Commit
·
38cd852
0
Parent(s):
Initial walrus commit
Browse files- README.md +134 -0
- extended_config.yaml +328 -0
- walrus.pt +3 -0
- walrus.safetensors +3 -0
README.md
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- walrus
|
| 4 |
+
- foundation-model
|
| 5 |
+
- physics
|
| 6 |
+
- continuum-dynamics
|
| 7 |
+
- transformer
|
| 8 |
+
- PDE
|
| 9 |
+
datasets:
|
| 10 |
+
- polymathic-ai/shear_flow
|
| 11 |
+
- polymathic-ai/gray_scott_reaction_diffusion
|
| 12 |
+
- polymathic-ai/active_matter
|
| 13 |
+
- polymathic-ai/turbulent_radiative_layer_2D
|
| 14 |
+
- polymathic-ai/supernova_explosion_64
|
| 15 |
+
- polymathic-ai/turbulence_gravity_cooling
|
| 16 |
+
- polymathic-ai/rayleigh_benard
|
| 17 |
+
- polymathic-ai/planetswe
|
| 18 |
+
- polymathic-ai/acoustic_scattering_inclusions
|
| 19 |
+
- polymathic-ai/MHD_64
|
| 20 |
+
- polymathic-ai/rayleigh_taylor_instability
|
| 21 |
+
- polymathic-ai/acoustic_scattering_discontinuous
|
| 22 |
+
- polymathic-ai/acoustic_scattering_maze
|
| 23 |
+
- polymathic-ai/helmholtz_staircase
|
| 24 |
+
- polymathic-ai/viscoelastic_instability
|
| 25 |
+
- BGLab/FlowBench
|
| 26 |
+
license: mit
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
# Walrus: A Cross-Domain Foundation Model for Continuum Dynamics
|
| 30 |
+
|
| 31 |
+
[](https://opensource.org/licenses/MIT)
|
| 32 |
+
[](https://github.com/PolymathicAI/walrus)
|
| 33 |
+
[](https://arxiv.org/abs/2511.15684)
|
| 34 |
+
|
| 35 |
+
Walrus is a large-scale **physics foundation model** capable of modeling a broad range of continuum dynamical systems.
|
| 36 |
+
|
| 37 |
+
Walrus is trained jointly across **19 diverse physical domains** spanning:
|
| 38 |
+
- astrophysics
|
| 39 |
+
- geoscience
|
| 40 |
+
- rheology
|
| 41 |
+
- plasma physics
|
| 42 |
+
- acoustics
|
| 43 |
+
- classical fluids
|
| 44 |
+
|
| 45 |
+
These systems have diverse boundary conditions and physical parameterizations. The model is optimized to serve as a **general-purpose surrogate** for physical simulation and a **strong initialization** for downstream fine-tuning on new PDE systems.
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
# Model Description
|
| 50 |
+
|
| 51 |
+
Walrus is a **1.3B-parameter space–time Transformer** trained autoregressively to predict the temporal evolution of physical fields. Walrus is trained to model the evolution of physical systems in space and time. A simulation snapshot at time t is written as u(t).
|
| 52 |
+
|
| 53 |
+
We define the difference between two consecutive snapshots as:
|
| 54 |
+
Δu(t+1) = u(t+1) − u(t)
|
| 55 |
+
|
| 56 |
+
Given a short history of snapshots:
|
| 57 |
+
U(t) = [u(t − τ + 1), ..., u(t)]
|
| 58 |
+
|
| 59 |
+
The model predicts the next state using:
|
| 60 |
+
u(t+1) ≈ u(t) + M(U(t))
|
| 61 |
+
|
| 62 |
+
### Key architectural components
|
| 63 |
+
|
| 64 |
+
- **Adaptive-compute patch embedding**
|
| 65 |
+
- Token count automatically balanced across resolutions
|
| 66 |
+
- Enables mixing 2D and 3D datasets efficiently
|
| 67 |
+
|
| 68 |
+
- **Patch Jittering**
|
| 69 |
+
- A harmonic-analysis–motivated augmentation technique
|
| 70 |
+
- Reduces aliasing and spectral artifacts
|
| 71 |
+
- Improves long-horizon stability across 17/19 pretraining datasets
|
| 72 |
+
|
| 73 |
+
- **Tensor-law–aware data augmentation**
|
| 74 |
+
- 2D data embedded into 3D through plane rotations
|
| 75 |
+
- Vector/tensor fields rotated with correct physical transformations
|
| 76 |
+
|
| 77 |
+
- **Asymmetric normalization**
|
| 78 |
+
- **Asymmetric normalization:** Walrus normalizes inputs by RMS over space-time and de-normalizes the predicted Δu using the RMS of Δ.
|
| 79 |
+
|
| 80 |
+
---
|
| 81 |
+
|
| 82 |
+
# Pretraining Details
|
| 83 |
+
|
| 84 |
+
Walrus is pretrained 19 physical datasets with:
|
| 85 |
+
|
| 86 |
+
- **Loss**: Per-field normalized L1 loss
|
| 87 |
+
- **Optimizer**: AdamW
|
| 88 |
+
- **Batching**: System-uniform hierarchical sampling
|
| 89 |
+
- **Time-striding**: Random stride (1–5) per training example
|
| 90 |
+
- **Patch jitter range**: Uniform per-axis random offset
|
| 91 |
+
- **Dimensional unification**: 2D fields embedded as thin 3D volumes
|
| 92 |
+
|
| 93 |
+
The model was pretrained on 96 **NVIDIA H100 GPUs** using distributed HSDP (4 GPU per shard group) with sampling matching distribution structure for minimal deadweight loss.
|
| 94 |
+
|
| 95 |
+
---
|
| 96 |
+
|
| 97 |
+
# Intended Use
|
| 98 |
+
|
| 99 |
+
This pretrained checkpoint is suitable for:
|
| 100 |
+
|
| 101 |
+
### ✔ Next-step prediction
|
| 102 |
+
### ✔ Fast surrogate simulation
|
| 103 |
+
### ✔ Autoregressive rollout of physical systems
|
| 104 |
+
### ✔ Transfer learning to new physical settings
|
| 105 |
+
|
| 106 |
+
# Resources
|
| 107 |
+
|
| 108 |
+
Paper: https://arxiv.org/pdf/2511.15684
|
| 109 |
+
Github: https://github.com/PolymathicAI/walrus
|
| 110 |
+
Tutorial: https://github.com/PolymathicAI/walrus/demo_notebooks
|
| 111 |
+
|
| 112 |
+
Note, the training code in the repository is closely coupled with tools from [the Well](https://github.com/PolymathicAI/the_well), so
|
| 113 |
+
it can be beneficial to format data to match that schema. If that's not possible, the tutorial does show how one would use the model
|
| 114 |
+
without Well-formatted data.
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# Demonstrated downstream tasks
|
| 118 |
+
|
| 119 |
+
We show the strong performance of Walrus by finetuning on a range of challenging downstream tasks as shown in the paper.
|
| 120 |
+
Paths to access the finetuned walrus checkpoints for various downstream tasks is as follows:
|
| 121 |
+
|
| 122 |
+
### PDEGym CE-RM: https://huggingface.co/polymathic-ai/walrus_ft_CE-RM/tree/main
|
| 123 |
+
### PDEBench CNS Turbulent: https://huggingface.co/polymathic-ai/walrus_ft_CNS3D_64_Turb/tree/main
|
| 124 |
+
### PDEBench CNS Random: https://huggingface.co/polymathic-ai/walrus_ft_CNS3D_128_Rand/tree/main
|
| 125 |
+
### Flowbench FPOSkelenton: https://huggingface.co/polymathic-ai/walrus_ft_flowbench_skelenton/tree/main
|
| 126 |
+
### The Well Postmerger Neutron Star: https://huggingface.co/polymathic-ai/walrus_ft_post_neutron_star_merger/tree/main
|
| 127 |
+
### The Well Convective envelope RSG: https://huggingface.co/polymathic-ai/walrus_ft_convective_envelope_rsg/tree/main
|
| 128 |
+
### PDEArena Conditioned Incompressible NS: https://huggingface.co/polymathic-ai/walrus_ft_pdearena_ins/tree/main
|
| 129 |
+
### BubbleML 2.0 PoolBoil Subcooled: https://huggingface.co/polymathic-ai/walrus_ft_bubbleML_poolboil/tree/main
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
Additional checkpoints not included in the Walrus collection on HF can be found [here](https://users.flatironinstitute.org/~polymathic/data/walrus_project_checkpoints/) though the endpoint is a bit finicky.
|
| 133 |
+
|
| 134 |
+
More finetuning checkpoints will continue to be added to HF over time.
|
extended_config.yaml
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data_workers: 10
|
| 2 |
+
name: Walrus-wella-delta-Isotr[Space-Adapt-]-AdamW-0.0002
|
| 3 |
+
automatic_setup: true
|
| 4 |
+
trainer:
|
| 5 |
+
_target_: walrus.trainer.Trainer
|
| 6 |
+
max_epoch: 200
|
| 7 |
+
val_frequency: 10
|
| 8 |
+
rollout_val_frequency: 10
|
| 9 |
+
short_validation_length: 20
|
| 10 |
+
max_rollout_steps: 200
|
| 11 |
+
num_time_intervals: 5
|
| 12 |
+
enable_amp: false
|
| 13 |
+
loss_fn:
|
| 14 |
+
_target_: the_well.benchmark.metrics.MAE
|
| 15 |
+
formatter:
|
| 16 |
+
_target_: hydra.utils.get_class
|
| 17 |
+
path: walrus.data.well_to_multi_transformer.ChannelsFirstWithTimeFormatter
|
| 18 |
+
revin:
|
| 19 |
+
_target_: walrus.trainer.normalization_strat.SamplewiseRevNormalization
|
| 20 |
+
_partial_: true
|
| 21 |
+
prediction_type: delta
|
| 22 |
+
grad_acc_steps: 4
|
| 23 |
+
image_validation: true
|
| 24 |
+
video_validation: true
|
| 25 |
+
gradient_log_level: 0
|
| 26 |
+
clip_gradient: 10
|
| 27 |
+
log_interval: 200
|
| 28 |
+
loss_multiplier: 100.0
|
| 29 |
+
lr_scheduler_per_step: false
|
| 30 |
+
skip_spectral_metrics: true
|
| 31 |
+
optimizer:
|
| 32 |
+
_target_: torch.optim.AdamW
|
| 33 |
+
weight_decay: 0.0001
|
| 34 |
+
eps: 1.0e-10
|
| 35 |
+
lr: 0.0002
|
| 36 |
+
lr_scheduler:
|
| 37 |
+
_target_: walrus.optim.schedulers.InverseSqrtLinearWarmupSqrtCooldown
|
| 38 |
+
warmup_epochs: 10
|
| 39 |
+
cooldown_epochs: 10
|
| 40 |
+
warmup_lr_factor: 0.1
|
| 41 |
+
cooldown_lr_factor: 0.001
|
| 42 |
+
model:
|
| 43 |
+
encoder:
|
| 44 |
+
_partial_: true
|
| 45 |
+
_target_: walrus.models.encoders.vstride_encoder.SpaceBagAdaptiveDVstrideEncoder
|
| 46 |
+
learned_pad: true
|
| 47 |
+
base_kernel_size1d:
|
| 48 |
+
- - 4
|
| 49 |
+
- 4
|
| 50 |
+
base_kernel_size2d:
|
| 51 |
+
- - 8
|
| 52 |
+
- 4
|
| 53 |
+
- - 8
|
| 54 |
+
- 4
|
| 55 |
+
base_kernel_size3d:
|
| 56 |
+
- - 8
|
| 57 |
+
- 4
|
| 58 |
+
- - 8
|
| 59 |
+
- 4
|
| 60 |
+
- - 8
|
| 61 |
+
- 4
|
| 62 |
+
groups: 12
|
| 63 |
+
kernel_scales_seq:
|
| 64 |
+
- - 2
|
| 65 |
+
- 2
|
| 66 |
+
- - 4
|
| 67 |
+
- 2
|
| 68 |
+
- - 4
|
| 69 |
+
- 4
|
| 70 |
+
- - 8
|
| 71 |
+
- 4
|
| 72 |
+
variable_downsample: true
|
| 73 |
+
variable_deterministic_ds: true
|
| 74 |
+
activation:
|
| 75 |
+
_partial_: true
|
| 76 |
+
_target_: torch.nn.SiLU
|
| 77 |
+
decoder:
|
| 78 |
+
_partial_: true
|
| 79 |
+
_target_: walrus.models.decoders.vstride_decoder.AdaptiveDVstrideDecoder
|
| 80 |
+
learned_pad: true
|
| 81 |
+
base_kernel_size1d:
|
| 82 |
+
- - 4
|
| 83 |
+
- 4
|
| 84 |
+
base_kernel_size2d:
|
| 85 |
+
- - 8
|
| 86 |
+
- 4
|
| 87 |
+
- - 8
|
| 88 |
+
- 4
|
| 89 |
+
base_kernel_size3d:
|
| 90 |
+
- - 8
|
| 91 |
+
- 4
|
| 92 |
+
- - 8
|
| 93 |
+
- 4
|
| 94 |
+
- - 8
|
| 95 |
+
- 4
|
| 96 |
+
groups: 12
|
| 97 |
+
activation:
|
| 98 |
+
_partial_: true
|
| 99 |
+
_target_: torch.nn.SiLU
|
| 100 |
+
processor:
|
| 101 |
+
space_mixing:
|
| 102 |
+
_partial_: true
|
| 103 |
+
_target_: walrus.models.spatial_blocks.full_attention.FullAttention
|
| 104 |
+
num_heads: 16
|
| 105 |
+
mlp_dim: null
|
| 106 |
+
time_mixing:
|
| 107 |
+
_partial_: true
|
| 108 |
+
_target_: walrus.models.temporal_blocks.axial_time_attention.AxialTimeAttention
|
| 109 |
+
num_heads: 16
|
| 110 |
+
bias_type: rel
|
| 111 |
+
channel_mixing:
|
| 112 |
+
_partial_: true
|
| 113 |
+
_target_: torch.nn.Identity
|
| 114 |
+
_partial_: true
|
| 115 |
+
_target_: walrus.models.spatiotemporal_blocks.space_time_split.SpaceTimeSplitBlock
|
| 116 |
+
norm_layer:
|
| 117 |
+
_partial_: true
|
| 118 |
+
_target_: walrus.models.shared_utils.normalization.RMSGroupNorm
|
| 119 |
+
_target_: walrus.models.IsotropicModel
|
| 120 |
+
hidden_dim: 1408
|
| 121 |
+
projection_dim: 48
|
| 122 |
+
intermediate_dim: 352
|
| 123 |
+
processor_blocks: 40
|
| 124 |
+
drop_path: 0.05
|
| 125 |
+
groups: 16
|
| 126 |
+
max_d: 3
|
| 127 |
+
static_axes: true
|
| 128 |
+
weight_tied_axes: false
|
| 129 |
+
causal_in_time: true
|
| 130 |
+
include_d:
|
| 131 |
+
- 2
|
| 132 |
+
- 3
|
| 133 |
+
override_dimensionality: 0
|
| 134 |
+
jitter_patches: true
|
| 135 |
+
gradient_checkpointing_freq: 2
|
| 136 |
+
use_periodic_fixed_jitter: true
|
| 137 |
+
input_field_drop: 0.0
|
| 138 |
+
data:
|
| 139 |
+
field_index_map_override:
|
| 140 |
+
closed_boundary: 0
|
| 141 |
+
open_boundary: 1
|
| 142 |
+
bias_correction: 2
|
| 143 |
+
pressure: 3
|
| 144 |
+
velocity_x: 4
|
| 145 |
+
velocity_y: 5
|
| 146 |
+
velocity_z: 6
|
| 147 |
+
zeros_like_density: 7
|
| 148 |
+
speed_of_sound: 8
|
| 149 |
+
concentration: 9
|
| 150 |
+
D_xx: 10
|
| 151 |
+
D_xy: 11
|
| 152 |
+
D_xz: 12
|
| 153 |
+
D_yx: 13
|
| 154 |
+
D_yy: 14
|
| 155 |
+
D_yz: 15
|
| 156 |
+
D_zx: 16
|
| 157 |
+
D_zy: 17
|
| 158 |
+
D_zz: 18
|
| 159 |
+
E_xx: 19
|
| 160 |
+
E_xy: 20
|
| 161 |
+
E_xz: 21
|
| 162 |
+
E_yx: 22
|
| 163 |
+
E_yy: 23
|
| 164 |
+
E_yz: 24
|
| 165 |
+
E_zx: 25
|
| 166 |
+
E_zy: 26
|
| 167 |
+
E_zz: 27
|
| 168 |
+
density: 28
|
| 169 |
+
energy: 29
|
| 170 |
+
velocity_r: 30
|
| 171 |
+
velocity_theta: 31
|
| 172 |
+
velocity_phi: 32
|
| 173 |
+
momentum_x: 33
|
| 174 |
+
momentum_y: 34
|
| 175 |
+
momentum_z: 35
|
| 176 |
+
pressure_re: 36
|
| 177 |
+
pressure_im: 37
|
| 178 |
+
mask: 38
|
| 179 |
+
magnetic_field_x: 39
|
| 180 |
+
magnetic_field_y: 40
|
| 181 |
+
magnetic_field_z: 41
|
| 182 |
+
A: 42
|
| 183 |
+
B: 43
|
| 184 |
+
height: 44
|
| 185 |
+
internal_energy: 45
|
| 186 |
+
temperature: 46
|
| 187 |
+
electron_fraction: 47
|
| 188 |
+
entropy: 48
|
| 189 |
+
magnetic_field_log_r: 49
|
| 190 |
+
magnetic_field_theta: 50
|
| 191 |
+
magnetic_field_phi: 51
|
| 192 |
+
velocity_log_r: 52
|
| 193 |
+
buoyancy: 53
|
| 194 |
+
tracer: 54
|
| 195 |
+
log10_density: 55
|
| 196 |
+
log10_temperature: 56
|
| 197 |
+
c_zz: 57
|
| 198 |
+
C_xx: 58
|
| 199 |
+
C_xy: 59
|
| 200 |
+
C_xz: 60
|
| 201 |
+
C_yx: 61
|
| 202 |
+
C_yy: 62
|
| 203 |
+
C_yz: 63
|
| 204 |
+
C_zx: 64
|
| 205 |
+
C_zy: 65
|
| 206 |
+
C_zz: 66
|
| 207 |
+
transform:
|
| 208 |
+
train:
|
| 209 |
+
_target_: the_well.data.augmentation.RandomRotation90
|
| 210 |
+
p: 1.0
|
| 211 |
+
well_base_path: /mnt/gpuxl/polymathic/the_well/datasets/
|
| 212 |
+
wandb_data_name: well_allmain_only
|
| 213 |
+
module_parameters:
|
| 214 |
+
_target_: walrus.data.MixedWellDataModule
|
| 215 |
+
batch_size: 2
|
| 216 |
+
n_steps_input: 6
|
| 217 |
+
n_steps_output: 1
|
| 218 |
+
min_dt_stride: 1
|
| 219 |
+
max_dt_stride: 5
|
| 220 |
+
max_samples: 2000
|
| 221 |
+
well_dataset_info:
|
| 222 |
+
active_matter:
|
| 223 |
+
include_filters: []
|
| 224 |
+
exclude_filters: []
|
| 225 |
+
planetswe:
|
| 226 |
+
include_filters: []
|
| 227 |
+
exclude_filters: []
|
| 228 |
+
acoustic_scattering_maze:
|
| 229 |
+
include_filters: []
|
| 230 |
+
exclude_filters: []
|
| 231 |
+
field_transforms:
|
| 232 |
+
density: torch.zeros_like
|
| 233 |
+
acoustic_scattering_inclusions:
|
| 234 |
+
include_filters: []
|
| 235 |
+
exclude_filters: []
|
| 236 |
+
field_transforms:
|
| 237 |
+
density: torch.zeros_like
|
| 238 |
+
acoustic_scattering_discontinuous:
|
| 239 |
+
include_filters: []
|
| 240 |
+
exclude_filters: []
|
| 241 |
+
field_transforms:
|
| 242 |
+
density: torch.zeros_like
|
| 243 |
+
euler_multi_quadrants_openBC:
|
| 244 |
+
include_filters: []
|
| 245 |
+
exclude_filters: []
|
| 246 |
+
euler_multi_quadrants_periodicBC:
|
| 247 |
+
include_filters: []
|
| 248 |
+
exclude_filters: []
|
| 249 |
+
gray_scott_reaction_diffusion:
|
| 250 |
+
include_filters: []
|
| 251 |
+
exclude_filters: []
|
| 252 |
+
rayleigh_benard:
|
| 253 |
+
include_filters: []
|
| 254 |
+
exclude_filters: []
|
| 255 |
+
shear_flow:
|
| 256 |
+
include_filters: []
|
| 257 |
+
exclude_filters: []
|
| 258 |
+
turbulent_radiative_layer_2D:
|
| 259 |
+
include_filters: []
|
| 260 |
+
exclude_filters: []
|
| 261 |
+
helmholtz_staircase:
|
| 262 |
+
include_filters: []
|
| 263 |
+
exclude_filters: []
|
| 264 |
+
viscoelastic_instability:
|
| 265 |
+
include_filters: []
|
| 266 |
+
exclude_filters: []
|
| 267 |
+
supernova_explosion_128:
|
| 268 |
+
include_filters: []
|
| 269 |
+
exclude_filters: []
|
| 270 |
+
step_downsample_factor: 0.5
|
| 271 |
+
batch_downsample_factor: 0.5
|
| 272 |
+
field_transforms:
|
| 273 |
+
density: torch.log10
|
| 274 |
+
temperature: torch.log10
|
| 275 |
+
turbulence_gravity_cooling:
|
| 276 |
+
include_filters: []
|
| 277 |
+
exclude_filters: []
|
| 278 |
+
step_downsample_factor: 0.5
|
| 279 |
+
batch_downsample_factor: 0.5
|
| 280 |
+
field_transforms:
|
| 281 |
+
density: torch.log10
|
| 282 |
+
temperature: torch.log10
|
| 283 |
+
turbulent_radiative_layer_3D:
|
| 284 |
+
include_filters: []
|
| 285 |
+
exclude_filters: []
|
| 286 |
+
step_downsample_factor: 0.5
|
| 287 |
+
batch_downsample_factor: 0.5
|
| 288 |
+
field_transforms:
|
| 289 |
+
density: torch.log10
|
| 290 |
+
temperature: torch.log10
|
| 291 |
+
MHD_64:
|
| 292 |
+
include_filters: []
|
| 293 |
+
exclude_filters: []
|
| 294 |
+
step_downsample_factor: 0.5
|
| 295 |
+
batch_downsample_factor: 0.5
|
| 296 |
+
rayleigh_taylor_instability:
|
| 297 |
+
include_filters: []
|
| 298 |
+
exclude_filters: []
|
| 299 |
+
step_downsample_factor: 0.5
|
| 300 |
+
batch_downsample_factor: 0.5
|
| 301 |
+
flowbench_FPO_NS_2D_512x128_harmonics:
|
| 302 |
+
include_filters: []
|
| 303 |
+
exclude_filters: []
|
| 304 |
+
path: /mnt/gpuxl/polymathic/WellFormattedExternalData/flowbench/flowbench_FPO_NS_2D_512x128_harmonics
|
| 305 |
+
auto_resume: true
|
| 306 |
+
folder_override: ''
|
| 307 |
+
checkpoint_override: ''
|
| 308 |
+
config_override:
|
| 309 |
+
validation_mode: false
|
| 310 |
+
frozen_components:
|
| 311 |
+
- model
|
| 312 |
+
distribution:
|
| 313 |
+
distribution_type: hsdp
|
| 314 |
+
local_size: 4
|
| 315 |
+
logger:
|
| 316 |
+
wandb: true
|
| 317 |
+
wandb_project_name: walrus_Training_Attempts
|
| 318 |
+
checkpoint:
|
| 319 |
+
_target_: walrus.trainer.checkpoints.CheckPointer
|
| 320 |
+
save_dir: /mnt/home/polymathic/ceph/walrus_logging/runs/Walrus_ft_major_v2-wella-delta-Isotr[Space-Adapt-]-AdamW-0.0002/0/checkpoints
|
| 321 |
+
load_checkpoint_path: null
|
| 322 |
+
coalesced_checkpoint_path: null
|
| 323 |
+
save_best: true
|
| 324 |
+
checkpoint_frequency: 20
|
| 325 |
+
align_fields: true
|
| 326 |
+
load_chkpt_after_finetuning_expansion: false
|
| 327 |
+
finetuning_mods: {}
|
| 328 |
+
experiment_dir: /mnt/home/polymathic/ceph/walrus_logging/runs
|
walrus.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c5338a8ca88cdc36f8479dc4fe136416fed0d0b82521380998d2a14c8a01c3f
|
| 3 |
+
size 5145064530
|
walrus.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d96dc428879c51a9d979f3d855cf2843ebb3e29790190fab34226db8aeec194
|
| 3 |
+
size 5144892644
|