File size: 44,637 Bytes
ead9c37
 
 
ca89c11
 
 
 
 
 
 
 
 
 
 
 
ead9c37
ca89c11
 
 
 
83527bc
310a651
83527bc
310a651
83527bc
310a651
83527bc
719d51e
 
 
 
ead9c37
310a651
c29bcf3
310a651
83527bc
52d71b1
310a651
 
52d71b1
310a651
52d71b1
310a651
 
 
 
83527bc
ca89c11
c29bcf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d51e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a989cc
719d51e
 
 
 
 
 
 
 
3a989cc
 
 
 
 
 
 
 
 
 
 
 
719d51e
 
 
 
 
 
 
 
 
 
 
ead9c37
719d51e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9c37
719d51e
 
 
 
 
ead9c37
 
 
719d51e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca89c11
ead9c37
ca89c11
310a651
52d71b1
310a651
 
719d51e
ead9c37
52d71b1
 
34841ba
52d71b1
 
 
 
 
34841ba
52d71b1
 
34841ba
 
 
 
 
52d71b1
 
 
34841ba
 
 
52d71b1
 
ca89c11
310a651
ead9c37
310a651
 
 
ead9c37
719d51e
 
310a651
719d51e
 
310a651
719d51e
ca89c11
310a651
 
 
 
 
 
 
719d51e
 
310a651
 
719d51e
 
310a651
 
 
 
719d51e
310a651
719d51e
 
310a651
 
719d51e
 
310a651
 
 
ca89c11
310a651
52d71b1
310a651
52d71b1
719d51e
 
ca89c11
52d71b1
 
ca89c11
310a651
52d71b1
 
 
 
 
 
 
 
 
 
 
 
ca89c11
52d71b1
 
ca89c11
52d71b1
 
 
 
 
 
 
 
 
 
 
ead9c37
 
 
 
 
 
 
ca89c11
52d71b1
310a651
52d71b1
 
 
 
 
 
 
310a651
ca89c11
52d71b1
ca89c11
310a651
 
 
 
ca89c11
310a651
719d51e
 
 
 
c29bcf3
 
310a651
719d51e
310a651
 
ca89c11
719d51e
310a651
 
 
 
 
 
 
 
 
ca89c11
310a651
 
 
719d51e
310a651
ca89c11
310a651
 
 
 
 
 
 
0fffa64
52d71b1
ca89c11
 
ead9c37
719d51e
 
 
 
52d71b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d51e
52d71b1
310a651
52d71b1
 
 
 
 
310a651
52d71b1
 
 
ca89c11
ead9c37
 
719d51e
 
ead9c37
ca89c11
310a651
 
 
ca89c11
34841ba
 
 
 
ead9c37
 
 
 
34841ba
 
ead9c37
34841ba
ead9c37
34841ba
 
 
310a651
 
ca89c11
ead9c37
 
34841ba
ead9c37
310a651
 
 
ead9c37
310a651
ead9c37
 
 
310a651
ca89c11
310a651
ead9c37
310a651
ca89c11
ead9c37
 
 
 
 
 
310a651
 
 
 
 
ead9c37
 
 
310a651
 
ead9c37
52d71b1
310a651
 
ca89c11
310a651
ead9c37
310a651
ead9c37
 
 
 
 
ca89c11
310a651
ca89c11
310a651
34841ba
310a651
34841ba
 
 
ead9c37
 
 
 
 
 
 
 
 
34841ba
 
 
ca89c11
310a651
ead9c37
719d51e
310a651
ca89c11
310a651
ead9c37
ca89c11
310a651
52d71b1
310a651
ca89c11
ead9c37
 
310a651
 
ca89c11
ead9c37
310a651
 
 
ca89c11
310a651
 
 
 
 
 
 
ca89c11
ead9c37
 
 
 
 
 
 
 
 
ca89c11
310a651
52d71b1
310a651
ca89c11
310a651
ca89c11
310a651
ead9c37
719d51e
 
 
ca89c11
310a651
 
 
 
ca89c11
310a651
 
 
ca89c11
ead9c37
 
 
 
 
 
 
 
ca89c11
310a651
 
 
 
 
ca89c11
310a651
52d71b1
ca89c11
ead9c37
310a651
ca89c11
ead9c37
 
52d71b1
719d51e
 
52d71b1
34841ba
 
 
 
 
 
 
 
 
 
52d71b1
 
34841ba
 
 
 
 
 
c29bcf3
34841ba
 
 
 
 
 
52d71b1
 
 
 
ead9c37
 
 
 
52d71b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d71b1
34841ba
 
 
 
ead9c37
34841ba
 
52d71b1
ead9c37
52d71b1
 
 
 
34841ba
 
 
 
 
 
 
 
52d71b1
310a651
ead9c37
310a651
ead9c37
52d71b1
 
 
 
ca89c11
310a651
 
 
 
ca89c11
719d51e
 
 
 
 
 
 
ead9c37
719d51e
ead9c37
719d51e
 
ead9c37
719d51e
 
ead9c37
 
 
719d51e
310a651
 
 
ca89c11
34841ba
719d51e
34841ba
 
 
 
 
 
 
 
 
 
 
 
310a651
ca89c11
34841ba
 
310a651
 
ca89c11
719d51e
34841ba
 
 
ead9c37
34841ba
 
ca89c11
ead9c37
 
ca89c11
310a651
719d51e
ca89c11
ead9c37
 
52d71b1
ca89c11
719d51e
 
ca89c11
ead9c37
 
 
 
 
 
 
 
310a651
ead9c37
52d71b1
ead9c37
310a651
ca89c11
310a651
 
ca89c11
310a651
719d51e
 
ead9c37
310a651
 
83527bc
ca89c11
83527bc
ead9c37
719d51e
 
 
ead9c37
719d51e
3a989cc
ead9c37
719d51e
 
52d71b1
3a989cc
ead9c37
 
 
 
 
3a989cc
 
 
 
 
 
 
 
 
ead9c37
3a989cc
 
 
 
 
 
 
 
 
 
 
 
ead9c37
3a989cc
 
 
 
719d51e
ca89c11
52d71b1
 
ca89c11
52d71b1
 
ca89c11
83527bc
 
c29bcf3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
# File: model/train.py (MODIFIED)
# Enhanced version with comprehensive cross-validation implementation

import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.preprocessing import FunctionTransformer
from sklearn.pipeline import Pipeline
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score, f1_score,
    roc_auc_score, confusion_matrix, classification_report,
    precision_recall_curve, roc_curve
)
from sklearn.model_selection import (
    train_test_split, cross_val_score, GridSearchCV,
    StratifiedKFold, validation_curve, cross_validate
)
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
import numpy as np
from pathlib import Path
import logging
import json
import joblib
import hashlib
import sys
import os
import time
from datetime import datetime, timedelta
from typing import Dict, Tuple, Optional, Any, List
import warnings
import re
warnings.filterwarnings('ignore')

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('/tmp/model_training.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)


def preprocess_text_function(texts):
    """
    Standalone function for text preprocessing - pickle-safe
    """
    def clean_single_text(text):
        # Convert to string
        text = str(text)
        
        # Remove URLs
        text = re.sub(r'http\S+|www\S+|https\S+', '', text)
        
        # Remove email addresses
        text = re.sub(r'\S+@\S+', '', text)
        
        # Remove excessive punctuation
        text = re.sub(r'[!]{2,}', '!', text)
        text = re.sub(r'[?]{2,}', '?', text)
        text = re.sub(r'[.]{3,}', '...', text)
        
        # Remove non-alphabetic characters except spaces and basic punctuation
        text = re.sub(r'[^a-zA-Z\s.!?]', '', text)
        
        # Remove excessive whitespace
        text = re.sub(r'\s+', ' ', text)
        
        return text.strip().lower()
    
    # Process all texts
    processed = []
    for text in texts:
        processed.append(clean_single_text(text))
    
    return processed


class ProgressTracker:
    """Progress tracking with time estimation"""
    
    def __init__(self, total_steps: int, description: str = "Training"):
        self.total_steps = total_steps
        self.current_step = 0
        self.start_time = time.time()
        self.description = description
        self.step_times = []
        
    def update(self, step_name: str = ""):
        """Update progress and print status"""
        self.current_step += 1
        current_time = time.time()
        elapsed = current_time - self.start_time
        
        # Calculate progress percentage
        progress_pct = (self.current_step / self.total_steps) * 100
        
        # Estimate remaining time
        if self.current_step > 0:
            avg_time_per_step = elapsed / self.current_step
            remaining_steps = self.total_steps - self.current_step
            eta_seconds = avg_time_per_step * remaining_steps
            eta = timedelta(seconds=int(eta_seconds))
        else:
            eta = "calculating..."
            
        # Create progress bar
        bar_length = 30
        filled_length = int(bar_length * self.current_step // self.total_steps)
        bar = 'β–ˆ' * filled_length + 'β–‘' * (bar_length - filled_length)
        
        # Print progress (this will be visible in Streamlit logs)
        status_msg = f"\r{self.description}: [{bar}] {progress_pct:.1f}% | Step {self.current_step}/{self.total_steps}"
        if step_name:
            status_msg += f" | {step_name}"
        if eta != "calculating...":
            status_msg += f" | ETA: {eta}"
            
        print(status_msg, end='', flush=True)
        
        # Also output JSON for Streamlit parsing (if needed)
        progress_json = {
            "type": "progress",
            "step": self.current_step,
            "total": self.total_steps,
            "percentage": progress_pct,
            "eta": str(eta) if eta != "calculating..." else None,
            "step_name": step_name,
            "elapsed": elapsed
        }
        print(f"\nPROGRESS_JSON: {json.dumps(progress_json)}")
        
        # Store step time for better estimation
        if len(self.step_times) >= 3:  # Keep last 3 step times for moving average
            self.step_times.pop(0)
        self.step_times.append(current_time - (self.start_time + sum(self.step_times)))
        
    def finish(self):
        """Complete progress tracking"""
        total_time = time.time() - self.start_time
        print(f"\n{self.description} completed in {timedelta(seconds=int(total_time))}")


def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_folds: int = 5) -> Dict:
    """Estimate training time based on dataset characteristics"""
    
    # Base time estimates (in seconds) based on empirical testing
    base_times = {
        'preprocessing': max(0.1, dataset_size * 0.001),  # ~1ms per sample
        'vectorization': max(0.5, dataset_size * 0.01),   # ~10ms per sample
        'feature_selection': max(0.2, dataset_size * 0.005), # ~5ms per sample
        'simple_training': max(1.0, dataset_size * 0.02),  # ~20ms per sample
        'evaluation': max(0.5, dataset_size * 0.01),       # ~10ms per sample
    }
    
    # Hyperparameter tuning multipliers
    tuning_multipliers = {
        'logistic_regression': 8 if enable_tuning else 1,  # 8 param combinations
        'random_forest': 12 if enable_tuning else 1,       # 12 param combinations
    }
    
    # Cross-validation multiplier
    cv_multiplier = cv_folds if dataset_size > 100 else 1
    
    # Calculate estimates
    estimates = {}
    
    # Preprocessing steps
    estimates['data_loading'] = 0.5
    estimates['preprocessing'] = base_times['preprocessing']
    estimates['vectorization'] = base_times['vectorization']
    estimates['feature_selection'] = base_times['feature_selection']
    
    # Model training (now includes CV)
    for model_name, multiplier in tuning_multipliers.items():
        model_time = base_times['simple_training'] * multiplier * cv_multiplier
        estimates[f'{model_name}_training'] = model_time
        estimates[f'{model_name}_evaluation'] = base_times['evaluation']
    
    # Cross-validation overhead
    estimates['cross_validation'] = base_times['simple_training'] * cv_folds * 0.5
    
    # Model saving
    estimates['model_saving'] = 1.0
    
    # Total estimate
    total_estimate = sum(estimates.values())
    
    # Add 20% buffer for overhead
    total_estimate *= 1.2
    
    return {
        'detailed_estimates': estimates,
        'total_seconds': total_estimate,
        'total_formatted': str(timedelta(seconds=int(total_estimate))),
        'dataset_size': dataset_size,
        'enable_tuning': enable_tuning,
        'cv_folds': cv_folds
    }


class CrossValidationManager:
    """Advanced cross-validation management with comprehensive metrics"""
    
    def __init__(self, cv_folds: int = 5, random_state: int = 42):
        self.cv_folds = cv_folds
        self.random_state = random_state
        self.cv_results = {}
        
    def create_cv_strategy(self, X, y) -> StratifiedKFold:
        """Create appropriate CV strategy based on data characteristics"""
        # Calculate appropriate CV folds for small datasets
        n_samples = len(X)
        min_samples_per_fold = 3  # Minimum samples per fold
        max_folds = n_samples // min_samples_per_fold
        
        # Adjust folds based on data size and class distribution
        unique_classes = np.unique(y)
        min_class_count = min([np.sum(y == cls) for cls in unique_classes])
        
        # Ensure each fold has at least one sample from each class
        max_folds_by_class = min_class_count
        
        actual_folds = max(2, min(self.cv_folds, max_folds, max_folds_by_class))
        
        logger.info(f"Using {actual_folds} CV folds (requested: {self.cv_folds})")
        
        return StratifiedKFold(
            n_splits=actual_folds,
            shuffle=True,
            random_state=self.random_state
        )
    
    def perform_cross_validation(self, pipeline, X, y, cv_strategy=None) -> Dict:
        """Perform comprehensive cross-validation with multiple metrics"""
        
        if cv_strategy is None:
            cv_strategy = self.create_cv_strategy(X, y)
        
        logger.info(f"Starting cross-validation with {cv_strategy.n_splits} folds...")
        
        # Define scoring metrics
        scoring_metrics = {
            'accuracy': 'accuracy',
            'precision': 'precision_weighted',
            'recall': 'recall_weighted',
            'f1': 'f1_weighted',
            'roc_auc': 'roc_auc'
        }
        
        try:
            # Perform cross-validation
            cv_scores = cross_validate(
                pipeline, X, y,
                cv=cv_strategy,
                scoring=scoring_metrics,
                return_train_score=True,
                n_jobs=1,  # Use single job for stability
                verbose=0
            )
            
            # Process results
            cv_results = {
                'n_splits': cv_strategy.n_splits,
                'test_scores': {},
                'train_scores': {},
                'fold_results': []
            }
            
            # Calculate statistics for each metric
            for metric_name in scoring_metrics.keys():
                test_key = f'test_{metric_name}'
                train_key = f'train_{metric_name}'
                
                if test_key in cv_scores:
                    test_scores = cv_scores[test_key]
                    cv_results['test_scores'][metric_name] = {
                        'mean': float(np.mean(test_scores)),
                        'std': float(np.std(test_scores)),
                        'min': float(np.min(test_scores)),
                        'max': float(np.max(test_scores)),
                        'scores': test_scores.tolist()
                    }
                
                if train_key in cv_scores:
                    train_scores = cv_scores[train_key]
                    cv_results['train_scores'][metric_name] = {
                        'mean': float(np.mean(train_scores)),
                        'std': float(np.std(train_scores)),
                        'min': float(np.min(train_scores)),
                        'max': float(np.max(train_scores)),
                        'scores': train_scores.tolist()
                    }
            
            # Store individual fold results
            for fold_idx in range(cv_strategy.n_splits):
                fold_result = {
                    'fold': fold_idx + 1,
                    'test_scores': {},
                    'train_scores': {}
                }
                
                for metric_name in scoring_metrics.keys():
                    test_key = f'test_{metric_name}'
                    train_key = f'train_{metric_name}'
                    
                    if test_key in cv_scores:
                        fold_result['test_scores'][metric_name] = float(cv_scores[test_key][fold_idx])
                    if train_key in cv_scores:
                        fold_result['train_scores'][metric_name] = float(cv_scores[train_key][fold_idx])
                
                cv_results['fold_results'].append(fold_result)
            
            # Calculate overfitting indicators
            if 'accuracy' in cv_results['test_scores'] and 'accuracy' in cv_results['train_scores']:
                train_mean = cv_results['train_scores']['accuracy']['mean']
                test_mean = cv_results['test_scores']['accuracy']['mean']
                cv_results['overfitting_score'] = float(train_mean - test_mean)
            
            # Calculate stability metrics
            if 'accuracy' in cv_results['test_scores']:
                test_std = cv_results['test_scores']['accuracy']['std']
                test_mean = cv_results['test_scores']['accuracy']['mean']
                cv_results['stability_score'] = float(1 - (test_std / test_mean)) if test_mean > 0 else 0
            
            logger.info(f"Cross-validation completed successfully")
            logger.info(f"Mean test accuracy: {cv_results['test_scores'].get('accuracy', {}).get('mean', 'N/A'):.4f}")
            logger.info(f"Mean test F1: {cv_results['test_scores'].get('f1', {}).get('mean', 'N/A'):.4f}")
            
            return cv_results
            
        except Exception as e:
            logger.error(f"Cross-validation failed: {e}")
            return {
                'error': str(e),
                'n_splits': cv_strategy.n_splits if cv_strategy else self.cv_folds,
                'fallback': True
            }
    
    def compare_cv_results(self, results1: Dict, results2: Dict, metric: str = 'f1') -> Dict:
        """Compare cross-validation results between two models"""
        
        try:
            if 'error' in results1 or 'error' in results2:
                return {'error': 'Cannot compare results with errors'}
            
            scores1 = results1['test_scores'][metric]['scores']
            scores2 = results2['test_scores'][metric]['scores']
            
            # Paired t-test
            from scipy import stats
            t_stat, p_value = stats.ttest_rel(scores1, scores2)
            
            comparison = {
                'metric': metric,
                'model1_mean': results1['test_scores'][metric]['mean'],
                'model2_mean': results2['test_scores'][metric]['mean'],
                'model1_std': results1['test_scores'][metric]['std'],
                'model2_std': results2['test_scores'][metric]['std'],
                'difference': results2['test_scores'][metric]['mean'] - results1['test_scores'][metric]['mean'],
                'paired_ttest': {
                    't_statistic': float(t_stat),
                    'p_value': float(p_value),
                    'significant': p_value < 0.05
                },
                'effect_size': float(abs(t_stat) / np.sqrt(len(scores1))) if len(scores1) > 0 else 0
            }
            
            return comparison
            
        except Exception as e:
            logger.error(f"CV comparison failed: {e}")
            return {'error': str(e)}


class RobustModelTrainer:
    """Production-ready model trainer with comprehensive cross-validation"""

    def __init__(self):
        self.setup_paths()
        self.setup_training_config()
        self.setup_models()
        self.progress_tracker = None
        self.cv_manager = CrossValidationManager()

    def setup_paths(self):
        """Setup all necessary paths with proper permissions"""
        self.base_dir = Path("/tmp")
        self.data_dir = self.base_dir / "data"
        self.model_dir = self.base_dir / "model"
        self.results_dir = self.base_dir / "results"

        # Create directories with proper permissions
        for dir_path in [self.data_dir, self.model_dir, self.results_dir]:
            dir_path.mkdir(parents=True, exist_ok=True)
            # Ensure write permissions
            try:
                dir_path.chmod(0o755)
            except:
                pass

        # File paths
        self.data_path = self.data_dir / "combined_dataset.csv"
        self.model_path = Path("/tmp/model.pkl")  # Direct path to avoid permission issues
        self.vectorizer_path = Path("/tmp/vectorizer.pkl")
        self.pipeline_path = Path("/tmp/pipeline.pkl")
        self.metadata_path = Path("/tmp/metadata.json")
        self.evaluation_path = self.results_dir / "evaluation_results.json"

    def setup_training_config(self):
        """Setup training configuration with CV parameters"""
        self.test_size = 0.2
        self.validation_size = 0.1
        self.random_state = 42
        self.cv_folds = 5  # Primary CV folds
        self.max_features = 5000  # Reduced for speed
        self.min_df = 1  # More lenient for small datasets
        self.max_df = 0.95
        self.ngram_range = (1, 2)  # Reduced for speed
        self.max_iter = 500  # Reduced for speed
        self.class_weight = 'balanced'
        self.feature_selection_k = 2000  # Reduced for speed

    def setup_models(self):
        """Setup model configurations for comparison"""
        self.models = {
            'logistic_regression': {
                'model': LogisticRegression(
                    max_iter=self.max_iter,
                    class_weight=self.class_weight,
                    random_state=self.random_state,
                    n_jobs=-1  # Use all cores
                ),
                'param_grid': {
                    'model__C': [0.1, 1, 10],  # Reduced grid
                    'model__penalty': ['l2']
                }
            },
            'random_forest': {
                'model': RandomForestClassifier(
                    n_estimators=50,  # Reduced for speed
                    class_weight=self.class_weight,
                    random_state=self.random_state,
                    n_jobs=-1  # Use all cores
                ),
                'param_grid': {
                    'model__n_estimators': [50, 100],  # Reduced grid
                    'model__max_depth': [10, None]
                }
            }
        }

    def load_and_validate_data(self) -> Tuple[bool, Optional[pd.DataFrame], str]:
        """Load and validate training data"""
        try:
            logger.info("Loading training data...")
            if self.progress_tracker:
                self.progress_tracker.update("Loading data")

            if not self.data_path.exists():
                return False, None, f"Data file not found: {self.data_path}"

            # Load data
            df = pd.read_csv(self.data_path)

            # Basic validation
            if df.empty:
                return False, None, "Dataset is empty"

            required_columns = ['text', 'label']
            missing_columns = [
                col for col in required_columns if col not in df.columns]
            if missing_columns:
                return False, None, f"Missing required columns: {missing_columns}"

            # Remove missing values
            initial_count = len(df)
            df = df.dropna(subset=required_columns)
            if len(df) < initial_count:
                logger.warning(
                    f"Removed {initial_count - len(df)} rows with missing values")

            # Validate text content
            df = df[df['text'].astype(str).str.len() > 10]

            # Validate labels
            unique_labels = df['label'].unique()
            if len(unique_labels) < 2:
                return False, None, f"Need at least 2 classes, found: {unique_labels}"

            # Check minimum sample size for CV
            min_samples_for_cv = self.cv_folds * 2  # At least 2 samples per fold
            if len(df) < min_samples_for_cv:
                logger.warning(f"Dataset size ({len(df)}) is small for {self.cv_folds}-fold CV")
                # Adjust CV folds for small datasets
                self.cv_manager.cv_folds = max(2, len(df) // 3)
                logger.info(f"Adjusted CV folds to {self.cv_manager.cv_folds}")

            # Check class balance
            label_counts = df['label'].value_counts()
            min_class_ratio = label_counts.min() / label_counts.max()
            if min_class_ratio < 0.1:
                logger.warning(
                    f"Severe class imbalance detected: {min_class_ratio:.3f}")

            logger.info(
                f"Data validation successful: {len(df)} samples, {len(unique_labels)} classes")
            logger.info(f"Class distribution: {label_counts.to_dict()}")

            return True, df, "Data loaded successfully"

        except Exception as e:
            error_msg = f"Error loading data: {str(e)}"
            logger.error(error_msg)
            return False, None, error_msg

    def create_preprocessing_pipeline(self) -> Pipeline:
        """Create preprocessing pipeline"""
        
        if self.progress_tracker:
            self.progress_tracker.update("Creating pipeline")
        
        # Use the standalone function instead of lambda
        text_preprocessor = FunctionTransformer(
            func=preprocess_text_function,
            validate=False
        )

        # TF-IDF vectorization with optimized parameters
        vectorizer = TfidfVectorizer(
            max_features=self.max_features,
            min_df=self.min_df,
            max_df=self.max_df,
            ngram_range=self.ngram_range,
            stop_words='english',
            sublinear_tf=True,
            norm='l2'
        )

        # Feature selection
        feature_selector = SelectKBest(
            score_func=chi2,
            k=min(self.feature_selection_k, self.max_features)
        )

        # Create pipeline
        pipeline = Pipeline([
            ('preprocess', text_preprocessor),
            ('vectorize', vectorizer),
            ('feature_select', feature_selector),
            ('model', None)  # Will be set during training
        ])

        return pipeline

    def comprehensive_evaluation(self, model, X_test, y_test, X_train=None, y_train=None) -> Dict:
        """Comprehensive model evaluation with cross-validation integration"""
        
        if self.progress_tracker:
            self.progress_tracker.update("Evaluating model")
            
        # Predictions
        y_pred = model.predict(X_test)
        y_pred_proba = model.predict_proba(X_test)[:, 1]

        # Basic metrics
        metrics = {
            'accuracy': float(accuracy_score(y_test, y_pred)),
            'precision': float(precision_score(y_test, y_pred, average='weighted')),
            'recall': float(recall_score(y_test, y_pred, average='weighted')),
            'f1': float(f1_score(y_test, y_pred, average='weighted')),
            'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
        }

        # Confusion matrix
        cm = confusion_matrix(y_test, y_pred)
        metrics['confusion_matrix'] = cm.tolist()

        # Cross-validation on full dataset
        if X_train is not None and y_train is not None:
            # Combine train and test for full dataset CV
            X_full = np.concatenate([X_train, X_test])
            y_full = np.concatenate([y_train, y_test])
            
            logger.info("Performing cross-validation on full dataset...")
            cv_results = self.cv_manager.perform_cross_validation(model, X_full, y_full)
            metrics['cross_validation'] = cv_results
            
            # Log CV results
            if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
                cv_f1_mean = cv_results['test_scores']['f1']['mean']
                cv_f1_std = cv_results['test_scores']['f1']['std']
                logger.info(f"CV F1 Score: {cv_f1_mean:.4f} (Β±{cv_f1_std:.4f})")
        
        # Training accuracy for overfitting detection
        try:
            if X_train is not None and y_train is not None:
                y_train_pred = model.predict(X_train)
                train_accuracy = accuracy_score(y_train, y_train_pred)
                metrics['train_accuracy'] = float(train_accuracy)
                metrics['overfitting_score'] = float(
                    train_accuracy - metrics['accuracy'])
        except Exception as e:
            logger.warning(f"Overfitting detection failed: {e}")

        return metrics

    def hyperparameter_tuning_with_cv(self, pipeline, X_train, y_train, model_name: str) -> Tuple[Any, Dict]:
        """Perform hyperparameter tuning with nested cross-validation"""
        
        if self.progress_tracker:
            self.progress_tracker.update(f"Tuning {model_name} with CV")

        try:
            # Set the model in the pipeline
            pipeline.set_params(model=self.models[model_name]['model'])

            # Skip hyperparameter tuning for very small datasets
            if len(X_train) < 20:
                logger.info(f"Skipping hyperparameter tuning for {model_name} due to small dataset")
                pipeline.fit(X_train, y_train)
                
                # Still perform CV evaluation
                cv_results = self.cv_manager.perform_cross_validation(pipeline, X_train, y_train)
                
                return pipeline, {
                    'best_params': 'default_parameters',
                    'best_score': cv_results.get('test_scores', {}).get('f1', {}).get('mean', 'not_calculated'),
                    'best_estimator': pipeline,
                    'cross_validation': cv_results,
                    'note': 'Hyperparameter tuning skipped for small dataset'
                }

            # Get parameter grid
            param_grid = self.models[model_name]['param_grid']

            # Create CV strategy
            cv_strategy = self.cv_manager.create_cv_strategy(X_train, y_train)
            
            # Create GridSearchCV with nested cross-validation
            grid_search = GridSearchCV(
                pipeline,
                param_grid,
                cv=cv_strategy,
                scoring='f1_weighted',
                n_jobs=1,  # Single job for stability
                verbose=0,  # Reduce verbosity for speed
                return_train_score=True  # For overfitting analysis
            )

            # Fit grid search
            logger.info(f"Starting hyperparameter tuning for {model_name}...")
            grid_search.fit(X_train, y_train)

            # Perform additional CV on best model
            logger.info(f"Performing final CV evaluation for {model_name}...")
            best_cv_results = self.cv_manager.perform_cross_validation(
                grid_search.best_estimator_, X_train, y_train, cv_strategy
            )

            # Extract results
            tuning_results = {
                'best_params': grid_search.best_params_,
                'best_score': float(grid_search.best_score_),
                'best_estimator': grid_search.best_estimator_,
                'cv_folds_used': cv_strategy.n_splits,
                'cross_validation': best_cv_results,
                'grid_search_results': {
                    'mean_test_scores': grid_search.cv_results_['mean_test_score'].tolist(),
                    'std_test_scores': grid_search.cv_results_['std_test_score'].tolist(),
                    'mean_train_scores': grid_search.cv_results_.get('mean_train_score', []).tolist() if 'mean_train_score' in grid_search.cv_results_ else [],
                    'params': grid_search.cv_results_['params']
                }
            }

            logger.info(f"Hyperparameter tuning completed for {model_name}")
            logger.info(f"Best CV score: {grid_search.best_score_:.4f}")
            logger.info(f"Best params: {grid_search.best_params_}")
            
            if 'test_scores' in best_cv_results and 'f1' in best_cv_results['test_scores']:
                final_f1 = best_cv_results['test_scores']['f1']['mean']
                final_f1_std = best_cv_results['test_scores']['f1']['std']
                logger.info(f"Final CV F1: {final_f1:.4f} (Β±{final_f1_std:.4f})")

            return grid_search.best_estimator_, tuning_results

        except Exception as e:
            logger.error(f"Hyperparameter tuning failed for {model_name}: {str(e)}")
            # Return basic model if tuning fails
            try:
                pipeline.set_params(model=self.models[model_name]['model'])
                pipeline.fit(X_train, y_train)
                
                # Perform basic CV
                cv_results = self.cv_manager.perform_cross_validation(pipeline, X_train, y_train)
                
                return pipeline, {
                    'error': str(e), 
                    'fallback': 'simple_training',
                    'cross_validation': cv_results
                }
            except Exception as e2:
                logger.error(f"Fallback training also failed for {model_name}: {str(e2)}")
                raise Exception(f"Both hyperparameter tuning and fallback training failed: {str(e)} | {str(e2)}")

    def train_and_evaluate_models(self, X_train, X_test, y_train, y_test) -> Dict:
        """Train and evaluate multiple models with comprehensive CV"""
        
        results = {}

        for model_name in self.models.keys():
            logger.info(f"Training {model_name} with cross-validation...")

            try:
                # Create pipeline
                pipeline = self.create_preprocessing_pipeline()

                # Hyperparameter tuning with CV
                best_model, tuning_results = self.hyperparameter_tuning_with_cv(
                    pipeline, X_train, y_train, model_name
                )

                # Comprehensive evaluation (includes additional CV)
                evaluation_metrics = self.comprehensive_evaluation(
                    best_model, X_test, y_test, X_train, y_train
                )

                # Store results
                results[model_name] = {
                    'model': best_model,
                    'tuning_results': tuning_results,
                    'evaluation_metrics': evaluation_metrics,
                    'training_time': datetime.now().isoformat()
                }

                # Log results
                test_f1 = evaluation_metrics['f1']
                cv_results = evaluation_metrics.get('cross_validation', {})
                cv_f1_mean = cv_results.get('test_scores', {}).get('f1', {}).get('mean', 'N/A')
                cv_f1_std = cv_results.get('test_scores', {}).get('f1', {}).get('std', 'N/A')
                
                logger.info(f"Model {model_name} - Test F1: {test_f1:.4f}, "
                            f"CV F1: {cv_f1_mean:.4f if cv_f1_mean != 'N/A' else cv_f1_mean} "
                            f"(Β±{cv_f1_std:.4f if cv_f1_std != 'N/A' else cv_f1_std})")

            except Exception as e:
                logger.error(f"Training failed for {model_name}: {str(e)}")
                results[model_name] = {'error': str(e)}

        return results

    def select_best_model(self, results: Dict) -> Tuple[str, Any, Dict]:
        """Select the best performing model based on CV results"""
        
        if self.progress_tracker:
            self.progress_tracker.update("Selecting best model")

        best_model_name = None
        best_model = None
        best_score = -1
        best_metrics = None

        for model_name, result in results.items():
            if 'error' in result:
                continue

            # Prioritize CV F1 score if available, fallback to test F1
            cv_results = result['evaluation_metrics'].get('cross_validation', {})
            if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
                f1_score = cv_results['test_scores']['f1']['mean']
                score_type = "CV F1"
            else:
                f1_score = result['evaluation_metrics']['f1']
                score_type = "Test F1"

            if f1_score > best_score:
                best_score = f1_score
                best_model_name = model_name
                best_model = result['model']
                best_metrics = result['evaluation_metrics']

        if best_model_name is None:
            raise ValueError("No models trained successfully")

        logger.info(f"Best model: {best_model_name} with {score_type} score: {best_score:.4f}")
        return best_model_name, best_model, best_metrics

    def save_model_artifacts(self, model, model_name: str, metrics: Dict, results: Dict) -> bool:
        """Save model artifacts and enhanced metadata with CV results"""
        try:
            if self.progress_tracker:
                self.progress_tracker.update("Saving model")

            # Save the full pipeline with error handling
            try:
                joblib.dump(model, self.pipeline_path)
                logger.info(f"βœ… Saved pipeline to {self.pipeline_path}")
            except Exception as e:
                logger.error(f"Failed to save pipeline: {e}")
                # Try alternative path
                alt_pipeline_path = Path("/tmp") / "pipeline.pkl"
                joblib.dump(model, alt_pipeline_path)
                logger.info(f"βœ… Saved pipeline to {alt_pipeline_path}")

            # Save individual components for backward compatibility
            try:
                if hasattr(model, 'named_steps') and 'model' in model.named_steps:
                    joblib.dump(model.named_steps['model'], self.model_path)
                    logger.info(f"βœ… Saved model to {self.model_path}")
            except Exception as e:
                logger.warning(f"Could not save model component: {e}")

            try:
                if hasattr(model, 'named_steps') and 'vectorize' in model.named_steps:
                    joblib.dump(model.named_steps['vectorize'], self.vectorizer_path)
                    logger.info(f"βœ… Saved vectorizer to {self.vectorizer_path}")
            except Exception as e:
                logger.warning(f"Could not save vectorizer component: {e}")

            # Generate data hash
            data_hash = hashlib.md5(str(datetime.now()).encode()).hexdigest()

            # Extract CV results
            cv_results = metrics.get('cross_validation', {})
            
            # Create enhanced metadata with CV information
            metadata = {
                'model_version': f"v1.0_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
                'model_type': model_name,
                'data_version': data_hash,
                'test_accuracy': metrics['accuracy'],
                'test_f1': metrics['f1'],
                'test_precision': metrics['precision'],
                'test_recall': metrics['recall'],
                'test_roc_auc': metrics['roc_auc'],
                'overfitting_score': metrics.get('overfitting_score', 'Unknown'),
                'timestamp': datetime.now().isoformat(),
                'training_config': {
                    'test_size': self.test_size,
                    'cv_folds': self.cv_folds,
                    'max_features': self.max_features,
                    'ngram_range': self.ngram_range,
                    'feature_selection_k': self.feature_selection_k
                }
            }
            
            # Add comprehensive CV results to metadata
            if cv_results and 'test_scores' in cv_results:
                metadata['cross_validation'] = {
                    'n_splits': cv_results.get('n_splits', self.cv_folds),
                    'test_scores': cv_results['test_scores'],
                    'train_scores': cv_results.get('train_scores', {}),
                    'overfitting_score': cv_results.get('overfitting_score', 'Unknown'),
                    'stability_score': cv_results.get('stability_score', 'Unknown'),
                    'individual_fold_results': cv_results.get('fold_results', [])
                }
                
                # Add summary statistics
                if 'f1' in cv_results['test_scores']:
                    metadata['cv_f1_mean'] = cv_results['test_scores']['f1']['mean']
                    metadata['cv_f1_std'] = cv_results['test_scores']['f1']['std']
                    metadata['cv_f1_min'] = cv_results['test_scores']['f1']['min']
                    metadata['cv_f1_max'] = cv_results['test_scores']['f1']['max']
                
                if 'accuracy' in cv_results['test_scores']:
                    metadata['cv_accuracy_mean'] = cv_results['test_scores']['accuracy']['mean']
                    metadata['cv_accuracy_std'] = cv_results['test_scores']['accuracy']['std']
            
            # Add model comparison results if available
            if len(results) > 1:
                model_comparison = {}
                for other_model_name, other_result in results.items():
                    if other_model_name != model_name and 'error' not in other_result:
                        other_cv = other_result['evaluation_metrics'].get('cross_validation', {})
                        if cv_results and other_cv:
                            comparison = self.cv_manager.compare_cv_results(cv_results, other_cv)
                            model_comparison[other_model_name] = comparison
                
                if model_comparison:
                    metadata['model_comparison'] = model_comparison

            # Save metadata with error handling
            try:
                with open(self.metadata_path, 'w') as f:
                    json.dump(metadata, f, indent=2)
                logger.info(f"βœ… Saved enhanced metadata to {self.metadata_path}")
            except Exception as e:
                logger.warning(f"Could not save metadata: {e}")

            logger.info(f"βœ… Model artifacts saved successfully with CV results")
            return True

        except Exception as e:
            logger.error(f"Failed to save model artifacts: {str(e)}")
            # Try to save at least the core pipeline
            try:
                joblib.dump(model, Path("/tmp/pipeline_backup.pkl"))
                logger.info("βœ… Saved backup pipeline")
                return True
            except Exception as e2:
                logger.error(f"Failed to save backup pipeline: {str(e2)}")
                return False

    def train_model(self, data_path: str = None) -> Tuple[bool, str]:
        """Main training function with comprehensive CV pipeline"""
        try:
            logger.info("Starting enhanced model training with cross-validation...")

            # Override data path if provided
            if data_path:
                self.data_path = Path(data_path)

            # Load and validate data
            success, df, message = self.load_and_validate_data()
            if not success:
                return False, message

            # Estimate training time and setup progress tracker
            time_estimate = estimate_training_time(
                len(df), 
                enable_tuning=True, 
                cv_folds=self.cv_folds
            )
            
            print(f"\nπŸ“Š Enhanced Training Configuration:")
            print(f"Dataset size: {len(df)} samples")
            print(f"Cross-validation folds: {self.cv_folds}")
            print(f"Estimated time: {time_estimate['total_formatted']}")
            print(f"Models to train: {len(self.models)}")
            print(f"Hyperparameter tuning: Enabled")
            print()

            # Setup progress tracker (increased steps for CV)
            total_steps = 4 + (len(self.models) * 3) + 1  # Load, split, 3*models (tune+cv+eval), select, save
            self.progress_tracker = ProgressTracker(total_steps, "CV Training Progress")

            # Prepare data
            X = df['text'].values
            y = df['label'].values

            # Train-test split with smart handling for small datasets
            self.progress_tracker.update("Splitting data")
            
            # Ensure minimum test size for very small datasets
            if len(X) < 10:
                test_size = max(0.1, 1/len(X))  # At least 1 sample for test
            else:
                test_size = self.test_size
                
            # Check if stratification is possible
            label_counts = pd.Series(y).value_counts()
            min_class_count = label_counts.min()
            can_stratify = min_class_count >= 2 and len(y) >= 4
            
            X_train, X_test, y_train, y_test = train_test_split(
                X, y,
                test_size=test_size,
                stratify=y if can_stratify else None,
                random_state=self.random_state
            )

            logger.info(f"Data split: {len(X_train)} train, {len(X_test)} test")
            
            # Additional validation for very small datasets
            if len(X_train) < 3:
                logger.warning(f"Very small training set: {len(X_train)} samples. CV results may be unreliable.")
            if len(X_test) < 1:
                return False, "Cannot create test set. Dataset too small."

            # Train and evaluate models with CV
            results = self.train_and_evaluate_models(X_train, X_test, y_train, y_test)

            # Select best model
            best_model_name, best_model, best_metrics = self.select_best_model(results)

            # Save model artifacts with CV results
            if not self.save_model_artifacts(best_model, best_model_name, best_metrics, results):
                return False, "Failed to save model artifacts"

            # Finish progress tracking
            self.progress_tracker.finish()

            # Create success message with CV information
            cv_results = best_metrics.get('cross_validation', {})
            cv_info = ""
            if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
                cv_f1_mean = cv_results['test_scores']['f1']['mean']
                cv_f1_std = cv_results['test_scores']['f1']['std']
                cv_info = f", CV F1: {cv_f1_mean:.4f} (Β±{cv_f1_std:.4f})"

            success_message = (
                f"Enhanced model training completed successfully. "
                f"Best model: {best_model_name} "
                f"(Test F1: {best_metrics['f1']:.4f}, Test Accuracy: {best_metrics['accuracy']:.4f}{cv_info})"
            )

            logger.info(success_message)
            return True, success_message

        except Exception as e:
            if self.progress_tracker:
                print()  # New line after progress bar
            error_message = f"Enhanced model training failed: {str(e)}"
            logger.error(error_message)
            return False, error_message


def main():
    """Main execution function with enhanced CV support"""
    import argparse
    
    # Parse command line arguments
    parser = argparse.ArgumentParser(description='Train fake news detection model with cross-validation')
    parser.add_argument('--data_path', type=str, help='Path to training data CSV file')
    parser.add_argument('--config_path', type=str, help='Path to training configuration JSON file')
    parser.add_argument('--cv_folds', type=int, default=5, help='Number of cross-validation folds')
    args = parser.parse_args()
    
    trainer = RobustModelTrainer()
    
    # Apply CV folds from command line
    if args.cv_folds:
        trainer.cv_folds = args.cv_folds
        trainer.cv_manager.cv_folds = args.cv_folds
    
    # Load custom configuration if provided
    if args.config_path and Path(args.config_path).exists():
        try:
            with open(args.config_path, 'r') as f:
                config = json.load(f)
            
            # Apply configuration
            trainer.test_size = config.get('test_size', trainer.test_size)
            trainer.cv_folds = config.get('cv_folds', trainer.cv_folds)
            trainer.cv_manager.cv_folds = trainer.cv_folds
            trainer.max_features = config.get('max_features', trainer.max_features)
            trainer.ngram_range = tuple(config.get('ngram_range', trainer.ngram_range))
            
            # Filter models if specified
            selected_models = config.get('selected_models')
            if selected_models and len(selected_models) < len(trainer.models):
                all_models = trainer.models.copy()
                trainer.models = {k: v for k, v in all_models.items() if k in selected_models}
            
            # Update feature selection based on max_features
            trainer.feature_selection_k = min(trainer.feature_selection_k, trainer.max_features)
            
            logger.info(f"Applied custom configuration with {trainer.cv_folds} CV folds: {config}")
            
        except Exception as e:
            logger.warning(f"Failed to load configuration: {e}, using defaults")
    
    success, message = trainer.train_model(data_path=args.data_path)

    if success:
        print(f"βœ… {message}")
    else:
        print(f"❌ {message}")
        exit(1)


if __name__ == "__main__":
    main()