_time,
'dataset_size': dataset_size,
'samples_per_second': samples_per_second,
'model_name': model_name
}
if memory_usage_mb:
performance_metrics['memory_usage_mb'] = memory_usage_mb
# Log performance
self.logger.log_performance_metrics(
component="model_trainer",
metrics=performance_metrics,
tags=['training_performance', 'cpu_optimized']
)
# Check for performance issues
if training_time > 300: # 5 minutes
self.logger.log_cpu_constraint_warning(
component="model_trainer",
operation="model_training",
resource_usage={'training_time': training_time, 'dataset_size': dataset_size}
)
def monitor_cv_performance(self,
cv_folds: int,
total_cv_time: float,
models_evaluated: int):
"""Monitor cross-validation performance"""
avg_fold_time = total_cv_time / cv_folds if cv_folds > 0 else 0
avg_model_time = total_cv_time / models_evaluated if models_evaluated > 0 else 0
cv_metrics = {
'cv_folds': cv_folds,
'total_cv_time_seconds': total_cv_time,
'avg_fold_time_seconds': avg_fold_time,
'models_evaluated': models_evaluated,
'avg_model_time_seconds': avg_model_time
}
self.logger.log_performance_metrics(
component="cross_validation",
metrics=cv_metrics,
tags=['cv_performance', 'statistical_validation']
)
def monitor_ensemble_performance(self,
individual_models_count: int,
ensemble_training_time: float,
statistical_test_time: float):
"""Monitor ensemble creation and validation performance"""
ensemble_metrics = {
'individual_models_count': individual_models_count,
'ensemble_training_time_seconds': ensemble_training_time,
'statistical_test_time_seconds': statistical_test_time,
'total_ensemble_time_seconds': ensemble_training_time + statistical_test_time
}
self.logger.log_performance_metrics(
component="ensemble_manager",
metrics=ensemble_metrics,
tags=['ensemble_performance', 'statistical_tests']
)
# Integration helpers for existing codebase
def setup_mlops_logging():
"""Setup structured logging for MLOps components"""
# Ensure log directory exists
log_dir = Path("/tmp/logs")
log_dir.mkdir(exist_ok=True)
# Configure root logger to avoid interference
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
# Clear any existing handlers
for handler in root_logger.handlers[:]:
root_logger.removeHandler(handler)
return MLOpsLoggers
def get_component_logger(component_name: str) -> StructuredLogger:
"""Get logger for specific component (backwards compatibility)"""
return MLOpsLoggers.get_logger(component_name)
# Decorators for automatic logging
def log_function_call(event_type: EventType, component: str = None):
"""Decorator to automatically log function calls"""
def decorator(func):
def wrapper(*args, **kwargs):
logger = MLOpsLoggers.get_logger(component or func.__module__)
with logger.operation(
event_type=event_type,
operation_name=func.__name__,
component=component,
metadata={'function': func.__name__, 'args_count': len(args), 'kwargs_count': len(kwargs)}
):
return func(*args, **kwargs)
return wrapper
return decorator
# Example usage functions for integration
def integrate_with_retrain_py():
"""Example integration with retrain.py"""
logger = MLOpsLoggers.get_retraining_logger()
# Example: Log retraining session start
logger.info(
EventType.MODEL_TRAINING_START,
"Enhanced retraining session started with LightGBM and ensemble",
component="retrain",
metadata={
'models': ['logistic_regression', 'random_forest', 'lightgbm'],
'ensemble_enabled': True,
'enhanced_features': True
},
tags=['retraining', 'lightgbm', 'ensemble']
)
return logger
def integrate_with_train_py():
"""Example integration with train.py"""
logger = MLOpsLoggers.get_model_trainer_logger()
# Example: Log training session start
logger.info(
EventType.MODEL_TRAINING_START,
"Enhanced training session started with comprehensive CV",
component="train",
metadata={
'models': ['logistic_regression', 'random_forest', 'lightgbm'],
'cv_folds': 5,
'ensemble_enabled': True
},
tags=['training', 'cv', 'ensemble']
)
return logger
# CPU constraint monitoring
import os
import psutil
def monitor_cpu_constraints():
"""Monitor CPU usage and memory for HuggingFace Spaces constraints"""
logger = MLOpsLoggers.get_monitoring_logger()
try:
# Get system metrics
cpu_percent = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
process = psutil.Process()
resource_metrics = {
'cpu_percent': cpu_percent,
'memory_percent': memory.percent,
'memory_used_mb': memory.used / 1024 / 1024,
'memory_available_mb': memory.available / 1024 / 1024,
'process_memory_mb': process.memory_info().rss / 1024 / 1024,
'process_cpu_percent': process.cpu_percent()
}
# Log resource usage
logger.log_performance_metrics(
component="system_monitor",
metrics=resource_metrics,
tags=['resource_monitoring', 'hfs_constraints']
)
# Alert on high usage (HFS constraints)
if cpu_percent > 80 or memory.percent > 85:
logger.log_cpu_constraint_warning(
component="system_monitor",
operation="resource_monitoring",
resource_usage=resource_metrics
)
return resource_metrics
except Exception as e:
logger.error(
EventType.PERFORMANCE_METRIC,
f"Failed to monitor CPU constraints: {str(e)}",
component="system_monitor"
)
return None
if __name__ == "__main__":
# Example usage and testing
setup_mlops_logging()
# Test structured logging
logger = MLOpsLoggers.get_model_trainer_logger()
# Test basic logging
logger.info(
EventType.MODEL_TRAINING_START,
"Testing structured logging system",
metadata={'test': True, 'version': '1.0'},
tags=['test', 'structured_logging']
)
# Test operation timing
with logger.operation(
EventType.MODEL_VALIDATION,
"test_operation",
metadata={'test_data': 'example'}
):
time.sleep(0.1) # Simulate work
# Test performance monitoring
perf_monitor = PerformanceMonitor(logger)
perf_monitor.monitor_training_performance(
model_name="test_model",
dataset_size=1000,
training_time=5.0,
memory_usage_mb=150.0
)
# Test CPU monitoring
monitor_cpu_constraints()
print("Structured logging system test completed successfully!") |