Spaces:
Running
Running
File size: 13,160 Bytes
cdcf094 c549485 ad65a2a cdcf094 c549485 cdcf094 ad65a2a c549485 ad65a2a cdcf094 c549485 ad65a2a c549485 ad65a2a cdcf094 ad65a2a cdcf094 b4dbe35 cdcf094 ad65a2a 0567380 ad65a2a c549485 ad65a2a c549485 ad65a2a c549485 ad65a2a c549485 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 c549485 ad65a2a c549485 ad65a2a cdcf094 c549485 ad65a2a cdcf094 c549485 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 ad65a2a cdcf094 ceedfa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
#!/usr/bin/env python3
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# SPDX-License-Identifier: Apache-2.0
"""Gradio demo for rgbd-depth on Hugging Face Spaces."""
import logging
from pathlib import Path
import gradio as gr
import numpy as np
import torch
from PIL import Image
from rgbddepth import RGBDDepth
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
datefmt="%H:%M:%S",
)
logger = logging.getLogger(__name__)
# Global model cache
MODELS = {}
# Model mappings from HuggingFace (all are vitl encoder)
# Format: "camera_model": ("repo_id", "checkpoint_filename")
HF_MODELS = {
"d435": ("depth-anything/camera-depth-model-d435", "cdm_d435.ckpt"),
"d405": ("depth-anything/camera-depth-model-d405", "cdm_d405.ckpt"),
"l515": ("depth-anything/camera-depth-model-l515", "cdm_l515.ckpt"),
"zed2i": ("depth-anything/camera-depth-model-zed2i", "cdm_zed2i.ckpt"),
}
# Default model
DEFAULT_MODEL = "d435"
def download_model(camera_model: str = DEFAULT_MODEL):
"""Download model from HuggingFace Hub."""
try:
from huggingface_hub import hf_hub_download
repo_id, filename = HF_MODELS.get(camera_model, HF_MODELS[DEFAULT_MODEL])
logger.info(f"Downloading {camera_model} model from {repo_id}/{filename}...")
# Download the checkpoint
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=".cache")
logger.info(f"Downloaded to {checkpoint_path}")
return checkpoint_path
except Exception as e:
logger.error(f"Failed to download model: {e}")
return None
def load_model(camera_model: str = DEFAULT_MODEL, use_xformers: bool = False):
"""Load model with automatic download from HuggingFace."""
cache_key = f"{camera_model}_{use_xformers}"
if cache_key not in MODELS:
# All HF models use vitl encoder
config = {
"encoder": "vitl",
"features": 256,
"out_channels": [256, 512, 1024, 1024],
"use_xformers": use_xformers,
}
model = RGBDDepth(**config)
# Try to load weights
checkpoint_path = None
# 1. Try local checkpoints/ directory first
local_path = Path(f"checkpoints/{camera_model}.pt")
if local_path.exists():
checkpoint_path = str(local_path)
logger.info(f"Using local checkpoint: {checkpoint_path}")
else:
# 2. Download from HuggingFace
checkpoint_path = download_model(camera_model)
# Load checkpoint if available
if checkpoint_path:
try:
checkpoint = torch.load(checkpoint_path, map_location="cpu")
if "model" in checkpoint:
states = {k[7:]: v for k, v in checkpoint["model"].items()}
elif "state_dict" in checkpoint:
states = {k[9:]: v for k, v in checkpoint["state_dict"].items()}
else:
states = checkpoint
model.load_state_dict(states, strict=False)
logger.info(f"Loaded checkpoint for {camera_model}")
except Exception as e:
logger.warning(f"Failed to load checkpoint: {e}, using random weights")
else:
logger.warning(
f"No checkpoint available for {camera_model}, using random weights (demo only)"
)
# Move to GPU if available (CUDA or MPS for macOS)
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
model = model.to(device).eval()
MODELS[cache_key] = model
return MODELS[cache_key]
def process_depth(
rgb_image: np.ndarray,
depth_image: np.ndarray,
camera_model: str = DEFAULT_MODEL,
input_size: int = 518,
depth_scale: float = 1000.0,
max_depth: float = 25.0,
use_xformers: bool = False,
precision: str = "fp32",
colormap: str = "Spectral",
) -> tuple[Image.Image, str]:
"""Process RGB-D depth refinement.
Args:
rgb_image: RGB image as numpy array [H, W, 3]
depth_image: Depth image as numpy array [H, W] or [H, W, 3]
camera_model: Camera model to use (d435, d405, l515, zed2i)
input_size: Input size for inference
depth_scale: Scale factor for depth values
max_depth: Maximum valid depth value
use_xformers: Whether to use xFormers (CUDA only)
precision: Precision mode (fp32/fp16/bf16)
colormap: Matplotlib colormap for visualization
Returns:
Tuple of (refined depth image, info message)
"""
try:
# Validate inputs
if rgb_image is None:
return None, "β Please upload an RGB image"
if depth_image is None:
return None, "β Please upload a depth image"
# Convert depth to single channel if needed
if depth_image.ndim == 3:
depth_image = depth_image[:, :, 0]
# Normalize depth
depth_normalized = depth_image.astype(np.float32) / depth_scale
depth_normalized[depth_normalized > max_depth] = 0.0
# Create inverse depth (similarity depth)
simi_depth = np.zeros_like(depth_normalized)
valid_mask = depth_normalized > 0
simi_depth[valid_mask] = 1.0 / depth_normalized[valid_mask]
# Load model
model = load_model(camera_model, use_xformers and torch.cuda.is_available())
device = next(model.parameters()).device
# Determine precision
if precision == "fp16" and device.type in ["cuda", "mps"]:
dtype = torch.float16
elif precision == "bf16" and device.type == "cuda":
dtype = torch.bfloat16
else:
dtype = None # FP32
# Log input statistics
logger.debug(f"depth_image raw: min={depth_image.min():.1f}, max={depth_image.max():.1f}")
logger.debug(
f"depth_normalized: min={depth_normalized[depth_normalized>0].min():.4f}, max={depth_normalized.max():.4f}"
)
logger.debug(
f"simi_depth: min={simi_depth[simi_depth>0].min():.4f}, max={simi_depth.max():.4f}"
)
# Run inference
if dtype is not None:
device_type = "cuda" if device.type == "cuda" else "cpu"
with torch.amp.autocast(device_type=device_type, dtype=dtype):
pred = model.infer_image(rgb_image, simi_depth, input_size=input_size)
else:
pred = model.infer_image(rgb_image, simi_depth, input_size=input_size)
# Log prediction statistics
logger.debug(f"pred (inverse depth): min={pred[pred>0].min():.4f}, max={pred.max():.4f}")
# Convert from inverse depth to depth
pred = np.where(pred > 1e-8, 1.0 / pred, 0.0)
# Log final depth statistics
logger.debug(f"pred (depth): min={pred[pred>0].min():.4f}, max={pred.max():.4f}")
# Colorize for visualization
try:
import matplotlib
import matplotlib.pyplot as plt
# Normalize to [0, 1]
pred_min, pred_max = pred.min(), pred.max()
if pred_max - pred_min > 1e-8:
pred_norm = (pred - pred_min) / (pred_max - pred_min)
else:
pred_norm = np.zeros_like(pred)
# Apply colormap
cm_func = matplotlib.colormaps[colormap]
pred_colored = cm_func(pred_norm, bytes=True)[:, :, :3] # RGB only
# Create PIL Image
output_image = Image.fromarray(pred_colored)
except ImportError:
# Fallback to grayscale if matplotlib not available
pred_norm = ((pred - pred.min()) / (pred.max() - pred.min() + 1e-8) * 255).astype(
np.uint8
)
output_image = Image.fromarray(pred_norm, mode="L").convert("RGB")
# Create info message
info = f"""
β
**Refinement complete!**
**Camera Model:** {camera_model.upper()}
**Precision:** {precision.upper()}
**Device:** {device.type.upper()}
**Input size:** {input_size}px
**Depth range:** {pred_min:.3f}m - {pred_max:.3f}m
**xFormers:** {'β Enabled' if use_xformers and torch.cuda.is_available() else 'β Disabled'}
"""
return output_image, info.strip()
except Exception as e:
return None, f"β Error: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="rgbd-depth Demo") as demo:
gr.Markdown(
"""
# π¨ rgbd-depth: RGB-D Depth Refinement
High-quality depth map refinement using Vision Transformers. Based on [ByteDance's camera-depth-models](https://manipulation-as-in-simulation.github.io/).
π₯ **Models are automatically downloaded from Hugging Face on first use!**
Choose your camera model (D435, D405, L515, or ZED 2i) and the trained weights will be downloaded automatically.
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("### π₯ Inputs")
rgb_input = gr.Image(
label="RGB Image",
type="numpy",
height=300,
)
depth_input = gr.Image(
label="Input Depth Map",
type="numpy",
height=300,
)
with gr.Accordion("βοΈ Advanced Settings", open=False):
camera_choice = gr.Dropdown(
choices=["d435", "d405", "l515", "zed2i"],
value=DEFAULT_MODEL,
label="Camera Model",
info="Choose the camera model for trained weights (auto-downloads from HF)",
)
input_size = gr.Slider(
minimum=256,
maximum=1024,
value=518,
step=2,
label="Input Size",
info="Resolution for processing (higher = better but slower)",
)
depth_scale = gr.Number(
value=1000.0,
label="Depth Scale",
info="Scale factor to convert depth values to meters",
)
max_depth = gr.Number(
value=25.0,
label="Max Depth (m)",
info="Maximum valid depth value",
)
precision_choice = gr.Radio(
choices=["fp32", "fp16", "bf16"],
value="fp32",
label="Precision",
info="fp16/bf16 = faster but slightly less accurate (CUDA only)",
)
use_xformers = gr.Checkbox(
value=False, # Set to True to test xFormers by default
label="Use xFormers (CUDA only)",
info="~8% faster on CUDA with xFormers installed",
)
colormap_choice = gr.Dropdown(
choices=["Spectral", "viridis", "plasma", "inferno", "magma", "turbo"],
value="Spectral",
label="Colormap",
info="Visualization colormap",
)
process_btn = gr.Button("π Refine Depth", variant="primary", size="lg")
with gr.Column():
gr.Markdown("### π€ Output")
output_image = gr.Image(
label="Refined Depth Map",
type="pil",
height=600,
)
output_info = gr.Markdown()
# Example inputs
gr.Markdown("### πΈ Examples")
gr.Examples(
examples=[
["example_data/color_12.png", "example_data/depth_12.png"],
],
inputs=[rgb_input, depth_input],
label="Try with example images",
)
# Process button click
process_btn.click(
fn=process_depth,
inputs=[
rgb_input,
depth_input,
camera_choice,
input_size,
depth_scale,
max_depth,
use_xformers,
precision_choice,
colormap_choice,
],
outputs=[output_image, output_info],
)
# Footer
gr.Markdown(
"""
---
### π Links
- **GitHub:** [Aedelon/camera-depth-models](https://github.com/Aedelon/camera-depth-models)
- **PyPI:** [rgbd-depth](https://pypi.org/project/rgbd-depth/)
- **Paper:** [Manipulation-as-in-Simulation](https://manipulation-as-in-simulation.github.io/)
### π¦ Install
```bash
pip install rgbd-depth
```
### π» CLI Usage
```bash
rgbd-depth \\
--model-path model.pt \\
--rgb-image input.jpg \\
--depth-image depth.png \\
--output refined.png
```
---
Built with β€οΈ by [Aedelon](https://github.com/Aedelon) | Powered by [Gradio](https://gradio.app)
"""
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", share=True)
|