new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 16

Causal Judge Evaluation: Calibrated Surrogate Metrics for LLM Systems

LLM-as-judge evaluation has become the de facto standard for scaling model assessment, but the practice is statistically unsound: uncalibrated scores can invert preferences, naive confidence intervals on uncalibrated scores achieve near-0% coverage, and importance-weighted estimators collapse under limited overlap despite high effective sample size (ESS). We introduce Causal Judge Evaluation (CJE), a framework that fixes all three failures. On n=4,961 Chatbot Arena prompts (after filtering from 5k), CJE achieves 99% pairwise ranking accuracy at full sample size (94% averaged across configurations), matching oracle quality, at 14x lower cost (for ranking 5 policies) by calibrating a 16x cheaper judge on just 5% oracle labels (~250 labels). CJE combines three components: (i) AutoCal-R, reward calibration via mean-preserving isotonic regression; (ii) SIMCal-W, weight stabilization via stacking of S-monotone candidates; and (iii) Oracle-Uncertainty Aware (OUA) inference that propagates calibration uncertainty into confidence intervals. We formalize the Coverage-Limited Efficiency (CLE) diagnostic, which explains why IPS-style estimators fail even when ESS exceeds 90%: the logger rarely visits regions where target policies concentrate. Key findings: SNIPS inverts rankings even with reward calibration (38% pairwise, negative Kendall's tau) due to weight instability; calibrated IPS remains near-random (47%) despite weight stabilization, consistent with CLE; OUA improves coverage from near-0% to ~86% (Direct) and ~96% (stacked-DR), where naive intervals severely under-cover.

  • 1 authors
·
Dec 11, 2025 2

A Hierarchical Framework for Humanoid Locomotion with Supernumerary Limbs

The integration of Supernumerary Limbs (SLs) on humanoid robots poses a significant stability challenge due to the dynamic perturbations they introduce. This thesis addresses this issue by designing a novel hierarchical control architecture to improve humanoid locomotion stability with SLs. The core of this framework is a decoupled strategy that combines learning-based locomotion with model-based balancing. The low-level component consists of a walking gait for a Unitree H1 humanoid through imitation learning and curriculum learning. The high-level component actively utilizes the SLs for dynamic balancing. The effectiveness of the system is evaluated in a physics-based simulation under three conditions: baseline gait for an unladen humanoid (baseline walking), walking with a static SL payload (static payload), and walking with the active dynamic balancing controller (dynamic balancing). Our evaluation shows that the dynamic balancing controller improves stability. Compared to the static payload condition, the balancing strategy yields a gait pattern closer to the baseline and decreases the Dynamic Time Warping (DTW) distance of the CoM trajectory by 47\%. The balancing controller also improves the re-stabilization within gait cycles and achieves a more coordinated anti-phase pattern of Ground Reaction Forces (GRF). The results demonstrate that a decoupled, hierarchical design can effectively mitigate the internal dynamic disturbances arising from the mass and movement of the SLs, enabling stable locomotion for humanoids equipped with functional limbs. Code and videos are available here: https://github.com/heyzbw/HuSLs.

Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

Given a robust model trained to be resilient to one or multiple types of distribution shifts (e.g., natural image corruptions), how is that "robustness" encoded in the model weights, and how easily can it be disentangled and/or "zero-shot" transferred to some other models? This paper empirically suggests a surprisingly simple answer: linearly - by straightforward model weight arithmetic! We start by drawing several key observations: (1)assuming that we train the same model architecture on both a clean dataset and its corrupted version, resultant weights mostly differ in shallow layers; (2)the weight difference after projection, which we call "Robust Weight Signature" (RWS), appears to be discriminative and indicative of different corruption types; (3)for the same corruption type, the RWSs obtained by one model architecture are highly consistent and transferable across different datasets. We propose a minimalistic model robustness "patching" framework that carries a model trained on clean data together with its pre-extracted RWSs. In this way, injecting certain robustness to the model is reduced to directly adding the corresponding RWS to its weight. We verify our proposed framework to be remarkably (1)lightweight. since RWSs concentrate on the shallowest few layers and we further show they can be painlessly quantized, storing an RWS is up to 13 x more compact than storing the full weight copy; (2)in-situ adjustable. RWSs can be appended as needed and later taken off to restore the intact clean model. We further demonstrate one can linearly re-scale the RWS to control the patched robustness strength; (3)composable. Multiple RWSs can be added simultaneously to patch more comprehensive robustness at once; and (4)transferable. Even when the clean model backbone is continually adapted or updated, RWSs remain as effective patches due to their outstanding cross-dataset transferability.

  • 3 authors
·
Feb 24, 2023

Learning to Stabilize Faces

Nowadays, it is possible to scan faces and automatically register them with high quality. However, the resulting face meshes often need further processing: we need to stabilize them to remove unwanted head movement. Stabilization is important for tasks like game development or movie making which require facial expressions to be cleanly separated from rigid head motion. Since manual stabilization is labor-intensive, there have been attempts to automate it. However, previous methods remain impractical: they either still require some manual input, produce imprecise alignments, rely on dubious heuristics and slow optimization, or assume a temporally ordered input. Instead, we present a new learning-based approach that is simple and fully automatic. We treat stabilization as a regression problem: given two face meshes, our network directly predicts the rigid transform between them that brings their skulls into alignment. We generate synthetic training data using a 3D Morphable Model (3DMM), exploiting the fact that 3DMM parameters separate skull motion from facial skin motion. Through extensive experiments we show that our approach outperforms the state-of-the-art both quantitatively and qualitatively on the tasks of stabilizing discrete sets of facial expressions as well as dynamic facial performances. Furthermore, we provide an ablation study detailing the design choices and best practices to help others adopt our approach for their own uses. Supplementary videos can be found on the project webpage syntec-research.github.io/FaceStab.

  • 7 authors
·
Nov 22, 2024

Oscillation-free Quantization for Low-bit Vision Transformers

Weight oscillation is an undesirable side effect of quantization-aware training, in which quantized weights frequently jump between two quantized levels, resulting in training instability and a sub-optimal final model. We discover that the learnable scaling factor, a widely-used de facto setting in quantization aggravates weight oscillation. In this study, we investigate the connection between the learnable scaling factor and quantized weight oscillation and use ViT as a case driver to illustrate the findings and remedies. In addition, we also found that the interdependence between quantized weights in query and key of a self-attention layer makes ViT vulnerable to oscillation. We, therefore, propose three techniques accordingly: statistical weight quantization (rm StatsQ) to improve quantization robustness compared to the prevalent learnable-scale-based method; confidence-guided annealing (rm CGA) that freezes the weights with high confidence and calms the oscillating weights; and query-key reparameterization (rm QKR) to resolve the query-key intertwined oscillation and mitigate the resulting gradient misestimation. Extensive experiments demonstrate that these proposed techniques successfully abate weight oscillation and consistently achieve substantial accuracy improvement on ImageNet. Specifically, our 2-bit DeiT-T/DeiT-S algorithms outperform the previous state-of-the-art by 9.8% and 7.7%, respectively. Code and models are available at: https://github.com/nbasyl/OFQ.

  • 3 authors
·
Feb 4, 2023

CLASSP: a Biologically-Inspired Approach to Continual Learning through Adjustment Suppression and Sparsity Promotion

This paper introduces a new biologically-inspired training method named Continual Learning through Adjustment Suppression and Sparsity Promotion (CLASSP). CLASSP is based on two main principles observed in neuroscience, particularly in the context of synaptic transmission and Long-Term Potentiation (LTP). The first principle is a decay rate over the weight adjustment, which is implemented as a generalization of the AdaGrad optimization algorithm. This means that weights that have received many updates should have lower learning rates as they likely encode important information about previously seen data. However, this principle results in a diffuse distribution of updates throughout the model, as it promotes updates for weights that haven't been previously updated, while a sparse update distribution is preferred to leave weights unassigned for future tasks. Therefore, the second principle introduces a threshold on the loss gradient. This promotes sparse learning by updating a weight only if the loss gradient with respect to that weight is above a certain threshold, i.e. only updating weights with a significant impact on the current loss. Both principles reflect phenomena observed in LTP, where a threshold effect and a gradual saturation of potentiation have been observed. CLASSP is implemented in a Python/PyTorch class, making it applicable to any model. When compared with Elastic Weight Consolidation (EWC) using Computer Vision and sentiment analysis datasets, CLASSP demonstrates superior performance in terms of accuracy and memory footprint.

  • 1 authors
·
Apr 29, 2024