SnakeAI_TF_PPO_V0 / plot_utility_Trainer.py
privateboss's picture
Upload 8 files
2df2f26 verified
import matplotlib.pyplot as plt
import numpy as np
import os
import time
def smooth_curve(points, factor=0.9):
smoothed_points = []
if points:
smoothed_points.append(points[0])
for i in range(1, len(points)):
smoothed_points.append(smoothed_points[-1] * factor + points[i] * (1 - factor))
return smoothed_points
def plot_rewards(rewards_history, log_interval, save_dir, filename="rewards_plot.png", show_plot=True):
os.makedirs(save_dir, exist_ok=True)
plt.figure(figsize=(12, 6))
episodes = [i * log_interval for i in range(1, len(rewards_history) + 1)]
plt.plot(episodes, rewards_history, label='Average Reward')
plt.xlabel('Episodes')
plt.ylabel('Average Reward')
plt.title('PPO Training Progress (Average Reward per Episode)')
plt.grid(True)
plt.legend()
plt.tight_layout()
save_path = os.path.join(save_dir, filename)
plt.savefig(save_path)
print(f"Plot saved to: {os.path.abspath(save_path)}")
if show_plot:
plt.show()
def init_live_plot(save_dir, filename="live_rewards_plot.png"):
plt.ion()
fig, ax = plt.subplots(figsize=(12, 6))
line, = ax.plot([], [], label='Smoothed Average Reward')
ax.set_xlabel('Episodes')
ax.set_ylabel('Average Reward')
ax.set_title('Live PPO Training Progress')
ax.grid(True)
ax.legend()
plt.tight_layout()
ax._save_path_final = os.path.join(save_dir, filename)
return fig, ax, line
def update_live_plot(fig, ax, line, episodes, smoothed_rewards, current_timestep=None, total_timesteps=None):
if not episodes or not smoothed_rewards:
return
line.set_data(episodes, smoothed_rewards)
ax.set_xlim(0, max(episodes) * 1.05 if episodes else 1)
min_y = min(smoothed_rewards) * 0.9 if smoothed_rewards else -1
max_y = max(smoothed_rewards) * 1.1 if smoothed_rewards else 1
if abs(max_y - min_y) < 0.1:
min_y -= 0.05
max_y += 0.05
ax.set_ylim(min_y, max_y)
if current_timestep is not None and total_timesteps is not None:
ax.set_title(f'Live PPO Training Progress (Timestep: {current_timestep:,}/{total_timesteps:,})')
fig.canvas.draw()
fig.canvas.flush_events()
time.sleep(0.01)
def save_live_plot_final(fig, ax):
plt.ioff()
save_path = getattr(ax, '_save_path_final', None)
if save_path:
plt.savefig(save_path)
print(f"Final live plot saved to: {os.path.abspath(save_path)}")
plt.close(fig)
plt.show()