upload
Browse files- 1_Pooling/config.json +7 -0
- 2_Dense/config.json +1 -0
- 2_Dense/pytorch_model.bin +3 -0
- README.md +51 -0
- config.json +57 -0
- config_sentence_transformers.json +7 -0
- convert.ipynb +981 -0
- convert_to_fp16.py +9 -0
- modules.json +26 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
| 7 |
+
}
|
2_Dense/config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"in_features": 768, "out_features": 768, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
2_Dense/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9319f42e32d06c3e599b0d0d2aeb23bdeacfe71d019238d86d6413a778be8c1d
|
| 3 |
+
size 2360171
|
README.md
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: sentence-similarity
|
| 3 |
+
language: en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- feature-extraction
|
| 8 |
+
- sentence-similarity
|
| 9 |
+
- transformers
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# sentence-transformers/sentence-t5-base
|
| 13 |
+
|
| 14 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model works well for sentence similarity tasks, but doesn't perform that well for semantic search tasks.
|
| 15 |
+
|
| 16 |
+
This model was converted from the Tensorflow model [st5-base-1](https://tfhub.dev/google/sentence-t5/st5-base/1) to PyTorch. When using this model, have a look at the publication: [Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877). The tfhub model and this PyTorch model can produce slightly different embeddings, however, when run on the same benchmarks, they produce identical results.
|
| 17 |
+
|
| 18 |
+
The model uses only the encoder from a T5-base model. The weights are stored in FP16.
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## Usage (Sentence-Transformers)
|
| 22 |
+
|
| 23 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 24 |
+
|
| 25 |
+
```
|
| 26 |
+
pip install -U sentence-transformers
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
Then you can use the model like this:
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
from sentence_transformers import SentenceTransformer
|
| 33 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 34 |
+
|
| 35 |
+
model = SentenceTransformer('sentence-transformers/sentence-t5-base')
|
| 36 |
+
embeddings = model.encode(sentences)
|
| 37 |
+
print(embeddings)
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
The model requires sentence-transformers version 2.2.0 or newer.
|
| 41 |
+
|
| 42 |
+
## Evaluation Results
|
| 43 |
+
|
| 44 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/sentence-t5-base)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
## Citing & Authors
|
| 49 |
+
|
| 50 |
+
If you find this model helpful, please cite the respective publication:
|
| 51 |
+
[Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models](https://arxiv.org/abs/2108.08877)
|
config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "models/sentence-t5-base",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"T5EncoderModel"
|
| 5 |
+
],
|
| 6 |
+
"d_ff": 3072,
|
| 7 |
+
"d_kv": 64,
|
| 8 |
+
"d_model": 768,
|
| 9 |
+
"decoder_start_token_id": 0,
|
| 10 |
+
"dropout_rate": 0.1,
|
| 11 |
+
"eos_token_id": 1,
|
| 12 |
+
"feed_forward_proj": "relu",
|
| 13 |
+
"initializer_factor": 1.0,
|
| 14 |
+
"is_encoder_decoder": true,
|
| 15 |
+
"layer_norm_epsilon": 1e-06,
|
| 16 |
+
"model_type": "t5",
|
| 17 |
+
"n_positions": 512,
|
| 18 |
+
"num_decoder_layers": 12,
|
| 19 |
+
"num_heads": 12,
|
| 20 |
+
"num_layers": 12,
|
| 21 |
+
"output_past": true,
|
| 22 |
+
"pad_token_id": 0,
|
| 23 |
+
"relative_attention_num_buckets": 32,
|
| 24 |
+
"task_specific_params": {
|
| 25 |
+
"summarization": {
|
| 26 |
+
"early_stopping": true,
|
| 27 |
+
"length_penalty": 2.0,
|
| 28 |
+
"max_length": 200,
|
| 29 |
+
"min_length": 30,
|
| 30 |
+
"no_repeat_ngram_size": 3,
|
| 31 |
+
"num_beams": 4,
|
| 32 |
+
"prefix": "summarize: "
|
| 33 |
+
},
|
| 34 |
+
"translation_en_to_de": {
|
| 35 |
+
"early_stopping": true,
|
| 36 |
+
"max_length": 300,
|
| 37 |
+
"num_beams": 4,
|
| 38 |
+
"prefix": "translate English to German: "
|
| 39 |
+
},
|
| 40 |
+
"translation_en_to_fr": {
|
| 41 |
+
"early_stopping": true,
|
| 42 |
+
"max_length": 300,
|
| 43 |
+
"num_beams": 4,
|
| 44 |
+
"prefix": "translate English to French: "
|
| 45 |
+
},
|
| 46 |
+
"translation_en_to_ro": {
|
| 47 |
+
"early_stopping": true,
|
| 48 |
+
"max_length": 300,
|
| 49 |
+
"num_beams": 4,
|
| 50 |
+
"prefix": "translate English to Romanian: "
|
| 51 |
+
}
|
| 52 |
+
},
|
| 53 |
+
"torch_dtype": "float16",
|
| 54 |
+
"transformers_version": "4.11.3",
|
| 55 |
+
"use_cache": true,
|
| 56 |
+
"vocab_size": 32128
|
| 57 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.2.0",
|
| 4 |
+
"transformers": "4.7.0",
|
| 5 |
+
"pytorch": "1.9.0+cu102"
|
| 6 |
+
}
|
| 7 |
+
}
|
convert.ipynb
ADDED
|
@@ -0,0 +1,981 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"id": "17bffc12",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from transformers import AutoTokenizer\n",
|
| 11 |
+
"from sentence_transformers import util\n",
|
| 12 |
+
"import os\n",
|
| 13 |
+
"import numpy as np\n",
|
| 14 |
+
"import torch.nn.functional as F\n",
|
| 15 |
+
"from transformers import T5EncoderModel\n",
|
| 16 |
+
"import torch"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": 3,
|
| 22 |
+
"id": "160d8ce6",
|
| 23 |
+
"metadata": {},
|
| 24 |
+
"outputs": [],
|
| 25 |
+
"source": [
|
| 26 |
+
"#Mean Pooling - Take attention mask into account for correct averaging\n",
|
| 27 |
+
"def mean_pooling(model_output, attention_mask):\n",
|
| 28 |
+
" token_embeddings = model_output[0] #First element of model_output contains all token embeddings\n",
|
| 29 |
+
" input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()\n",
|
| 30 |
+
" return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)\n"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": 16,
|
| 36 |
+
"id": "2f67f426",
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"outputs": [
|
| 39 |
+
{
|
| 40 |
+
"name": "stderr",
|
| 41 |
+
"output_type": "stream",
|
| 42 |
+
"text": [
|
| 43 |
+
"WARNING:absl:Importing a function (__inference_<lambda>_9720) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.\n",
|
| 44 |
+
"WARNING:absl:Importing a function (__inference_<lambda>_3354) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.\n",
|
| 45 |
+
"WARNING:absl:Importing a function (__inference_<lambda>_6722) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.\n"
|
| 46 |
+
]
|
| 47 |
+
}
|
| 48 |
+
],
|
| 49 |
+
"source": [
|
| 50 |
+
"import tensorflow as tf\n",
|
| 51 |
+
"import tensorflow_hub as hub\n",
|
| 52 |
+
"import tensorflow_text as text \n",
|
| 53 |
+
"\n",
|
| 54 |
+
"model_size = \"base\"\n",
|
| 55 |
+
"hub_url = f\"https://tfhub.dev/google/sentence-t5/st5-{model_size}/1\"\n",
|
| 56 |
+
"encoder = hub.load(hub_url)\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"v = encoder.signatures['serving_default'].variables"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": 17,
|
| 64 |
+
"id": "5f4c8d94",
|
| 65 |
+
"metadata": {
|
| 66 |
+
"scrolled": true
|
| 67 |
+
},
|
| 68 |
+
"outputs": [
|
| 69 |
+
{
|
| 70 |
+
"data": {
|
| 71 |
+
"text/plain": [
|
| 72 |
+
"{'encoder__encoder_norm__scale:0': TensorShape([768]),\n",
|
| 73 |
+
" 'encoder__layers_0__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 74 |
+
" 'encoder__layers_0__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 75 |
+
" 'encoder__layers_0__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 76 |
+
" 'encoder__layers_0__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 77 |
+
" 'encoder__layers_0__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 78 |
+
" 'encoder__layers_0__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 79 |
+
" 'encoder__layers_0__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 80 |
+
" 'encoder__layers_0__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 81 |
+
" 'encoder__layers_1__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 82 |
+
" 'encoder__layers_1__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 83 |
+
" 'encoder__layers_1__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 84 |
+
" 'encoder__layers_1__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 85 |
+
" 'encoder__layers_1__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 86 |
+
" 'encoder__layers_1__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 87 |
+
" 'encoder__layers_1__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 88 |
+
" 'encoder__layers_1__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 89 |
+
" 'encoder__layers_10__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 90 |
+
" 'encoder__layers_10__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 91 |
+
" 'encoder__layers_10__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 92 |
+
" 'encoder__layers_10__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 93 |
+
" 'encoder__layers_10__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 94 |
+
" 'encoder__layers_10__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 95 |
+
" 'encoder__layers_10__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 96 |
+
" 'encoder__layers_10__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 97 |
+
" 'encoder__layers_11__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 98 |
+
" 'encoder__layers_11__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 99 |
+
" 'encoder__layers_11__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 100 |
+
" 'encoder__layers_11__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 101 |
+
" 'encoder__layers_11__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 102 |
+
" 'encoder__layers_11__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 103 |
+
" 'encoder__layers_11__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 104 |
+
" 'encoder__layers_11__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 105 |
+
" 'encoder__layers_2__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 106 |
+
" 'encoder__layers_2__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 107 |
+
" 'encoder__layers_2__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 108 |
+
" 'encoder__layers_2__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 109 |
+
" 'encoder__layers_2__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 110 |
+
" 'encoder__layers_2__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 111 |
+
" 'encoder__layers_2__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 112 |
+
" 'encoder__layers_2__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 113 |
+
" 'encoder__layers_3__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 114 |
+
" 'encoder__layers_3__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 115 |
+
" 'encoder__layers_3__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 116 |
+
" 'encoder__layers_3__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 117 |
+
" 'encoder__layers_3__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 118 |
+
" 'encoder__layers_3__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 119 |
+
" 'encoder__layers_3__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 120 |
+
" 'encoder__layers_3__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 121 |
+
" 'encoder__layers_4__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 122 |
+
" 'encoder__layers_4__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 123 |
+
" 'encoder__layers_4__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 124 |
+
" 'encoder__layers_4__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 125 |
+
" 'encoder__layers_4__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 126 |
+
" 'encoder__layers_4__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 127 |
+
" 'encoder__layers_4__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 128 |
+
" 'encoder__layers_4__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 129 |
+
" 'encoder__layers_5__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 130 |
+
" 'encoder__layers_5__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 131 |
+
" 'encoder__layers_5__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 132 |
+
" 'encoder__layers_5__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 133 |
+
" 'encoder__layers_5__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 134 |
+
" 'encoder__layers_5__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 135 |
+
" 'encoder__layers_5__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 136 |
+
" 'encoder__layers_5__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 137 |
+
" 'encoder__layers_6__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 138 |
+
" 'encoder__layers_6__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 139 |
+
" 'encoder__layers_6__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 140 |
+
" 'encoder__layers_6__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 141 |
+
" 'encoder__layers_6__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 142 |
+
" 'encoder__layers_6__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 143 |
+
" 'encoder__layers_6__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 144 |
+
" 'encoder__layers_6__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 145 |
+
" 'encoder__layers_7__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 146 |
+
" 'encoder__layers_7__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 147 |
+
" 'encoder__layers_7__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 148 |
+
" 'encoder__layers_7__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 149 |
+
" 'encoder__layers_7__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 150 |
+
" 'encoder__layers_7__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 151 |
+
" 'encoder__layers_7__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 152 |
+
" 'encoder__layers_7__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 153 |
+
" 'encoder__layers_8__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 154 |
+
" 'encoder__layers_8__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 155 |
+
" 'encoder__layers_8__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 156 |
+
" 'encoder__layers_8__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 157 |
+
" 'encoder__layers_8__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 158 |
+
" 'encoder__layers_8__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 159 |
+
" 'encoder__layers_8__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 160 |
+
" 'encoder__layers_8__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 161 |
+
" 'encoder__layers_9__attention__key__kernel:0': TensorShape([768, 768]),\n",
|
| 162 |
+
" 'encoder__layers_9__attention__out__kernel:0': TensorShape([768, 768]),\n",
|
| 163 |
+
" 'encoder__layers_9__attention__query__kernel:0': TensorShape([768, 768]),\n",
|
| 164 |
+
" 'encoder__layers_9__attention__value__kernel:0': TensorShape([768, 768]),\n",
|
| 165 |
+
" 'encoder__layers_9__mlp__wi__kernel:0': TensorShape([768, 3072]),\n",
|
| 166 |
+
" 'encoder__layers_9__mlp__wo__kernel:0': TensorShape([3072, 768]),\n",
|
| 167 |
+
" 'encoder__layers_9__pre_attention_layer_norm__scale:0': TensorShape([768]),\n",
|
| 168 |
+
" 'encoder__layers_9__pre_mlp_layer_norm__scale:0': TensorShape([768]),\n",
|
| 169 |
+
" 'encoder__relpos_bias__rel_embedding:0': TensorShape([12, 32]),\n",
|
| 170 |
+
" 'projection_layer__kernel:0': TensorShape([768, 768]),\n",
|
| 171 |
+
" 'token_embedder__embedding:0': TensorShape([32128, 768])}"
|
| 172 |
+
]
|
| 173 |
+
},
|
| 174 |
+
"execution_count": 17,
|
| 175 |
+
"metadata": {},
|
| 176 |
+
"output_type": "execute_result"
|
| 177 |
+
}
|
| 178 |
+
],
|
| 179 |
+
"source": [
|
| 180 |
+
"tf_name_weight = {var.name: var for var in v}\n",
|
| 181 |
+
"tf_name_shape = {var.name: var.shape for var in v}\n",
|
| 182 |
+
"tf_name_shape"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": 6,
|
| 188 |
+
"id": "1d3c9865",
|
| 189 |
+
"metadata": {},
|
| 190 |
+
"outputs": [],
|
| 191 |
+
"source": [
|
| 192 |
+
"def convert_name(name):\n",
|
| 193 |
+
" fct_map = {\n",
|
| 194 |
+
" \"attention\": \"SelfAttention\",\n",
|
| 195 |
+
" \"mlp\": \"DenseReluDense\",\n",
|
| 196 |
+
" \"pre_attention_layer_norm\": \"layer_norm\",\n",
|
| 197 |
+
" \"pre_mlp_layer_norm\": \"layer_norm\",\n",
|
| 198 |
+
" }\n",
|
| 199 |
+
" name_map = {\n",
|
| 200 |
+
" 'key': 'k',\n",
|
| 201 |
+
" 'out': 'o',\n",
|
| 202 |
+
" 'query': 'q',\n",
|
| 203 |
+
" 'value': 'v'\n",
|
| 204 |
+
" }\n",
|
| 205 |
+
" \n",
|
| 206 |
+
" fixed_names = {\n",
|
| 207 |
+
" \"token_embedder__embedding:0\": \"shared.weight\",\n",
|
| 208 |
+
" \"encoder__encoder_norm__scale:0\": \"encoder.final_layer_norm.weight\",\n",
|
| 209 |
+
" \"encoder__relpos_bias__rel_embedding:0\": \"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight\"\n",
|
| 210 |
+
" }\n",
|
| 211 |
+
" \n",
|
| 212 |
+
" if name in fixed_names:\n",
|
| 213 |
+
" return fixed_names[name]\n",
|
| 214 |
+
" \n",
|
| 215 |
+
" out = \"\"\n",
|
| 216 |
+
" splits = name.split(\"__\")\n",
|
| 217 |
+
" layer = splits[1].split(\"_\")[1]\n",
|
| 218 |
+
" fct = fct_map.get(splits[2], splits[2])\n",
|
| 219 |
+
" if 'layer_norm' in name:\n",
|
| 220 |
+
" sublayer = \"1\" if \"pre_mlp_layer_norm\" in name else \"0\" #Not sure on the right setting here\n",
|
| 221 |
+
" #sublayer = \"0\" if \"pre_mlp_layer_norm\" in name else \"1\" #Not sure on the right setting here\n",
|
| 222 |
+
" out = f\"encoder.block.{layer}.layer.{sublayer}.{fct}.weight\"\n",
|
| 223 |
+
" elif name.startswith(\"encoder__layers_\"):\n",
|
| 224 |
+
" sublayer = \"0\" if fct == \"SelfAttention\" else \"1\"\n",
|
| 225 |
+
" name = name_map.get(splits[3], splits[3])\n",
|
| 226 |
+
" out = f\"encoder.block.{layer}.layer.{sublayer}.{fct}.{name}.weight\"\n",
|
| 227 |
+
" \n",
|
| 228 |
+
" return out"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "code",
|
| 233 |
+
"execution_count": 7,
|
| 234 |
+
"id": "1ca9590e",
|
| 235 |
+
"metadata": {},
|
| 236 |
+
"outputs": [],
|
| 237 |
+
"source": [
|
| 238 |
+
"def equal_shapes(shape1, shape2):\n",
|
| 239 |
+
" if len(shape1) != len(shape2):\n",
|
| 240 |
+
" return False\n",
|
| 241 |
+
" \n",
|
| 242 |
+
" for idx in range(len(shape1)):\n",
|
| 243 |
+
" if shape1[idx] != shape2[idx]:\n",
|
| 244 |
+
" return False\n",
|
| 245 |
+
" \n",
|
| 246 |
+
" return True"
|
| 247 |
+
]
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"cell_type": "code",
|
| 251 |
+
"execution_count": 8,
|
| 252 |
+
"id": "6d223b07",
|
| 253 |
+
"metadata": {
|
| 254 |
+
"scrolled": true
|
| 255 |
+
},
|
| 256 |
+
"outputs": [
|
| 257 |
+
{
|
| 258 |
+
"name": "stderr",
|
| 259 |
+
"output_type": "stream",
|
| 260 |
+
"text": [
|
| 261 |
+
"Some weights of T5EncoderModel were not initialized from the model checkpoint at t5-11b and are newly initialized: ['encoder.embed_tokens.weight']\n",
|
| 262 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"data": {
|
| 267 |
+
"text/plain": [
|
| 268 |
+
"{'shared.weight': torch.Size([32128, 1024]),\n",
|
| 269 |
+
" 'encoder.embed_tokens.weight': torch.Size([32128, 1024]),\n",
|
| 270 |
+
" 'encoder.block.0.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 271 |
+
" 'encoder.block.0.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 272 |
+
" 'encoder.block.0.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 273 |
+
" 'encoder.block.0.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 274 |
+
" 'encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight': torch.Size([32, 128]),\n",
|
| 275 |
+
" 'encoder.block.0.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 276 |
+
" 'encoder.block.0.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 277 |
+
" 'encoder.block.0.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 278 |
+
" 'encoder.block.0.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 279 |
+
" 'encoder.block.1.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 280 |
+
" 'encoder.block.1.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 281 |
+
" 'encoder.block.1.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 282 |
+
" 'encoder.block.1.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 283 |
+
" 'encoder.block.1.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 284 |
+
" 'encoder.block.1.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 285 |
+
" 'encoder.block.1.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 286 |
+
" 'encoder.block.1.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 287 |
+
" 'encoder.block.2.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 288 |
+
" 'encoder.block.2.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 289 |
+
" 'encoder.block.2.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 290 |
+
" 'encoder.block.2.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 291 |
+
" 'encoder.block.2.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 292 |
+
" 'encoder.block.2.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 293 |
+
" 'encoder.block.2.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 294 |
+
" 'encoder.block.2.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 295 |
+
" 'encoder.block.3.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 296 |
+
" 'encoder.block.3.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 297 |
+
" 'encoder.block.3.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 298 |
+
" 'encoder.block.3.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 299 |
+
" 'encoder.block.3.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 300 |
+
" 'encoder.block.3.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 301 |
+
" 'encoder.block.3.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 302 |
+
" 'encoder.block.3.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 303 |
+
" 'encoder.block.4.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 304 |
+
" 'encoder.block.4.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 305 |
+
" 'encoder.block.4.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 306 |
+
" 'encoder.block.4.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 307 |
+
" 'encoder.block.4.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 308 |
+
" 'encoder.block.4.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 309 |
+
" 'encoder.block.4.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 310 |
+
" 'encoder.block.4.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 311 |
+
" 'encoder.block.5.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 312 |
+
" 'encoder.block.5.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 313 |
+
" 'encoder.block.5.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 314 |
+
" 'encoder.block.5.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 315 |
+
" 'encoder.block.5.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 316 |
+
" 'encoder.block.5.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 317 |
+
" 'encoder.block.5.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 318 |
+
" 'encoder.block.5.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 319 |
+
" 'encoder.block.6.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 320 |
+
" 'encoder.block.6.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 321 |
+
" 'encoder.block.6.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 322 |
+
" 'encoder.block.6.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 323 |
+
" 'encoder.block.6.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 324 |
+
" 'encoder.block.6.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 325 |
+
" 'encoder.block.6.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 326 |
+
" 'encoder.block.6.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 327 |
+
" 'encoder.block.7.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 328 |
+
" 'encoder.block.7.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 329 |
+
" 'encoder.block.7.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 330 |
+
" 'encoder.block.7.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 331 |
+
" 'encoder.block.7.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 332 |
+
" 'encoder.block.7.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 333 |
+
" 'encoder.block.7.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 334 |
+
" 'encoder.block.7.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 335 |
+
" 'encoder.block.8.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 336 |
+
" 'encoder.block.8.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 337 |
+
" 'encoder.block.8.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 338 |
+
" 'encoder.block.8.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 339 |
+
" 'encoder.block.8.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 340 |
+
" 'encoder.block.8.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 341 |
+
" 'encoder.block.8.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 342 |
+
" 'encoder.block.8.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 343 |
+
" 'encoder.block.9.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 344 |
+
" 'encoder.block.9.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 345 |
+
" 'encoder.block.9.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 346 |
+
" 'encoder.block.9.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 347 |
+
" 'encoder.block.9.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 348 |
+
" 'encoder.block.9.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 349 |
+
" 'encoder.block.9.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 350 |
+
" 'encoder.block.9.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 351 |
+
" 'encoder.block.10.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 352 |
+
" 'encoder.block.10.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 353 |
+
" 'encoder.block.10.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 354 |
+
" 'encoder.block.10.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 355 |
+
" 'encoder.block.10.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 356 |
+
" 'encoder.block.10.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 357 |
+
" 'encoder.block.10.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 358 |
+
" 'encoder.block.10.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 359 |
+
" 'encoder.block.11.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 360 |
+
" 'encoder.block.11.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 361 |
+
" 'encoder.block.11.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 362 |
+
" 'encoder.block.11.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 363 |
+
" 'encoder.block.11.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 364 |
+
" 'encoder.block.11.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 365 |
+
" 'encoder.block.11.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 366 |
+
" 'encoder.block.11.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 367 |
+
" 'encoder.block.12.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 368 |
+
" 'encoder.block.12.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 369 |
+
" 'encoder.block.12.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 370 |
+
" 'encoder.block.12.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 371 |
+
" 'encoder.block.12.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 372 |
+
" 'encoder.block.12.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 373 |
+
" 'encoder.block.12.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 374 |
+
" 'encoder.block.12.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 375 |
+
" 'encoder.block.13.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 376 |
+
" 'encoder.block.13.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 377 |
+
" 'encoder.block.13.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 378 |
+
" 'encoder.block.13.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 379 |
+
" 'encoder.block.13.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 380 |
+
" 'encoder.block.13.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 381 |
+
" 'encoder.block.13.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 382 |
+
" 'encoder.block.13.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 383 |
+
" 'encoder.block.14.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 384 |
+
" 'encoder.block.14.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 385 |
+
" 'encoder.block.14.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 386 |
+
" 'encoder.block.14.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 387 |
+
" 'encoder.block.14.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 388 |
+
" 'encoder.block.14.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 389 |
+
" 'encoder.block.14.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 390 |
+
" 'encoder.block.14.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 391 |
+
" 'encoder.block.15.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 392 |
+
" 'encoder.block.15.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 393 |
+
" 'encoder.block.15.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 394 |
+
" 'encoder.block.15.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 395 |
+
" 'encoder.block.15.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 396 |
+
" 'encoder.block.15.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 397 |
+
" 'encoder.block.15.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 398 |
+
" 'encoder.block.15.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 399 |
+
" 'encoder.block.16.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 400 |
+
" 'encoder.block.16.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 401 |
+
" 'encoder.block.16.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 402 |
+
" 'encoder.block.16.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 403 |
+
" 'encoder.block.16.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 404 |
+
" 'encoder.block.16.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 405 |
+
" 'encoder.block.16.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 406 |
+
" 'encoder.block.16.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 407 |
+
" 'encoder.block.17.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 408 |
+
" 'encoder.block.17.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 409 |
+
" 'encoder.block.17.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 410 |
+
" 'encoder.block.17.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 411 |
+
" 'encoder.block.17.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 412 |
+
" 'encoder.block.17.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 413 |
+
" 'encoder.block.17.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 414 |
+
" 'encoder.block.17.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 415 |
+
" 'encoder.block.18.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 416 |
+
" 'encoder.block.18.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 417 |
+
" 'encoder.block.18.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 418 |
+
" 'encoder.block.18.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 419 |
+
" 'encoder.block.18.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 420 |
+
" 'encoder.block.18.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 421 |
+
" 'encoder.block.18.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 422 |
+
" 'encoder.block.18.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 423 |
+
" 'encoder.block.19.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 424 |
+
" 'encoder.block.19.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 425 |
+
" 'encoder.block.19.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 426 |
+
" 'encoder.block.19.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 427 |
+
" 'encoder.block.19.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 428 |
+
" 'encoder.block.19.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 429 |
+
" 'encoder.block.19.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 430 |
+
" 'encoder.block.19.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 431 |
+
" 'encoder.block.20.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 432 |
+
" 'encoder.block.20.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 433 |
+
" 'encoder.block.20.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 434 |
+
" 'encoder.block.20.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 435 |
+
" 'encoder.block.20.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 436 |
+
" 'encoder.block.20.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 437 |
+
" 'encoder.block.20.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 438 |
+
" 'encoder.block.20.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 439 |
+
" 'encoder.block.21.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 440 |
+
" 'encoder.block.21.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 441 |
+
" 'encoder.block.21.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 442 |
+
" 'encoder.block.21.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 443 |
+
" 'encoder.block.21.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 444 |
+
" 'encoder.block.21.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 445 |
+
" 'encoder.block.21.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 446 |
+
" 'encoder.block.21.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 447 |
+
" 'encoder.block.22.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 448 |
+
" 'encoder.block.22.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 449 |
+
" 'encoder.block.22.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 450 |
+
" 'encoder.block.22.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 451 |
+
" 'encoder.block.22.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 452 |
+
" 'encoder.block.22.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 453 |
+
" 'encoder.block.22.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 454 |
+
" 'encoder.block.22.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 455 |
+
" 'encoder.block.23.layer.0.SelfAttention.q.weight': torch.Size([16384, 1024]),\n",
|
| 456 |
+
" 'encoder.block.23.layer.0.SelfAttention.k.weight': torch.Size([16384, 1024]),\n",
|
| 457 |
+
" 'encoder.block.23.layer.0.SelfAttention.v.weight': torch.Size([16384, 1024]),\n",
|
| 458 |
+
" 'encoder.block.23.layer.0.SelfAttention.o.weight': torch.Size([1024, 16384]),\n",
|
| 459 |
+
" 'encoder.block.23.layer.0.layer_norm.weight': torch.Size([1024]),\n",
|
| 460 |
+
" 'encoder.block.23.layer.1.DenseReluDense.wi.weight': torch.Size([65536, 1024]),\n",
|
| 461 |
+
" 'encoder.block.23.layer.1.DenseReluDense.wo.weight': torch.Size([1024, 65536]),\n",
|
| 462 |
+
" 'encoder.block.23.layer.1.layer_norm.weight': torch.Size([1024]),\n",
|
| 463 |
+
" 'encoder.final_layer_norm.weight': torch.Size([1024])}"
|
| 464 |
+
]
|
| 465 |
+
},
|
| 466 |
+
"execution_count": 8,
|
| 467 |
+
"metadata": {},
|
| 468 |
+
"output_type": "execute_result"
|
| 469 |
+
}
|
| 470 |
+
],
|
| 471 |
+
"source": [
|
| 472 |
+
"tokenizer = AutoTokenizer.from_pretrained(f\"t5-{model_size}\")\n",
|
| 473 |
+
"T5EncoderModel._keys_to_ignore_on_load_unexpected = [\"decoder.*\"]\n",
|
| 474 |
+
"t5 = T5EncoderModel.from_pretrained(f\"t5-{model_size}\") \n",
|
| 475 |
+
"pt_name_shape = {name: weight.shape for name, weight in t5.state_dict().items()}\n",
|
| 476 |
+
"pt_name_shape"
|
| 477 |
+
]
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"cell_type": "code",
|
| 481 |
+
"execution_count": 9,
|
| 482 |
+
"id": "ced52a5f",
|
| 483 |
+
"metadata": {},
|
| 484 |
+
"outputs": [
|
| 485 |
+
{
|
| 486 |
+
"name": "stdout",
|
| 487 |
+
"output_type": "stream",
|
| 488 |
+
"text": [
|
| 489 |
+
"Remaining weights: {'encoder.embed_tokens.weight'}\n"
|
| 490 |
+
]
|
| 491 |
+
}
|
| 492 |
+
],
|
| 493 |
+
"source": [
|
| 494 |
+
"def need_transpose(name, transpose_names=['DenseReluDense', 'relative_attention_bias']):\n",
|
| 495 |
+
" #HF function: https://github.com/huggingface/transformers/blob/c962c2adbff678ae6d2e98378bed5b8d1a9831d9/src/transformers/models/t5/modeling_t5.py#L161\n",
|
| 496 |
+
" return name != \"shared.weight\"\n",
|
| 497 |
+
"\n",
|
| 498 |
+
"\n",
|
| 499 |
+
"#Additional dense layer on top\n",
|
| 500 |
+
"names_to_ignore = {\"projection_layer__kernel:0\"}\n",
|
| 501 |
+
"\n",
|
| 502 |
+
"#Check we used all names\n",
|
| 503 |
+
"pt_all_names = set(t5.state_dict().keys())\n",
|
| 504 |
+
"\n",
|
| 505 |
+
"for var in v:\n",
|
| 506 |
+
" name = var.name\n",
|
| 507 |
+
" if name in names_to_ignore:\n",
|
| 508 |
+
" continue\n",
|
| 509 |
+
" \n",
|
| 510 |
+
" pt_name = convert_name(name)\n",
|
| 511 |
+
" if pt_name not in pt_all_names:\n",
|
| 512 |
+
" print(\"Name not found:\", name, \"=>\", pt_name)\n",
|
| 513 |
+
" else:\n",
|
| 514 |
+
" pt_all_names.remove(pt_name)\n",
|
| 515 |
+
" tf_shape = tf_name_shape[name].as_list()\n",
|
| 516 |
+
" pt_shape = list(pt_name_shape[pt_name])\n",
|
| 517 |
+
" \n",
|
| 518 |
+
" if need_transpose(pt_name):\n",
|
| 519 |
+
" pt_shape = list(reversed(pt_shape))\n",
|
| 520 |
+
" \n",
|
| 521 |
+
" if not equal_shapes(tf_shape, pt_shape):\n",
|
| 522 |
+
" print(\"Different shape:\", name, tf_shape, pt_name, pt_shape )\n",
|
| 523 |
+
" \n",
|
| 524 |
+
"print(\"Remaining weights:\", pt_all_names)\n",
|
| 525 |
+
"#All layers match"
|
| 526 |
+
]
|
| 527 |
+
},
|
| 528 |
+
{
|
| 529 |
+
"cell_type": "code",
|
| 530 |
+
"execution_count": 10,
|
| 531 |
+
"id": "1190984f",
|
| 532 |
+
"metadata": {},
|
| 533 |
+
"outputs": [
|
| 534 |
+
{
|
| 535 |
+
"name": "stdout",
|
| 536 |
+
"output_type": "stream",
|
| 537 |
+
"text": [
|
| 538 |
+
"encoder__encoder_norm__scale:0 ((1024,)) =transpose=> encoder.final_layer_norm.weight torch.Size([1024])\n",
|
| 539 |
+
"encoder__layers_0__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.0.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 540 |
+
"encoder__layers_0__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.0.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 541 |
+
"encoder__layers_0__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.0.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 542 |
+
"encoder__layers_0__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.0.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 543 |
+
"encoder__layers_0__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.0.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 544 |
+
"encoder__layers_0__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.0.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 545 |
+
"encoder__layers_0__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.0.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 546 |
+
"encoder__layers_0__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.0.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 547 |
+
"encoder__layers_1__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.1.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 548 |
+
"encoder__layers_1__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.1.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 549 |
+
"encoder__layers_1__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.1.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 550 |
+
"encoder__layers_1__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.1.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 551 |
+
"encoder__layers_1__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.1.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 552 |
+
"encoder__layers_1__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.1.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 553 |
+
"encoder__layers_1__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.1.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 554 |
+
"encoder__layers_1__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.1.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 555 |
+
"encoder__layers_10__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.10.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 556 |
+
"encoder__layers_10__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.10.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 557 |
+
"encoder__layers_10__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.10.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 558 |
+
"encoder__layers_10__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.10.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 559 |
+
"encoder__layers_10__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.10.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 560 |
+
"encoder__layers_10__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.10.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 561 |
+
"encoder__layers_10__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.10.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 562 |
+
"encoder__layers_10__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.10.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 563 |
+
"encoder__layers_11__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.11.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 564 |
+
"encoder__layers_11__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.11.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 565 |
+
"encoder__layers_11__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.11.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 566 |
+
"encoder__layers_11__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.11.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 567 |
+
"encoder__layers_11__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.11.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 568 |
+
"encoder__layers_11__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.11.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 569 |
+
"encoder__layers_11__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.11.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 570 |
+
"encoder__layers_11__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.11.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 571 |
+
"encoder__layers_12__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.12.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 572 |
+
"encoder__layers_12__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.12.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 573 |
+
"encoder__layers_12__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.12.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 574 |
+
"encoder__layers_12__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.12.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 575 |
+
"encoder__layers_12__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.12.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 576 |
+
"encoder__layers_12__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.12.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 577 |
+
"encoder__layers_12__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.12.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 578 |
+
"encoder__layers_12__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.12.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 579 |
+
"encoder__layers_13__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.13.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 580 |
+
"encoder__layers_13__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.13.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 581 |
+
"encoder__layers_13__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.13.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 582 |
+
"encoder__layers_13__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.13.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 583 |
+
"encoder__layers_13__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.13.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 584 |
+
"encoder__layers_13__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.13.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 585 |
+
"encoder__layers_13__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.13.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 586 |
+
"encoder__layers_13__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.13.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 587 |
+
"encoder__layers_14__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.14.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 588 |
+
"encoder__layers_14__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.14.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 589 |
+
"encoder__layers_14__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.14.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 590 |
+
"encoder__layers_14__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.14.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 591 |
+
"encoder__layers_14__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.14.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 592 |
+
"encoder__layers_14__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.14.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 593 |
+
"encoder__layers_14__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.14.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 594 |
+
"encoder__layers_14__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.14.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 595 |
+
"encoder__layers_15__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.15.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n"
|
| 596 |
+
]
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"name": "stdout",
|
| 600 |
+
"output_type": "stream",
|
| 601 |
+
"text": [
|
| 602 |
+
"encoder__layers_15__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.15.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 603 |
+
"encoder__layers_15__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.15.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 604 |
+
"encoder__layers_15__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.15.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 605 |
+
"encoder__layers_15__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.15.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 606 |
+
"encoder__layers_15__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.15.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 607 |
+
"encoder__layers_15__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.15.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 608 |
+
"encoder__layers_15__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.15.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 609 |
+
"encoder__layers_16__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.16.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 610 |
+
"encoder__layers_16__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.16.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 611 |
+
"encoder__layers_16__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.16.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 612 |
+
"encoder__layers_16__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.16.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 613 |
+
"encoder__layers_16__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.16.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 614 |
+
"encoder__layers_16__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.16.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 615 |
+
"encoder__layers_16__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.16.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 616 |
+
"encoder__layers_16__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.16.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 617 |
+
"encoder__layers_17__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.17.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 618 |
+
"encoder__layers_17__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.17.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 619 |
+
"encoder__layers_17__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.17.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 620 |
+
"encoder__layers_17__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.17.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 621 |
+
"encoder__layers_17__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.17.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 622 |
+
"encoder__layers_17__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.17.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 623 |
+
"encoder__layers_17__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.17.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 624 |
+
"encoder__layers_17__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.17.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 625 |
+
"encoder__layers_18__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.18.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 626 |
+
"encoder__layers_18__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.18.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 627 |
+
"encoder__layers_18__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.18.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 628 |
+
"encoder__layers_18__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.18.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 629 |
+
"encoder__layers_18__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.18.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 630 |
+
"encoder__layers_18__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.18.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 631 |
+
"encoder__layers_18__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.18.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 632 |
+
"encoder__layers_18__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.18.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 633 |
+
"encoder__layers_19__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.19.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 634 |
+
"encoder__layers_19__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.19.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 635 |
+
"encoder__layers_19__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.19.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 636 |
+
"encoder__layers_19__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.19.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 637 |
+
"encoder__layers_19__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.19.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 638 |
+
"encoder__layers_19__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.19.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 639 |
+
"encoder__layers_19__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.19.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 640 |
+
"encoder__layers_19__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.19.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 641 |
+
"encoder__layers_2__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.2.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 642 |
+
"encoder__layers_2__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.2.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 643 |
+
"encoder__layers_2__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.2.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 644 |
+
"encoder__layers_2__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.2.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 645 |
+
"encoder__layers_2__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.2.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 646 |
+
"encoder__layers_2__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.2.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 647 |
+
"encoder__layers_2__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.2.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 648 |
+
"encoder__layers_2__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.2.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 649 |
+
"encoder__layers_20__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.20.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 650 |
+
"encoder__layers_20__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.20.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 651 |
+
"encoder__layers_20__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.20.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 652 |
+
"encoder__layers_20__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.20.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 653 |
+
"encoder__layers_20__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.20.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 654 |
+
"encoder__layers_20__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.20.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 655 |
+
"encoder__layers_20__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.20.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 656 |
+
"encoder__layers_20__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.20.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 657 |
+
"encoder__layers_21__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.21.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 658 |
+
"encoder__layers_21__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.21.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 659 |
+
"encoder__layers_21__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.21.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n"
|
| 660 |
+
]
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"name": "stdout",
|
| 664 |
+
"output_type": "stream",
|
| 665 |
+
"text": [
|
| 666 |
+
"encoder__layers_21__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.21.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 667 |
+
"encoder__layers_21__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.21.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 668 |
+
"encoder__layers_21__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.21.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 669 |
+
"encoder__layers_21__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.21.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 670 |
+
"encoder__layers_21__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.21.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 671 |
+
"encoder__layers_22__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.22.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 672 |
+
"encoder__layers_22__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.22.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 673 |
+
"encoder__layers_22__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.22.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 674 |
+
"encoder__layers_22__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.22.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 675 |
+
"encoder__layers_22__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.22.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 676 |
+
"encoder__layers_22__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.22.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 677 |
+
"encoder__layers_22__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.22.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 678 |
+
"encoder__layers_22__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.22.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 679 |
+
"encoder__layers_23__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.23.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 680 |
+
"encoder__layers_23__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.23.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 681 |
+
"encoder__layers_23__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.23.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 682 |
+
"encoder__layers_23__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.23.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 683 |
+
"encoder__layers_23__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.23.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 684 |
+
"encoder__layers_23__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.23.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 685 |
+
"encoder__layers_23__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.23.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 686 |
+
"encoder__layers_23__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.23.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 687 |
+
"encoder__layers_3__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.3.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 688 |
+
"encoder__layers_3__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.3.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 689 |
+
"encoder__layers_3__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.3.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 690 |
+
"encoder__layers_3__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.3.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 691 |
+
"encoder__layers_3__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.3.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 692 |
+
"encoder__layers_3__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.3.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 693 |
+
"encoder__layers_3__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.3.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 694 |
+
"encoder__layers_3__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.3.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 695 |
+
"encoder__layers_4__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.4.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 696 |
+
"encoder__layers_4__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.4.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 697 |
+
"encoder__layers_4__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.4.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 698 |
+
"encoder__layers_4__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.4.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 699 |
+
"encoder__layers_4__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.4.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 700 |
+
"encoder__layers_4__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.4.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 701 |
+
"encoder__layers_4__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.4.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 702 |
+
"encoder__layers_4__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.4.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 703 |
+
"encoder__layers_5__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.5.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 704 |
+
"encoder__layers_5__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.5.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 705 |
+
"encoder__layers_5__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.5.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 706 |
+
"encoder__layers_5__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.5.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 707 |
+
"encoder__layers_5__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.5.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 708 |
+
"encoder__layers_5__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.5.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 709 |
+
"encoder__layers_5__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.5.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 710 |
+
"encoder__layers_5__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.5.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 711 |
+
"encoder__layers_6__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.6.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 712 |
+
"encoder__layers_6__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.6.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 713 |
+
"encoder__layers_6__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.6.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 714 |
+
"encoder__layers_6__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.6.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 715 |
+
"encoder__layers_6__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.6.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 716 |
+
"encoder__layers_6__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.6.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 717 |
+
"encoder__layers_6__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.6.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 718 |
+
"encoder__layers_6__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.6.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 719 |
+
"encoder__layers_7__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.7.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 720 |
+
"encoder__layers_7__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.7.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 721 |
+
"encoder__layers_7__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.7.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 722 |
+
"encoder__layers_7__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.7.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 723 |
+
"encoder__layers_7__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.7.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n"
|
| 724 |
+
]
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"name": "stdout",
|
| 728 |
+
"output_type": "stream",
|
| 729 |
+
"text": [
|
| 730 |
+
"encoder__layers_7__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.7.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 731 |
+
"encoder__layers_7__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.7.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 732 |
+
"encoder__layers_7__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.7.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 733 |
+
"encoder__layers_8__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.8.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 734 |
+
"encoder__layers_8__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.8.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 735 |
+
"encoder__layers_8__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.8.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 736 |
+
"encoder__layers_8__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.8.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 737 |
+
"encoder__layers_8__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.8.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 738 |
+
"encoder__layers_8__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.8.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 739 |
+
"encoder__layers_8__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.8.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 740 |
+
"encoder__layers_8__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.8.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 741 |
+
"encoder__layers_9__attention__key__kernel:0 ((1024, 16384)) =transpose=> encoder.block.9.layer.0.SelfAttention.k.weight torch.Size([16384, 1024])\n",
|
| 742 |
+
"encoder__layers_9__attention__out__kernel:0 ((16384, 1024)) =transpose=> encoder.block.9.layer.0.SelfAttention.o.weight torch.Size([1024, 16384])\n",
|
| 743 |
+
"encoder__layers_9__attention__query__kernel:0 ((1024, 16384)) =transpose=> encoder.block.9.layer.0.SelfAttention.q.weight torch.Size([16384, 1024])\n",
|
| 744 |
+
"encoder__layers_9__attention__value__kernel:0 ((1024, 16384)) =transpose=> encoder.block.9.layer.0.SelfAttention.v.weight torch.Size([16384, 1024])\n",
|
| 745 |
+
"encoder__layers_9__mlp__wi__kernel:0 ((1024, 65536)) =transpose=> encoder.block.9.layer.1.DenseReluDense.wi.weight torch.Size([65536, 1024])\n",
|
| 746 |
+
"encoder__layers_9__mlp__wo__kernel:0 ((65536, 1024)) =transpose=> encoder.block.9.layer.1.DenseReluDense.wo.weight torch.Size([1024, 65536])\n",
|
| 747 |
+
"encoder__layers_9__pre_attention_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.9.layer.0.layer_norm.weight torch.Size([1024])\n",
|
| 748 |
+
"encoder__layers_9__pre_mlp_layer_norm__scale:0 ((1024,)) =transpose=> encoder.block.9.layer.1.layer_norm.weight torch.Size([1024])\n",
|
| 749 |
+
"encoder__relpos_bias__rel_embedding:0 ((128, 32)) =transpose=> encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight torch.Size([32, 128])\n",
|
| 750 |
+
"token_embedder__embedding:0 ((32128, 1024)) => shared.weight torch.Size([32128, 1024])\n",
|
| 751 |
+
"Linear(in_features=1024, out_features=768, bias=False)\n",
|
| 752 |
+
"Remaining weights: set()\n"
|
| 753 |
+
]
|
| 754 |
+
}
|
| 755 |
+
],
|
| 756 |
+
"source": [
|
| 757 |
+
"t5_state = t5.state_dict()\n",
|
| 758 |
+
"state_all_names = set(t5_state.keys())\n",
|
| 759 |
+
"\n",
|
| 760 |
+
"\n",
|
| 761 |
+
"for var in v:\n",
|
| 762 |
+
" tf_name = var.name\n",
|
| 763 |
+
" if tf_name in names_to_ignore:\n",
|
| 764 |
+
" continue\n",
|
| 765 |
+
" \n",
|
| 766 |
+
" pt_name = convert_name(tf_name)\n",
|
| 767 |
+
" weights = np.float32(var.numpy())\n",
|
| 768 |
+
" \n",
|
| 769 |
+
" state_all_names.remove(pt_name)\n",
|
| 770 |
+
" \n",
|
| 771 |
+
" tranpose_status = \"=>\"\n",
|
| 772 |
+
" if need_transpose(pt_name, ['DenseReluDense', 'relative_attention_bias',]):\n",
|
| 773 |
+
" tranpose_status = \"=transpose=>\"\n",
|
| 774 |
+
" weights = weights.transpose()\n",
|
| 775 |
+
" \n",
|
| 776 |
+
" print(tf_name, f\"({var.shape})\", tranpose_status, pt_name, t5_state[pt_name].shape)\n",
|
| 777 |
+
" \n",
|
| 778 |
+
" original_shape = t5_state[pt_name].shape\n",
|
| 779 |
+
" t5_state[pt_name] = torch.nn.Parameter(torch.tensor(weights))\n",
|
| 780 |
+
" new_shape = t5_state[pt_name].shape\n",
|
| 781 |
+
" \n",
|
| 782 |
+
" if not equal_shapes(original_shape, new_shape):\n",
|
| 783 |
+
" print(\"Different shape:\", tf_name, original_shape, pt_name, new_shape)\n",
|
| 784 |
+
" break\n",
|
| 785 |
+
"\n",
|
| 786 |
+
"#Encoder Word embeddings\n",
|
| 787 |
+
"t5_state['encoder.embed_tokens.weight'] = t5_state['shared.weight']\n",
|
| 788 |
+
"state_all_names.remove('encoder.embed_tokens.weight')\n",
|
| 789 |
+
" \n",
|
| 790 |
+
"#Load back the weights\n",
|
| 791 |
+
"t5.load_state_dict(t5_state) \n",
|
| 792 |
+
"\n",
|
| 793 |
+
"tf_linear_weight = tf_name_weight[\"projection_layer__kernel:0\"]\n",
|
| 794 |
+
"linear = torch.nn.Linear(tf_linear_weight.shape[0], tf_linear_weight.shape[1], bias=False)\n",
|
| 795 |
+
"original_shape = linear.weight.shape\n",
|
| 796 |
+
"linear.weight = torch.nn.Parameter(torch.tensor(np.float32(tf_linear_weight.numpy()).transpose()))\n",
|
| 797 |
+
"new_shape = linear.weight.shape\n",
|
| 798 |
+
"if not equal_shapes(original_shape, new_shape):\n",
|
| 799 |
+
" print(\"Different shape at linear layer\")\n",
|
| 800 |
+
" \n",
|
| 801 |
+
"print(linear)\n",
|
| 802 |
+
"print(\"Remaining weights:\", state_all_names)\n",
|
| 803 |
+
"assert len(state_all_names) == 0\n"
|
| 804 |
+
]
|
| 805 |
+
},
|
| 806 |
+
{
|
| 807 |
+
"cell_type": "code",
|
| 808 |
+
"execution_count": 11,
|
| 809 |
+
"id": "d59d5a2c",
|
| 810 |
+
"metadata": {},
|
| 811 |
+
"outputs": [
|
| 812 |
+
{
|
| 813 |
+
"name": "stdout",
|
| 814 |
+
"output_type": "stream",
|
| 815 |
+
"text": [
|
| 816 |
+
"torch.Size([8, 768])\n"
|
| 817 |
+
]
|
| 818 |
+
},
|
| 819 |
+
{
|
| 820 |
+
"data": {
|
| 821 |
+
"text/plain": [
|
| 822 |
+
"tensor([[1.0000, 0.9279, 0.6404, 0.5968, 0.5420, 0.5442, 0.6099, 0.6318],\n",
|
| 823 |
+
" [0.9279, 1.0000, 0.6629, 0.6098, 0.5562, 0.5687, 0.6382, 0.6262],\n",
|
| 824 |
+
" [0.6404, 0.6629, 1.0000, 0.8351, 0.7101, 0.6953, 0.6265, 0.6390],\n",
|
| 825 |
+
" [0.5968, 0.6098, 0.8351, 1.0000, 0.6877, 0.6716, 0.5902, 0.6102],\n",
|
| 826 |
+
" [0.5420, 0.5562, 0.7101, 0.6877, 1.0000, 0.8924, 0.5701, 0.5661],\n",
|
| 827 |
+
" [0.5442, 0.5687, 0.6953, 0.6716, 0.8924, 1.0000, 0.5665, 0.5457],\n",
|
| 828 |
+
" [0.6099, 0.6382, 0.6265, 0.5902, 0.5701, 0.5665, 1.0000, 0.7950],\n",
|
| 829 |
+
" [0.6318, 0.6262, 0.6390, 0.6102, 0.5661, 0.5457, 0.7950, 1.0000]])"
|
| 830 |
+
]
|
| 831 |
+
},
|
| 832 |
+
"execution_count": 11,
|
| 833 |
+
"metadata": {},
|
| 834 |
+
"output_type": "execute_result"
|
| 835 |
+
}
|
| 836 |
+
],
|
| 837 |
+
"source": [
|
| 838 |
+
"english_sentences = [\"Berlin is the capital of Germany\", \"Berlin is a large city in Germany\",\n",
|
| 839 |
+
" \"Tensorflow can be used for deep learning\", \"Pytorch, developed by Facebook AI, is a deep learning framework\",\n",
|
| 840 |
+
" \"Is Scipy or numpy better?\", \"Which is faster: scipy or pandas?\",\n",
|
| 841 |
+
" \"Cats can live for quite a long time\", \"Cats are humans best friend\"]\n",
|
| 842 |
+
"\n",
|
| 843 |
+
"encoded_input = tokenizer(english_sentences, return_tensors=\"pt\", padding=True)\n",
|
| 844 |
+
"\n",
|
| 845 |
+
"with torch.no_grad():\n",
|
| 846 |
+
" model_output = t5(**encoded_input)\n",
|
| 847 |
+
" \n",
|
| 848 |
+
" # Perform pooling\n",
|
| 849 |
+
" hf_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])\n",
|
| 850 |
+
"\n",
|
| 851 |
+
" # Apply linear layer\n",
|
| 852 |
+
" hf_embeddings = linear(hf_embeddings)\n",
|
| 853 |
+
" \n",
|
| 854 |
+
" print(hf_embeddings.shape)\n",
|
| 855 |
+
"\n",
|
| 856 |
+
" # Normalize embeddings\n",
|
| 857 |
+
" hf_embeddings = F.normalize(hf_embeddings, p=2, dim=1)\n",
|
| 858 |
+
"\n",
|
| 859 |
+
"# Cos\n",
|
| 860 |
+
"hf_scores = util.dot_score(hf_embeddings, hf_embeddings).numpy()\n",
|
| 861 |
+
"hf_scores"
|
| 862 |
+
]
|
| 863 |
+
},
|
| 864 |
+
{
|
| 865 |
+
"cell_type": "code",
|
| 866 |
+
"execution_count": 12,
|
| 867 |
+
"id": "677a8bab",
|
| 868 |
+
"metadata": {},
|
| 869 |
+
"outputs": [
|
| 870 |
+
{
|
| 871 |
+
"name": "stderr",
|
| 872 |
+
"output_type": "stream",
|
| 873 |
+
"text": [
|
| 874 |
+
"2022-02-01 20:00:27.115638: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)\n",
|
| 875 |
+
"2022-02-01 20:00:29.328848: I tensorflow/compiler/xla/service/service.cc:171] XLA service 0x7fe9781cd6f0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:\n",
|
| 876 |
+
"2022-02-01 20:00:29.328894: I tensorflow/compiler/xla/service/service.cc:179] StreamExecutor device (0): Host, Default Version\n",
|
| 877 |
+
"2022-02-01 20:00:30.324558: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:210] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
|
| 878 |
+
"2022-02-01 20:01:02.775112: I tensorflow/compiler/jit/xla_compilation_cache.cc:363] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n"
|
| 879 |
+
]
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"name": "stdout",
|
| 883 |
+
"output_type": "stream",
|
| 884 |
+
"text": [
|
| 885 |
+
"(8, 768)\n"
|
| 886 |
+
]
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"data": {
|
| 890 |
+
"text/plain": [
|
| 891 |
+
"tensor([[1.0000, 0.9279, 0.6402, 0.5966, 0.5422, 0.5446, 0.6097, 0.6320],\n",
|
| 892 |
+
" [0.9279, 1.0000, 0.6631, 0.6099, 0.5566, 0.5690, 0.6386, 0.6268],\n",
|
| 893 |
+
" [0.6402, 0.6631, 1.0000, 0.8347, 0.7101, 0.6955, 0.6264, 0.6389],\n",
|
| 894 |
+
" [0.5966, 0.6099, 0.8347, 1.0000, 0.6873, 0.6712, 0.5899, 0.6100],\n",
|
| 895 |
+
" [0.5422, 0.5566, 0.7101, 0.6873, 1.0000, 0.8927, 0.5700, 0.5661],\n",
|
| 896 |
+
" [0.5446, 0.5690, 0.6955, 0.6712, 0.8927, 1.0000, 0.5663, 0.5458],\n",
|
| 897 |
+
" [0.6097, 0.6386, 0.6264, 0.5899, 0.5700, 0.5663, 1.0000, 0.7949],\n",
|
| 898 |
+
" [0.6320, 0.6268, 0.6389, 0.6100, 0.5661, 0.5458, 0.7949, 1.0000]])"
|
| 899 |
+
]
|
| 900 |
+
},
|
| 901 |
+
"execution_count": 12,
|
| 902 |
+
"metadata": {},
|
| 903 |
+
"output_type": "execute_result"
|
| 904 |
+
}
|
| 905 |
+
],
|
| 906 |
+
"source": [
|
| 907 |
+
"# Test the models - Original embeddings\n",
|
| 908 |
+
"english_embeds = encoder(english_sentences)[0].numpy()\n",
|
| 909 |
+
"print(english_embeds.shape)\n",
|
| 910 |
+
"tf_scores = util.dot_score(english_embeds, english_embeds).numpy()\n",
|
| 911 |
+
"print(tf_scores)\n",
|
| 912 |
+
"print(\"Diff:\", np.sum(np.abs(tf_scores - hf_scores)))"
|
| 913 |
+
]
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"cell_type": "code",
|
| 917 |
+
"execution_count": 13,
|
| 918 |
+
"id": "34b44ef7",
|
| 919 |
+
"metadata": {},
|
| 920 |
+
"outputs": [
|
| 921 |
+
{
|
| 922 |
+
"ename": "FileNotFoundError",
|
| 923 |
+
"evalue": "[Errno 2] No such file or directory: 'models/sentence-t5-11b/2_Dense/config.json'",
|
| 924 |
+
"output_type": "error",
|
| 925 |
+
"traceback": [
|
| 926 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 927 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
| 928 |
+
"\u001b[0;32m/tmp/ipykernel_26913/2543044366.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 7\u001b[0m bias=False, activation_function=torch.nn.Identity())\n\u001b[1;32m 8\u001b[0m \u001b[0mdense\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinear\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlinear\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0mdense\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfolder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'2_Dense'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 929 |
+
"\u001b[0;32m/home/sbert/sentence-transformers/sentence_transformers/models/Dense.py\u001b[0m in \u001b[0;36msave\u001b[0;34m(self, output_path)\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 48\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'config.json'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'w'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfOut\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 49\u001b[0m \u001b[0mjson\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdump\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_config_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfOut\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 930 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'models/sentence-t5-11b/2_Dense/config.json'"
|
| 931 |
+
]
|
| 932 |
+
}
|
| 933 |
+
],
|
| 934 |
+
"source": [
|
| 935 |
+
"folder = f'models/sentence-t5-{model_size}'\n",
|
| 936 |
+
"t5.save_pretrained(folder)\n",
|
| 937 |
+
"tokenizer.save_pretrained(folder)\n",
|
| 938 |
+
"\n",
|
| 939 |
+
"import sentence_transformers\n",
|
| 940 |
+
"dense = sentence_transformers.models.Dense(linear.in_features, linear.out_features, \n",
|
| 941 |
+
" bias=False, activation_function=torch.nn.Identity())\n",
|
| 942 |
+
"dense.linear = linear\n",
|
| 943 |
+
"\n",
|
| 944 |
+
"dense_path = os.path.join(folder, '2_Dense')\n",
|
| 945 |
+
"os.makedirs(dense_path, exist_ok=True)\n",
|
| 946 |
+
"dense.save(dense_path)\n"
|
| 947 |
+
]
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"cell_type": "code",
|
| 951 |
+
"execution_count": 15,
|
| 952 |
+
"id": "f2d561c1",
|
| 953 |
+
"metadata": {},
|
| 954 |
+
"outputs": [],
|
| 955 |
+
"source": [
|
| 956 |
+
"\n"
|
| 957 |
+
]
|
| 958 |
+
}
|
| 959 |
+
],
|
| 960 |
+
"metadata": {
|
| 961 |
+
"kernelspec": {
|
| 962 |
+
"display_name": "Python 3 (ipykernel)",
|
| 963 |
+
"language": "python",
|
| 964 |
+
"name": "python3"
|
| 965 |
+
},
|
| 966 |
+
"language_info": {
|
| 967 |
+
"codemirror_mode": {
|
| 968 |
+
"name": "ipython",
|
| 969 |
+
"version": 3
|
| 970 |
+
},
|
| 971 |
+
"file_extension": ".py",
|
| 972 |
+
"mimetype": "text/x-python",
|
| 973 |
+
"name": "python",
|
| 974 |
+
"nbconvert_exporter": "python",
|
| 975 |
+
"pygments_lexer": "ipython3",
|
| 976 |
+
"version": "3.8.8"
|
| 977 |
+
}
|
| 978 |
+
},
|
| 979 |
+
"nbformat": 4,
|
| 980 |
+
"nbformat_minor": 5
|
| 981 |
+
}
|
convert_to_fp16.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from transformers import T5EncoderModel
|
| 3 |
+
|
| 4 |
+
in_path = sys.argv[1]
|
| 5 |
+
out_path = sys.argv[2]
|
| 6 |
+
|
| 7 |
+
model = T5EncoderModel.from_pretrained(in_path)
|
| 8 |
+
model.half()
|
| 9 |
+
model.save_pretrained(out_path)
|
modules.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Dense",
|
| 18 |
+
"type": "sentence_transformers.models.Dense"
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"idx": 3,
|
| 22 |
+
"name": "3",
|
| 23 |
+
"path": "3_Normalize",
|
| 24 |
+
"type": "sentence_transformers.models.Normalize"
|
| 25 |
+
}
|
| 26 |
+
]
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b91bd3ded13728f29297a9f2ee2a809acd211f52271a857488e491c4c345208
|
| 3 |
+
size 219303530
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 256,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
|
spiece.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
| 3 |
+
size 791656
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "t5-base", "tokenizer_class": "T5Tokenizer"}
|