Upload src/attention.py
Browse files- src/attention.py +159 -0
src/attention.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Latent Attention Implementation for nanoKimi
|
| 3 |
+
|
| 4 |
+
This module implements the Latent Attention mechanism used in Kimi-K2,
|
| 5 |
+
which compresses attention representations to reduce memory footprint
|
| 6 |
+
while maintaining performance on long sequences.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
import math
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class LatentAttention(nn.Module):
|
| 16 |
+
"""
|
| 17 |
+
Latent Attention mechanism that compresses attention representations
|
| 18 |
+
|
| 19 |
+
The key idea is to project keys and values into a lower-dimensional
|
| 20 |
+
latent space, reducing memory usage while preserving attention quality.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
n_embd: embedding dimension
|
| 24 |
+
n_head: number of attention heads
|
| 25 |
+
latent_dim: dimension of the latent space
|
| 26 |
+
dropout: dropout probability
|
| 27 |
+
bias: whether to use bias in linear layers
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def __init__(self, n_embd, n_head, latent_dim=64, dropout=0.0, bias=True):
|
| 31 |
+
super().__init__()
|
| 32 |
+
assert n_embd % n_head == 0
|
| 33 |
+
|
| 34 |
+
self.n_embd = n_embd
|
| 35 |
+
self.n_head = n_head
|
| 36 |
+
self.latent_dim = latent_dim
|
| 37 |
+
self.head_dim = n_embd // n_head
|
| 38 |
+
|
| 39 |
+
# Query projection (full dimension)
|
| 40 |
+
self.q_proj = nn.Linear(n_embd, n_embd, bias=bias)
|
| 41 |
+
|
| 42 |
+
# Key and Value projections to latent space
|
| 43 |
+
self.k_proj = nn.Linear(n_embd, n_head * latent_dim, bias=bias)
|
| 44 |
+
self.v_proj = nn.Linear(n_embd, n_head * latent_dim, bias=bias)
|
| 45 |
+
|
| 46 |
+
# Output projection
|
| 47 |
+
self.o_proj = nn.Linear(n_head * latent_dim, n_embd, bias=bias)
|
| 48 |
+
|
| 49 |
+
# Dropout
|
| 50 |
+
self.dropout = nn.Dropout(dropout)
|
| 51 |
+
self.resid_dropout = nn.Dropout(dropout)
|
| 52 |
+
|
| 53 |
+
# Scale factor for attention
|
| 54 |
+
self.scale = 1.0 / math.sqrt(latent_dim)
|
| 55 |
+
|
| 56 |
+
def forward(self, x, mask=None):
|
| 57 |
+
B, T, C = x.size() # batch, sequence length, embedding dim
|
| 58 |
+
|
| 59 |
+
# Project to query, key, value
|
| 60 |
+
q = self.q_proj(x) # (B, T, n_embd)
|
| 61 |
+
k = self.k_proj(x) # (B, T, n_head * latent_dim)
|
| 62 |
+
v = self.v_proj(x) # (B, T, n_head * latent_dim)
|
| 63 |
+
|
| 64 |
+
# Reshape for multi-head attention
|
| 65 |
+
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2) # (B, n_head, T, head_dim)
|
| 66 |
+
k = k.view(B, T, self.n_head, self.latent_dim).transpose(1, 2) # (B, n_head, T, latent_dim)
|
| 67 |
+
v = v.view(B, T, self.n_head, self.latent_dim).transpose(1, 2) # (B, n_head, T, latent_dim)
|
| 68 |
+
|
| 69 |
+
# Compress queries to latent dimension for attention computation
|
| 70 |
+
# We use a learnable compression matrix
|
| 71 |
+
if not hasattr(self, 'q_compress'):
|
| 72 |
+
self.q_compress = nn.Linear(self.head_dim, self.latent_dim, bias=False).to(x.device)
|
| 73 |
+
|
| 74 |
+
q_compressed = self.q_compress(q) # (B, n_head, T, latent_dim)
|
| 75 |
+
|
| 76 |
+
# Compute attention scores in latent space
|
| 77 |
+
att = torch.matmul(q_compressed, k.transpose(-2, -1)) * self.scale # (B, n_head, T, T)
|
| 78 |
+
|
| 79 |
+
# Apply causal mask
|
| 80 |
+
if mask is not None:
|
| 81 |
+
att = att.masked_fill(mask == 0, float('-inf'))
|
| 82 |
+
else:
|
| 83 |
+
# Create causal mask
|
| 84 |
+
causal_mask = torch.tril(torch.ones(T, T, device=x.device)).view(1, 1, T, T)
|
| 85 |
+
att = att.masked_fill(causal_mask == 0, float('-inf'))
|
| 86 |
+
|
| 87 |
+
# Apply softmax
|
| 88 |
+
att = F.softmax(att, dim=-1)
|
| 89 |
+
att = self.dropout(att)
|
| 90 |
+
|
| 91 |
+
# Apply attention to values
|
| 92 |
+
y = torch.matmul(att, v) # (B, n_head, T, latent_dim)
|
| 93 |
+
|
| 94 |
+
# Reshape and project back
|
| 95 |
+
y = y.transpose(1, 2).contiguous().view(B, T, self.n_head * self.latent_dim)
|
| 96 |
+
y = self.o_proj(y)
|
| 97 |
+
y = self.resid_dropout(y)
|
| 98 |
+
|
| 99 |
+
return y
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class MultiHeadAttention(nn.Module):
|
| 103 |
+
"""
|
| 104 |
+
Standard multi-head attention for comparison
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
def __init__(self, n_embd, n_head, dropout=0.0, bias=True):
|
| 108 |
+
super().__init__()
|
| 109 |
+
assert n_embd % n_head == 0
|
| 110 |
+
|
| 111 |
+
self.n_embd = n_embd
|
| 112 |
+
self.n_head = n_head
|
| 113 |
+
self.head_dim = n_embd // n_head
|
| 114 |
+
|
| 115 |
+
# QKV projection
|
| 116 |
+
self.qkv_proj = nn.Linear(n_embd, 3 * n_embd, bias=bias)
|
| 117 |
+
|
| 118 |
+
# Output projection
|
| 119 |
+
self.o_proj = nn.Linear(n_embd, n_embd, bias=bias)
|
| 120 |
+
|
| 121 |
+
# Dropout
|
| 122 |
+
self.dropout = nn.Dropout(dropout)
|
| 123 |
+
self.resid_dropout = nn.Dropout(dropout)
|
| 124 |
+
|
| 125 |
+
# Scale factor
|
| 126 |
+
self.scale = 1.0 / math.sqrt(self.head_dim)
|
| 127 |
+
|
| 128 |
+
def forward(self, x, mask=None):
|
| 129 |
+
B, T, C = x.size()
|
| 130 |
+
|
| 131 |
+
# Compute QKV
|
| 132 |
+
qkv = self.qkv_proj(x)
|
| 133 |
+
q, k, v = qkv.chunk(3, dim=-1)
|
| 134 |
+
|
| 135 |
+
# Reshape for multi-head attention
|
| 136 |
+
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
| 137 |
+
k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
| 138 |
+
v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
| 139 |
+
|
| 140 |
+
# Compute attention
|
| 141 |
+
att = torch.matmul(q, k.transpose(-2, -1)) * self.scale
|
| 142 |
+
|
| 143 |
+
# Apply causal mask
|
| 144 |
+
if mask is not None:
|
| 145 |
+
att = att.masked_fill(mask == 0, float('-inf'))
|
| 146 |
+
else:
|
| 147 |
+
causal_mask = torch.tril(torch.ones(T, T, device=x.device)).view(1, 1, T, T)
|
| 148 |
+
att = att.masked_fill(causal_mask == 0, float('-inf'))
|
| 149 |
+
|
| 150 |
+
att = F.softmax(att, dim=-1)
|
| 151 |
+
att = self.dropout(att)
|
| 152 |
+
|
| 153 |
+
# Apply attention to values
|
| 154 |
+
y = torch.matmul(att, v)
|
| 155 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 156 |
+
y = self.o_proj(y)
|
| 157 |
+
y = self.resid_dropout(y)
|
| 158 |
+
|
| 159 |
+
return y
|