|
|
import subprocess |
|
|
|
|
|
subprocess.run(['sh', './spaces.sh']) |
|
|
import spaces |
|
|
|
|
|
@spaces.GPU(required=True) |
|
|
def install_dependencies(): |
|
|
subprocess.run(['sh', './flashattn.sh']) |
|
|
|
|
|
install_dependencies() |
|
|
|
|
|
import os |
|
|
|
|
|
os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1' |
|
|
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1' |
|
|
os.environ['PYTORCH_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True' |
|
|
os.environ["SAFETENSORS_FAST_GPU"] = "1" |
|
|
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1' |
|
|
|
|
|
import torch |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
torch.backends.cudnn.allow_tf32 = False |
|
|
|
|
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False |
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.backends.cudnn.deterministic = False |
|
|
torch.backends.cudnn.benchmark = False |
|
|
torch.backends.cuda.preferred_blas_library="cublas" |
|
|
torch.backends.cuda.preferred_linalg_library="cusolver" |
|
|
torch.set_float32_matmul_precision("highest") |
|
|
import json |
|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import random |
|
|
import datetime |
|
|
import threading |
|
|
import io |
|
|
from PIL import Image |
|
|
import imageio.v3 as iio |
|
|
|
|
|
import pillow_avif |
|
|
import cv2 |
|
|
from google.oauth2 import service_account |
|
|
from google.cloud import storage |
|
|
|
|
|
import torch |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False |
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False |
|
|
torch.backends.cudnn.allow_tf32 = False |
|
|
torch.backends.cudnn.deterministic = False |
|
|
torch.backends.cudnn.benchmark = False |
|
|
torch.backends.cuda.preferred_blas_library="cublas" |
|
|
torch.backends.cuda.preferred_linalg_library="cusolver" |
|
|
torch.set_float32_matmul_precision("highest") |
|
|
|
|
|
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL |
|
|
from image_gen_aux import UpscaleWithModel |
|
|
|
|
|
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") |
|
|
GCS_SA_KEY = os.getenv("GCS_SA_KEY") |
|
|
gcs_client = None |
|
|
|
|
|
print(GCS_BUCKET_NAME) |
|
|
|
|
|
if GCS_SA_KEY: |
|
|
print('Got key length: ',len(GCS_SA_KEY)) |
|
|
|
|
|
if GCS_SA_KEY and GCS_BUCKET_NAME: |
|
|
try: |
|
|
credentials_info = json.loads(GCS_SA_KEY) |
|
|
credentials = service_account.Credentials.from_service_account_info(credentials_info) |
|
|
gcs_client = storage.Client(credentials=credentials) |
|
|
print("✅ GCS Client initialized successfully.") |
|
|
except Exception as e: |
|
|
print(f"❌ Failed to initialize GCS client: {e}") |
|
|
|
|
|
def upload_to_gcs(image_bytes, filename, content_type): |
|
|
if not gcs_client: |
|
|
print("⚠️ GCS client not initialized. Skipping upload.") |
|
|
return |
|
|
if image_bytes is None: |
|
|
print(f"⚠️ No image bytes for {filename}. Skipping upload.") |
|
|
return |
|
|
try: |
|
|
print(f"--> Starting GCS upload for {filename}...") |
|
|
bucket = gcs_client.bucket(GCS_BUCKET_NAME) |
|
|
blob = bucket.blob(f"stablediff/{filename}") |
|
|
|
|
|
|
|
|
blob.upload_from_string(image_bytes, content_type=content_type) |
|
|
print(f"✅ Successfully uploaded {filename} to GCS.") |
|
|
except Exception as e: |
|
|
print(f"❌ An error occurred during GCS upload: {e}") |
|
|
|
|
|
def srgb_to_linear_tensor(img_tensor_srgb): |
|
|
"""Converts a PyTorch sRGB tensor [0, 1] to a linear tensor.""" |
|
|
|
|
|
linear_mask = (img_tensor_srgb <= 0.04045).float() |
|
|
non_linear_mask = (img_tensor_srgb > 0.04045).float() |
|
|
|
|
|
linear_part = img_tensor_srgb / 12.92 |
|
|
non_linear_part = torch.pow((img_tensor_srgb + 0.055) / 1.055, 2.4) |
|
|
|
|
|
img_linear = (linear_part * linear_mask) + (non_linear_part * non_linear_mask) |
|
|
return img_linear |
|
|
|
|
|
def linear_to_srgb_tensor(img_tensor_linear): |
|
|
"""Converts a PyTorch linear tensor [0, 1] to sRGB.""" |
|
|
|
|
|
img_tensor_linear = img_tensor_linear.clamp(min=0.0) |
|
|
srgb_mask = (img_tensor_linear <= 0.0031308).float() |
|
|
non_srgb_mask = (img_tensor_linear > 0.0031308).float() |
|
|
srgb_part = img_tensor_linear * 12.92 |
|
|
non_srgb_part = 1.055 * torch.pow(img_tensor_linear, 1.0/2.4) - 0.055 |
|
|
img_srgb = (srgb_part * srgb_mask) + (non_srgb_part * non_srgb_mask) |
|
|
return img_srgb.clamp(0.0, 1.0) |
|
|
|
|
|
def srgb_to_linear(tensor_srgb): |
|
|
"""Converts a batched sRGB PyTorch tensor [0, 1] to a linear tensor.""" |
|
|
return torch.where( |
|
|
tensor_srgb <= 0.04045, |
|
|
tensor_srgb / 12.92, |
|
|
((tensor_srgb + 0.055) / 1.055).pow(2.4) |
|
|
) |
|
|
|
|
|
def create_hdr_avif_bytes(image_tensor_fp32): |
|
|
""" |
|
|
Converts a float32 sRGB tensor [-1, 1] to 10-bit HDR AVIF bytes. |
|
|
""" |
|
|
if image_tensor_fp32 is None: |
|
|
return None |
|
|
|
|
|
try: |
|
|
|
|
|
srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1) |
|
|
linear_tensor = srgb_to_linear_tensor(srgb_tensor_0_1) |
|
|
|
|
|
|
|
|
|
|
|
linear_tensor_16bit = (linear_tensor.clamp(0, 1) * 65535.0).round() |
|
|
hdr_16bit_array = linear_tensor_16bit.to(torch.uint16).cpu().permute(0, 2, 3, 1).numpy()[0] |
|
|
|
|
|
|
|
|
return iio.imwrite( |
|
|
"<bytes>", |
|
|
hdr_16bit_array, |
|
|
format_hint=".avif", |
|
|
codec="av1", |
|
|
out_pixelformat="yuv444p10le" |
|
|
) |
|
|
except Exception as e: |
|
|
print(f"❌ Failed to encode HDR AVIF: {e}") |
|
|
return None |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
|
from kernels import get_kernel |
|
|
fa3_kernel = get_kernel("kernels-community/flash-attn3") |
|
|
class FlashAttentionProcessor(AttnProcessor2_0): |
|
|
def __call__( |
|
|
self, |
|
|
attn, |
|
|
hidden_states, |
|
|
encoder_hidden_states=None, |
|
|
attention_mask=None, |
|
|
temb=None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None and encoder_hidden_states.shape[1] != hidden_states.shape[1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
|
if is_cross_attention: |
|
|
key = attn.to_k(encoder_hidden_states) |
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
else: |
|
|
key = attn.to_k(hidden_states) |
|
|
value = attn.to_v(hidden_states) |
|
|
scale = attn.scale |
|
|
query = query * scale |
|
|
b, t, c = query.shape |
|
|
h = attn.heads |
|
|
d = c // h |
|
|
|
|
|
q_reshaped = query.reshape(b, t, h, d).permute(0, 2, 1, 3) |
|
|
k_reshaped = key.reshape(b, t, h, d).permute(0, 2, 1, 3) |
|
|
v_reshaped = value.reshape(b, t, h, d).permute(0, 2, 1, 3) |
|
|
out_reshaped = torch.empty_like(q_reshaped) |
|
|
|
|
|
fa3_kernel.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped) |
|
|
|
|
|
out = out_reshaped.permute(0, 2, 1, 3).reshape(b, t, c) |
|
|
out = attn.to_out(out) |
|
|
return out |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
|
def compile_transformer(): |
|
|
with spaces.aoti_capture(pipe.transformer) as call: |
|
|
pipe("A majestic, ancient Egyptian Sphinx stands sentinel in a large, clear pool under a bright, golden desert sun. Around its weathered stone base, several sleek, playful dolphins gracefully navigate the turquoise waters. The surrounding environment features lush, exotic papyrus plants and distant pyramids under a cloudless sky, conveying a sense of timeless wonder and serene majesty.") |
|
|
exported = torch.export.export( |
|
|
pipe.transformer, |
|
|
args=call.args, |
|
|
kwargs=call.kwargs, |
|
|
) |
|
|
return spaces.aoti_compile(exported) |
|
|
|
|
|
def load_model(): |
|
|
vae = AutoencoderKL.from_pretrained( |
|
|
"ford442/stable-diffusion-3.5-large-bf16", |
|
|
subfolder="vae", |
|
|
torch_dtype=torch.float32 |
|
|
) |
|
|
pipe = StableDiffusion3Pipeline.from_pretrained( |
|
|
"ford442/stable-diffusion-3.5-large-bf16", |
|
|
trust_remote_code=True, |
|
|
transformer=None, |
|
|
use_safetensors=True, |
|
|
|
|
|
) |
|
|
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(device, dtype=torch.bfloat16) |
|
|
pipe.transformer=ll_transformer |
|
|
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors") |
|
|
pipe.to(device=device, dtype=torch.bfloat16) |
|
|
pipe.vae=vae.to(device=device) |
|
|
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device) |
|
|
return pipe, upscaler_2 |
|
|
|
|
|
pipe, upscaler_2 = load_model() |
|
|
|
|
|
fa_processor = FlashAttentionProcessor() |
|
|
|
|
|
for name, module in pipe.transformer.named_modules(): |
|
|
if isinstance(module, AttnProcessor2_0): |
|
|
module.processor = fa_processor |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
MAX_IMAGE_SIZE = 4096 |
|
|
|
|
|
@spaces.GPU(duration=45) |
|
|
def generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)): |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
print('-- generating image --') |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
sd_image = pipe( |
|
|
prompt=prompt, prompt_2=prompt, prompt_3=prompt, |
|
|
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3, |
|
|
guidance_scale=guidance, num_inference_steps=steps, |
|
|
width=width, height=height, generator=generator, |
|
|
max_sequence_length=384, |
|
|
output_type="latent" |
|
|
).images |
|
|
|
|
|
|
|
|
latents_fp32 = sd_image.to(torch.float32) |
|
|
latents_fp32 = 1 / pipe.vae.config.scaling_factor * latents_fp32 |
|
|
with torch.no_grad(): |
|
|
|
|
|
image_tensor_fp32 = pipe.vae.decode(latents_fp32).sample |
|
|
|
|
|
print('-- got fp32 image tensor --') |
|
|
|
|
|
|
|
|
srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1) |
|
|
srgb_numpy_8bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 255).round().astype("uint8") |
|
|
sd_image_pil_8bit = Image.fromarray(srgb_numpy_8bit) |
|
|
print('-- got 8-bit PIL image for display --') |
|
|
|
|
|
|
|
|
|
|
|
srgb_numpy_16bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 65535.0).round().astype("uint16") |
|
|
sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit) |
|
|
print('-- got 16-bit PIL image for upscaling --') |
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256) |
|
|
upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256) |
|
|
print('-- got 4K 16-bit upscaled PIL image --') |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
upscaled_16bit_numpy = np.array(upscale_2) |
|
|
upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
upscaled_tensor_neg1_1 = (upscaled_srgb_tensor * 2.0 - 1.0).clamp(-1, 1) |
|
|
upscaled_avif_bytes = create_hdr_avif_bytes(upscaled_tensor_neg1_1) |
|
|
print('-- got 4K HDR AVIF bytes for upload --') |
|
|
|
|
|
|
|
|
return sd_image_pil_8bit, upscaled_avif_bytes, prompt |
|
|
|
|
|
@spaces.GPU(duration=70) |
|
|
def generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)): |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
print('-- generating image --') |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
sd_image = pipe( |
|
|
prompt=prompt, prompt_2=prompt, prompt_3=prompt, |
|
|
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3, |
|
|
guidance_scale=guidance, num_inference_steps=steps, |
|
|
width=width, height=height, generator=generator, |
|
|
max_sequence_length=384, |
|
|
output_type="latent" |
|
|
).images |
|
|
|
|
|
|
|
|
latents_fp32 = sd_image.to(torch.float32) |
|
|
latents_fp32 = 1 / pipe.vae.config.scaling_factor * latents_fp32 |
|
|
with torch.no_grad(): |
|
|
|
|
|
image_tensor_fp32 = pipe.vae.decode(latents_fp32).sample |
|
|
|
|
|
print('-- got fp32 image tensor --') |
|
|
|
|
|
|
|
|
srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1) |
|
|
srgb_numpy_8bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 255).round().astype("uint8") |
|
|
sd_image_pil_8bit = Image.fromarray(srgb_numpy_8bit) |
|
|
print('-- got 8-bit PIL image for display --') |
|
|
|
|
|
|
|
|
|
|
|
srgb_numpy_16bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 65535.0).round().astype("uint16") |
|
|
sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit, mode='RGB') |
|
|
print('-- got 16-bit PIL image for upscaling --') |
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256) |
|
|
upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256) |
|
|
print('-- got 4K 16-bit upscaled PIL image --') |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
upscaled_16bit_numpy = np.array(upscale_2) |
|
|
upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
upscaled_tensor_neg1_1 = (upscaled_srgb_tensor * 2.0 - 1.0).clamp(-1, 1) |
|
|
upscaled_avif_bytes = create_hdr_avif_bytes(upscaled_tensor_neg1_1) |
|
|
print('-- got 4K HDR AVIF bytes for upload --') |
|
|
|
|
|
|
|
|
return sd_image_pil_8bit, upscaled_avif_bytes, prompt |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
|
def generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)): |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
print('-- generating image --') |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
sd_image = pipe( |
|
|
prompt=prompt, prompt_2=prompt, prompt_3=prompt, |
|
|
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3, |
|
|
guidance_scale=guidance, num_inference_steps=steps, |
|
|
width=width, height=height, generator=generator, |
|
|
max_sequence_length=384, |
|
|
output_type="latent" |
|
|
).images |
|
|
|
|
|
|
|
|
latents_fp32 = sd_image.to(torch.float32) |
|
|
latents_fp32 = 1 / pipe.vae.config.scaling_factor * latents_fp32 |
|
|
with torch.no_grad(): |
|
|
|
|
|
image_tensor_fp32 = pipe.vae.decode(latents_fp32).sample |
|
|
|
|
|
print('-- got fp32 image tensor --') |
|
|
|
|
|
|
|
|
srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1) |
|
|
srgb_numpy_8bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 255).round().astype("uint8") |
|
|
sd_image_pil_8bit = Image.fromarray(srgb_numpy_8bit) |
|
|
print('-- got 8-bit PIL image for display --') |
|
|
|
|
|
|
|
|
|
|
|
srgb_numpy_16bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 65535.0).round().astype("uint16") |
|
|
sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit, mode='RGB') |
|
|
print('-- got 16-bit PIL image for upscaling --') |
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256) |
|
|
upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256) |
|
|
print('-- got 4K 16-bit upscaled PIL image --') |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
upscaled_16bit_numpy = np.array(upscale_2) |
|
|
upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
upscaled_tensor_neg1_1 = (upscaled_srgb_tensor * 2.0 - 1.0).clamp(-1, 1) |
|
|
upscaled_avif_bytes = create_hdr_avif_bytes(upscaled_tensor_neg1_1) |
|
|
print('-- got 4K HDR AVIF bytes for upload --') |
|
|
|
|
|
|
|
|
return sd_image_pil_8bit, upscaled_avif_bytes, prompt |
|
|
|
|
|
def run_inference_and_upload_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)): |
|
|
|
|
|
|
|
|
sd_image_pil, upscaled_avif_bytes, expanded_prompt = generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress) |
|
|
|
|
|
if save_consent: |
|
|
print("✅ User consented to save. Preparing uploads...") |
|
|
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
|
|
|
|
|
|
|
sd_filename_png = f"sd35ll_{timestamp}.png" |
|
|
sd_filename_avif = f"sd35ll_4K_hdr_{timestamp}.avif" |
|
|
|
|
|
|
|
|
img_byte_arr = io.BytesIO() |
|
|
sd_image_pil.save(img_byte_arr, format='PNG', optimize=False, compress_level=0) |
|
|
sd_png_bytes = img_byte_arr.getvalue() |
|
|
|
|
|
|
|
|
|
|
|
png_thread = threading.Thread(target=upload_to_gcs, args=(sd_png_bytes, sd_filename_png, "image/png")) |
|
|
|
|
|
avif_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_avif_bytes, sd_filename_avif, "image/avif")) |
|
|
|
|
|
png_thread.start() |
|
|
avif_thread.start() |
|
|
else: |
|
|
print("ℹ️ User did not consent to save. Skipping upload.") |
|
|
|
|
|
|
|
|
return sd_image_pil, expanded_prompt |
|
|
|
|
|
def run_inference_and_upload_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)): |
|
|
|
|
|
|
|
|
sd_image_pil, upscaled_avif_bytes, expanded_prompt = generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress) |
|
|
|
|
|
if save_consent: |
|
|
print("✅ User consented to save. Preparing uploads...") |
|
|
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
|
|
|
|
|
|
|
sd_filename_png = f"sd35ll_{timestamp}.png" |
|
|
sd_filename_avif = f"sd35ll_4K_hdr_{timestamp}.avif" |
|
|
|
|
|
|
|
|
img_byte_arr = io.BytesIO() |
|
|
sd_image_pil.save(img_byte_arr, format='PNG', optimize=False, compress_level=0) |
|
|
sd_png_bytes = img_byte_arr.getvalue() |
|
|
|
|
|
|
|
|
|
|
|
png_thread = threading.Thread(target=upload_to_gcs, args=(sd_png_bytes, sd_filename_png, "image/png")) |
|
|
|
|
|
avif_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_avif_bytes, sd_filename_avif, "image/avif")) |
|
|
|
|
|
png_thread.start() |
|
|
avif_thread.start() |
|
|
else: |
|
|
print("ℹ️ User did not consent to save. Skipping upload.") |
|
|
|
|
|
|
|
|
return sd_image_pil, expanded_prompt |
|
|
|
|
|
def run_inference_and_upload_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)): |
|
|
|
|
|
|
|
|
sd_image_pil, upscaled_avif_bytes, expanded_prompt = generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress) |
|
|
|
|
|
if save_consent: |
|
|
print("✅ User consented to save. Preparing uploads...") |
|
|
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
|
|
|
|
|
|
|
sd_filename_png = f"sd35ll_{timestamp}.png" |
|
|
sd_filename_avif = f"sd35ll_4K_hdr_{timestamp}.avif" |
|
|
|
|
|
|
|
|
img_byte_arr = io.BytesIO() |
|
|
sd_image_pil.save(img_byte_arr, format='PNG', optimize=False, compress_level=0) |
|
|
sd_png_bytes = img_byte_arr.getvalue() |
|
|
|
|
|
|
|
|
|
|
|
png_thread = threading.Thread(target=upload_to_gcs, args=(sd_png_bytes, sd_filename_png, "image/png")) |
|
|
|
|
|
avif_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_avif_bytes, sd_filename_avif, "image/avif")) |
|
|
|
|
|
png_thread.start() |
|
|
avif_thread.start() |
|
|
else: |
|
|
print("ℹ️ User did not consent to save. Skipping upload.") |
|
|
|
|
|
|
|
|
return sd_image_pil, expanded_prompt |
|
|
|
|
|
css = """ |
|
|
#col-container {margin: 0 auto;max-width: 640px;} |
|
|
body{background-color: blue;} |
|
|
""" |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo: |
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test") |
|
|
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1) |
|
|
with gr.Row(): |
|
|
prompt = gr.Text( |
|
|
label="Prompt", show_label=False, max_lines=1, |
|
|
placeholder="Enter your prompt", container=False, |
|
|
) |
|
|
run_button_30 = gr.Button("Run30", scale=0, variant="primary") |
|
|
run_button_60 = gr.Button("Run60", scale=0, variant="primary") |
|
|
run_button_110 = gr.Button("Run100", scale=0, variant="primary") |
|
|
result = gr.Image(label="Result", show_label=False, type="pil") |
|
|
save_consent_checkbox = gr.Checkbox( |
|
|
label="✅ Anonymously upload result to a public gallery", |
|
|
value=True, |
|
|
info="Check this box to help us by contributing your image." |
|
|
) |
|
|
with gr.Accordion("Advanced Settings", open=True): |
|
|
negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition") |
|
|
negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)") |
|
|
negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)") |
|
|
with gr.Row(): |
|
|
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) |
|
|
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) |
|
|
with gr.Row(): |
|
|
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2) |
|
|
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60) |
|
|
|
|
|
run_button_30.click( |
|
|
fn=run_inference_and_upload_30, |
|
|
inputs=[ |
|
|
prompt, |
|
|
negative_prompt_1, |
|
|
negative_prompt_2, |
|
|
negative_prompt_3, |
|
|
width, |
|
|
height, |
|
|
guidance_scale, |
|
|
num_inference_steps, |
|
|
save_consent_checkbox |
|
|
], |
|
|
outputs=[result, expanded_prompt_output], |
|
|
) |
|
|
|
|
|
run_button_60.click( |
|
|
fn=run_inference_and_upload_60, |
|
|
inputs=[ |
|
|
prompt, |
|
|
negative_prompt_1, |
|
|
negative_prompt_2, |
|
|
negative_prompt_3, |
|
|
width, |
|
|
height, |
|
|
guidance_scale, |
|
|
num_inference_steps, |
|
|
save_consent_checkbox |
|
|
], |
|
|
outputs=[result, expanded_prompt_output], |
|
|
) |
|
|
|
|
|
run_button_110.click( |
|
|
fn=run_inference_and_upload_110, |
|
|
inputs=[ |
|
|
prompt, |
|
|
negative_prompt_1, |
|
|
negative_prompt_2, |
|
|
negative_prompt_3, |
|
|
width, |
|
|
height, |
|
|
guidance_scale, |
|
|
num_inference_steps, |
|
|
save_consent_checkbox |
|
|
], |
|
|
outputs=[result, expanded_prompt_output], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |