Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,92 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: llama3.2
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama3.2
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# SelfLong-Llama3.2-1B-Instruct-1M
|
| 6 |
+
|
| 7 |
+
Wang, Liang, Nan Yang, Xingxing Zhang, Xiaolong Huang, and Furu Wei. "[Bootstrap Your Own Context Length.](https://arxiv.org/pdf/2412.18860)" arXiv preprint arXiv:2412.18860 (2024).
|
| 8 |
+
|
| 9 |
+
## Overview
|
| 10 |
+
|
| 11 |
+
The SelfLong series of Large Language Models (LLMs) are designed to handle extremely long contexts, reaching up to 1 million tokens. These models, with parameter sizes of 1B, 3B, and 8B, are initialized from the Llama-3.2 and Llama-3.1 architectures.
|
| 12 |
+
|
| 13 |
+
## Performance (RULER-1M)
|
| 14 |
+
|
| 15 |
+
The following table presents the results of the SelfLong models on the [RULER-1M benchmark](https://huggingface.co/datasets/self-long/RULER-llama3-1M). The numbers represent the RULER score averaged over 13 tasks at different support lengths.
|
| 16 |
+
|
| 17 |
+
| Model | Support Length | 32k | 64k | 128k | 256k | 512k | 1M |
|
| 18 |
+
|:----------------------| :------------- | :--- | :--- | :--- | :--- | :--- | :--- |
|
| 19 |
+
| Llama-3.2-1B-Instruct | 128k | 64.7 | 43.1 | 0.0 | - | - | - |
|
| 20 |
+
| Llama-3.2-3B-Instruct | 128k | 77.8 | 70.4 | 0.8 | - | - | - |
|
| 21 |
+
| Llama-3.1-8B-Instruct | 128k | **89.8** | **85.4** | <ins>78.5</ins> | - | - | - |
|
| 22 |
+
| gradientai/Llama-3-8B-Instruct-Gradient-1048k | 1M | 81.8 | 78.6 | 77.2 | <ins>74.2</ins> | <ins>70.3</ins> | <ins>64.3</ins> |
|
| 23 |
+
| **SelfLong-1B-1M** | 1M | 61.3 | 56.6 | 54.7 | 46.7 | 40.7 | 31.1 |
|
| 24 |
+
| **SelfLong-3B-1M** | 1M | 80.5 | 78.0 | 75.5 | 68.8 | 58.5 | 38.8 |
|
| 25 |
+
| **SelfLong-8B-1M** | 1M | <ins>89.5</ins> | <ins>84.0</ins> | **82.0** | **79.7** | **78.2** | **69.6** |
|
| 26 |
+
|
| 27 |
+
**Note:**
|
| 28 |
+
|
| 29 |
+
* **Bold** indicates the best performance.
|
| 30 |
+
* <ins>Underline</ins> indicates the second-best performance.
|
| 31 |
+
* `-` indicates that the model does not support the given context length.
|
| 32 |
+
|
| 33 |
+
## Evaluation on RULER-1M Dataset
|
| 34 |
+
|
| 35 |
+
To evaluate the SelfLong models on the RULER-1M dataset, you can follow these steps:
|
| 36 |
+
|
| 37 |
+
1. Start vllm server:
|
| 38 |
+
|
| 39 |
+
```bash
|
| 40 |
+
PROC_PER_NODE=$(nvidia-smi --list-gpus | wc -l)
|
| 41 |
+
# Reduce this number if you have limited GPU memory
|
| 42 |
+
MAX_MODEL_LEN=1048576
|
| 43 |
+
MODEL_NAME_OR_PATH="self-long/SelfLong-Llama3.2-1B-Instruct-1M"
|
| 44 |
+
|
| 45 |
+
echo "Starting VLLM server..."
|
| 46 |
+
vllm serve "${MODEL_NAME_OR_PATH}" \
|
| 47 |
+
--dtype auto \
|
| 48 |
+
--disable-log-stats --disable-log-requests --disable-custom-all-reduce \
|
| 49 |
+
--enable_chunked_prefill --max_num_batched_tokens 8192 \
|
| 50 |
+
--tensor-parallel-size "${PROC_PER_NODE}" \
|
| 51 |
+
--max-model-len "${MAX_MODEL_LEN}" \
|
| 52 |
+
--gpu_memory_utilization 0.9 \
|
| 53 |
+
--api-key token-123 &
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
2. Get Completions
|
| 57 |
+
```python
|
| 58 |
+
from openai import OpenAI
|
| 59 |
+
from datasets import load_dataset
|
| 60 |
+
|
| 61 |
+
client = OpenAI(
|
| 62 |
+
base_url="http://localhost:8000/v1", # Default vLLM server address
|
| 63 |
+
api_key="token-123"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
ds = load_dataset('self-long/RULER-llama3-1M', f'niah_single_1_4k', split='validation')
|
| 67 |
+
prompt = ds[0]['input']
|
| 68 |
+
|
| 69 |
+
completion = client.completions.create(
|
| 70 |
+
model='self-long/SelfLong-Llama3.2-1B-Instruct-1M',
|
| 71 |
+
prompt=prompt,
|
| 72 |
+
max_tokens=100,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
print(prompt)
|
| 76 |
+
print(completion.choices[0].text)
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
3. For evaluation, please refer to the evaluation script provided in the RULER repository: [https://github.com/NVIDIA/RULER/blob/main/scripts/eval/evaluate.py](https://github.com/NVIDIA/RULER/blob/main/scripts/eval/evaluate.py).
|
| 80 |
+
|
| 81 |
+
Note that different vLLM and Torch versions may produce slightly different decoding results.
|
| 82 |
+
|
| 83 |
+
## References
|
| 84 |
+
|
| 85 |
+
```
|
| 86 |
+
@article{wang2024bootstrap,
|
| 87 |
+
title={Bootstrap Your Own Context Length},
|
| 88 |
+
author={Wang, Liang and Yang, Nan and Zhang, Xingxing and Huang, Xiaolong and Wei, Furu},
|
| 89 |
+
journal={arXiv preprint arXiv:2412.18860},
|
| 90 |
+
year={2024}
|
| 91 |
+
}
|
| 92 |
+
```
|