sandbox338 commited on
Commit
e8f88e1
·
verified ·
1 Parent(s): 3e83294

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -3
README.md CHANGED
@@ -1,3 +1,51 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language: sw
4
+ tags:
5
+ - hate-speech
6
+ - swahili
7
+ - text-classification
8
+ - bert
9
+ - offensive-language
10
+ - political-hate-speech
11
+ datasets:
12
+ - custom
13
+ pipeline_tag: text-classification
14
+ ---
15
+
16
+ # Swahili Hate Speech Classification Model
17
+
18
+ This is a fine-tuned BERT model for **multi-class text classification** in Swahili. It predicts whether a given text is:
19
+
20
+ - **Non-hate speech**
21
+ - **Political hate speech**
22
+ - **Offensive language**
23
+
24
+ ## 🧠 Model Details
25
+
26
+ - **Architecture**: BERT (base)
27
+ - **Languages**: Swahili
28
+ - **Classes**: 3
29
+ - **Model size**: 178M parameters
30
+ - **Framework**: PyTorch
31
+ - **Training data**: A custom labeled dataset of Swahili social media or online comments (non-public)
32
+
33
+ ## 🏷️ Labels
34
+
35
+ | Label ID | Class Name |
36
+ |----------|--------------------------|
37
+ | `LABEL_0` | Non-hate speech |
38
+ | `LABEL_1` | Political hate speech |
39
+ | `LABEL_2` | Offensive language |
40
+
41
+ ## 🚀 Usage
42
+
43
+ You can load and test the model using the `transformers` library:
44
+
45
+ ```python
46
+ from transformers import pipeline
47
+
48
+ classifier = pipeline("text-classification", model="sandbox338/hatespeech")
49
+
50
+ result = classifier("Hii ni ujumbe wa kawaida bila matusi.")
51
+ print(result) # [{'label': 'LABEL_0', 'score': 0.98}]