new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

NurViD: A Large Expert-Level Video Database for Nursing Procedure Activity Understanding

The application of deep learning to nursing procedure activity understanding has the potential to greatly enhance the quality and safety of nurse-patient interactions. By utilizing the technique, we can facilitate training and education, improve quality control, and enable operational compliance monitoring. However, the development of automatic recognition systems in this field is currently hindered by the scarcity of appropriately labeled datasets. The existing video datasets pose several limitations: 1) these datasets are small-scale in size to support comprehensive investigations of nursing activity; 2) they primarily focus on single procedures, lacking expert-level annotations for various nursing procedures and action steps; and 3) they lack temporally localized annotations, which prevents the effective localization of targeted actions within longer video sequences. To mitigate these limitations, we propose NurViD, a large video dataset with expert-level annotation for nursing procedure activity understanding. NurViD consists of over 1.5k videos totaling 144 hours, making it approximately four times longer than the existing largest nursing activity datasets. Notably, it encompasses 51 distinct nursing procedures and 177 action steps, providing a much more comprehensive coverage compared to existing datasets that primarily focus on limited procedures. To evaluate the efficacy of current deep learning methods on nursing activity understanding, we establish three benchmarks on NurViD: procedure recognition on untrimmed videos, procedure and action recognition on trimmed videos, and action detection. Our benchmark and code will be available at https://github.com/minghu0830/NurViD-benchmark.

  • 10 authors
·
Oct 20, 2023

Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding

Computer vision has a great potential to help our daily lives by searching for lost keys, watering flowers or reminding us to take a pill. To succeed with such tasks, computer vision methods need to be trained from real and diverse examples of our daily dynamic scenes. While most of such scenes are not particularly exciting, they typically do not appear on YouTube, in movies or TV broadcasts. So how do we collect sufficiently many diverse but boring samples representing our lives? We propose a novel Hollywood in Homes approach to collect such data. Instead of shooting videos in the lab, we ensure diversity by distributing and crowdsourcing the whole process of video creation from script writing to video recording and annotation. Following this procedure we collect a new dataset, Charades, with hundreds of people recording videos in their own homes, acting out casual everyday activities. The dataset is composed of 9,848 annotated videos with an average length of 30 seconds, showing activities of 267 people from three continents. Each video is annotated by multiple free-text descriptions, action labels, action intervals and classes of interacted objects. In total, Charades provides 27,847 video descriptions, 66,500 temporally localized intervals for 157 action classes and 41,104 labels for 46 object classes. Using this rich data, we evaluate and provide baseline results for several tasks including action recognition and automatic description generation. We believe that the realism, diversity, and casual nature of this dataset will present unique challenges and new opportunities for computer vision community.

  • 6 authors
·
Apr 6, 2016

GPT-4o: Visual perception performance of multimodal large language models in piglet activity understanding

Animal ethology is an crucial aspect of animal research, and animal behavior labeling is the foundation for studying animal behavior. This process typically involves labeling video clips with behavioral semantic tags, a task that is complex, subjective, and multimodal. With the rapid development of multimodal large language models(LLMs), new application have emerged for animal behavior understanding tasks in livestock scenarios. This study evaluates the visual perception capabilities of multimodal LLMs in animal activity recognition. To achieve this, we created piglet test data comprising close-up video clips of individual piglets and annotated full-shot video clips. These data were used to assess the performance of four multimodal LLMs-Video-LLaMA, MiniGPT4-Video, Video-Chat2, and GPT-4 omni (GPT-4o)-in piglet activity understanding. Through comprehensive evaluation across five dimensions, including counting, actor referring, semantic correspondence, time perception, and robustness, we found that while current multimodal LLMs require improvement in semantic correspondence and time perception, they have initially demonstrated visual perception capabilities for animal activity recognition. Notably, GPT-4o showed outstanding performance, with Video-Chat2 and GPT-4o exhibiting significantly better semantic correspondence and time perception in close-up video clips compared to full-shot clips. The initial evaluation experiments in this study validate the potential of multimodal large language models in livestock scene video understanding and provide new directions and references for future research on animal behavior video understanding. Furthermore, by deeply exploring the influence of visual prompts on multimodal large language models, we expect to enhance the accuracy and efficiency of animal behavior recognition in livestock scenarios through human visual processing methods.

  • 5 authors
·
Jun 14, 2024

FineBio: A Fine-Grained Video Dataset of Biological Experiments with Hierarchical Annotation

In the development of science, accurate and reproducible documentation of the experimental process is crucial. Automatic recognition of the actions in experiments from videos would help experimenters by complementing the recording of experiments. Towards this goal, we propose FineBio, a new fine-grained video dataset of people performing biological experiments. The dataset consists of multi-view videos of 32 participants performing mock biological experiments with a total duration of 14.5 hours. One experiment forms a hierarchical structure, where a protocol consists of several steps, each further decomposed into a set of atomic operations. The uniqueness of biological experiments is that while they require strict adherence to steps described in each protocol, there is freedom in the order of atomic operations. We provide hierarchical annotation on protocols, steps, atomic operations, object locations, and their manipulation states, providing new challenges for structured activity understanding and hand-object interaction recognition. To find out challenges on activity understanding in biological experiments, we introduce baseline models and results on four different tasks, including (i) step segmentation, (ii) atomic operation detection (iii) object detection, and (iv) manipulated/affected object detection. Dataset and code are available from https://github.com/aistairc/FineBio.

  • 7 authors
·
Jan 31, 2024

Multi-view Video-Pose Pretraining for Operating Room Surgical Activity Recognition

Understanding the workflow of surgical procedures in complex operating rooms requires a deep understanding of the interactions between clinicians and their environment. Surgical activity recognition (SAR) is a key computer vision task that detects activities or phases from multi-view camera recordings. Existing SAR models often fail to account for fine-grained clinician movements and multi-view knowledge, or they require calibrated multi-view camera setups and advanced point-cloud processing to obtain better results. In this work, we propose a novel calibration-free multi-view multi-modal pretraining framework called Multiview Pretraining for Video-Pose Surgical Activity Recognition PreViPS, which aligns 2D pose and vision embeddings across camera views. Our model follows CLIP-style dual-encoder architecture: one encoder processes visual features, while the other encodes human pose embeddings. To handle the continuous 2D human pose coordinates, we introduce a tokenized discrete representation to convert the continuous 2D pose coordinates into discrete pose embeddings, thereby enabling efficient integration within the dual-encoder framework. To bridge the gap between these two modalities, we propose several pretraining objectives using cross- and in-modality geometric constraints within the embedding space and incorporating masked pose token prediction strategy to enhance representation learning. Extensive experiments and ablation studies demonstrate improvements over the strong baselines, while data-efficiency experiments on two distinct operating room datasets further highlight the effectiveness of our approach. We highlight the benefits of our approach for surgical activity recognition in both multi-view and single-view settings, showcasing its practical applicability in complex surgical environments. Code will be made available at: https://github.com/CAMMA-public/PreViPS.

  • 6 authors
·
Feb 19

X-LeBench: A Benchmark for Extremely Long Egocentric Video Understanding

Long-form egocentric video understanding provides rich contextual information and unique insights into long-term human behaviors, holding significant potential for applications in embodied intelligence, long-term activity analysis, and personalized assistive technologies. However, existing benchmark datasets primarily focus on single, short-duration videos or moderately long videos up to dozens of minutes, leaving a substantial gap in evaluating extensive, ultra-long egocentric video recordings. To address this, we introduce X-LeBench, a novel benchmark dataset specifically crafted for evaluating tasks on extremely long egocentric video recordings. Leveraging the advanced text processing capabilities of large language models (LLMs), X-LeBench develops a life-logging simulation pipeline that produces realistic, coherent daily plans aligned with real-world video data. This approach enables the flexible integration of synthetic daily plans with real-world footage from Ego4D-a massive-scale egocentric video dataset covers a wide range of daily life scenarios-resulting in 432 simulated video life logs that mirror realistic daily activities in contextually rich scenarios. The video life-log durations span from 23 minutes to 16.4 hours. The evaluation of several baseline systems and multimodal large language models (MLLMs) reveals their poor performance across the board, highlighting the inherent challenges of long-form egocentric video understanding and underscoring the need for more advanced models.

  • 10 authors
·
Jan 12

EgoSchema: A Diagnostic Benchmark for Very Long-form Video Language Understanding

We introduce EgoSchema, a very long-form video question-answering dataset, and benchmark to evaluate long video understanding capabilities of modern vision and language systems. Derived from Ego4D, EgoSchema consists of over 5000 human curated multiple choice question answer pairs, spanning over 250 hours of real video data, covering a very broad range of natural human activity and behavior. For each question, EgoSchema requires the correct answer to be selected between five given options based on a three-minute-long video clip. While some prior works have proposed video datasets with long clip lengths, we posit that merely the length of the video clip does not truly capture the temporal difficulty of the video task that is being considered. To remedy this, we introduce temporal certificate sets, a general notion for capturing the intrinsic temporal understanding length associated with a broad range of video understanding tasks & datasets. Based on this metric, we find EgoSchema to have intrinsic temporal lengths over 5.7x longer than the second closest dataset and 10x to 100x longer than any other video understanding dataset. Further, our evaluation of several current state-of-the-art video and language models shows them to be severely lacking in long-term video understanding capabilities. Even models with several billions of parameters achieve QA accuracy less than 33% (random is 20%) on the EgoSchema multi-choice question answering task, while humans achieve about 76% accuracy. We posit that {}, with its long intrinsic temporal structures and diverse complexity, would serve as a valuable evaluation probe for developing effective long-term video understanding systems in the future. Data and Zero-shot model evaluation code are open-sourced for both public and commercial use under the Ego4D license at http://egoschema.github.io

  • 3 authors
·
Aug 17, 2023

ResidualViT for Efficient Temporally Dense Video Encoding

Several video understanding tasks, such as natural language temporal video grounding, temporal activity localization, and audio description generation, require "temporally dense" reasoning over frames sampled at high temporal resolution. However, computing frame-level features for these tasks is computationally expensive given the temporal resolution requirements. In this paper, we make three contributions to reduce the cost of computing features for temporally dense tasks. First, we introduce a vision transformer (ViT) architecture, dubbed ResidualViT, that leverages the large temporal redundancy in videos to efficiently compute temporally dense frame-level features. Our architecture incorporates (i) learnable residual connections that ensure temporal consistency across consecutive frames and (ii) a token reduction module that enhances processing speed by selectively discarding temporally redundant information while reusing weights of a pretrained foundation model. Second, we propose a lightweight distillation strategy to approximate the frame-level features of the original foundation model. Finally, we evaluate our approach across four tasks and five datasets, in both zero-shot and fully supervised settings, demonstrating significant reductions in computational cost (up to 60%) and improvements in inference speed (up to 2.5x faster), all while closely approximating the accuracy of the original foundation model.

  • 5 authors
·
Sep 16

UAL-Bench: The First Comprehensive Unusual Activity Localization Benchmark

Localizing unusual activities, such as human errors or surveillance incidents, in videos holds practical significance. However, current video understanding models struggle with localizing these unusual events likely because of their insufficient representation in models' pretraining datasets. To explore foundation models' capability in localizing unusual activity, we introduce UAL-Bench, a comprehensive benchmark for unusual activity localization, featuring three video datasets: UAG-OOPS, UAG-SSBD, UAG-FunQA, and an instruction-tune dataset: OOPS-UAG-Instruct, to improve model capabilities. UAL-Bench evaluates three approaches: Video-Language Models (Vid-LLMs), instruction-tuned Vid-LLMs, and a novel integration of Vision-Language Models and Large Language Models (VLM-LLM). Our results show the VLM-LLM approach excels in localizing short-span unusual events and predicting their onset (start time) more accurately than Vid-LLMs. We also propose a new metric, R@1, TD <= p, to address limitations in existing evaluation methods. Our findings highlight the challenges posed by long-duration videos, particularly in autism diagnosis scenarios, and the need for further advancements in localization techniques. Our work not only provides a benchmark for unusual activity localization but also outlines the key challenges for existing foundation models, suggesting future research directions on this important task.

  • 5 authors
·
Oct 1, 2024

Vamos: Versatile Action Models for Video Understanding

What makes good video representations for video understanding, such as anticipating future activities, or answering video-conditioned questions? While earlier approaches focus on end-to-end learning directly from video pixels, we propose to revisit text-based representations, such as discrete action labels, or free-form video captions, which are interpretable and can be directly consumed by large language models (LLMs). Intuitively, different video understanding tasks may require representations that are complementary and at different granularities. To this end, we propose versatile action models (Vamos), a learning framework powered by a large language model as the "reasoner", and can flexibly leverage visual embeddings, action labels, and free-form descriptions extracted from videos as its input. We evaluate Vamos on four complementary video understanding benchmarks, Ego4D, Next-QA, IntentQA, and EgoSchema, on its capability to model temporal dynamics, encode visual history, and perform reasoning. Surprisingly, we observe that text-based representations consistently achieve competitive performance on all benchmarks, and that visual embeddings provide marginal or no performance improvement, demonstrating the effectiveness of text-based video representation in the LLM era. We perform extensive ablation study and qualitative analysis to support our observations, and achieve state-of-the-art performance on three benchmarks.

  • 6 authors
·
Nov 22, 2023

Two-stream Spatiotemporal Feature for Video QA Task

Understanding the content of videos is one of the core techniques for developing various helpful applications in the real world, such as recognizing various human actions for surveillance systems or customer behavior analysis in an autonomous shop. However, understanding the content or story of the video still remains a challenging problem due to its sheer amount of data and temporal structure. In this paper, we propose a multi-channel neural network structure that adopts a two-stream network structure, which has been shown high performance in human action recognition field, and use it as a spatiotemporal video feature extractor for solving video question and answering task. We also adopt a squeeze-and-excitation structure to two-stream network structure for achieving a channel-wise attended spatiotemporal feature. For jointly modeling the spatiotemporal features from video and the textual features from the question, we design a context matching module with a level adjusting layer to remove the gap of information between visual and textual features by applying attention mechanism on joint modeling. Finally, we adopt a scoring mechanism and smoothed ranking loss objective function for selecting the correct answer from answer candidates. We evaluate our model with TVQA dataset, and our approach shows the improved result in textual only setting, but the result with visual feature shows the limitation and possibility of our approach.

  • 3 authors
·
Jul 11, 2019

LongVLM: Efficient Long Video Understanding via Large Language Models

Empowered by Large Language Models (LLMs), recent advancements in Video-based LLMs (VideoLLMs) have driven progress in various video understanding tasks. These models encode video representations through pooling or query aggregation over a vast number of visual tokens, making computational and memory costs affordable. Despite successfully providing an overall comprehension of video content, existing VideoLLMs still face challenges in achieving detailed understanding due to overlooking local information in long-term videos. To tackle this challenge, we introduce LongVLM, a simple yet powerful VideoLLM for long video understanding, building upon the observation that long videos often consist of sequential key events, complex actions, and camera movements. Our approach proposes to decompose long videos into multiple short-term segments and encode local features for each segment via a hierarchical token merging module. These features are concatenated in temporal order to maintain the storyline across sequential short-term segments. Additionally, we propose to integrate global semantics into each local feature to enhance context understanding. In this way, we encode video representations that incorporate both local and global information, enabling the LLM to generate comprehensive responses for long-term videos. Experimental results on the VideoChatGPT benchmark and zero-shot video question-answering datasets demonstrate the superior capabilities of our model over the previous state-of-the-art methods. Qualitative examples show that our model produces more precise responses for long video understanding. Code is available at https://github.com/ziplab/LongVLM.

  • 5 authors
·
Apr 4, 2024

Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models

Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training

Learning from Weakly-labeled Web Videos via Exploring Sub-Concepts

Learning visual knowledge from massive weakly-labeled web videos has attracted growing research interests thanks to the large corpus of easily accessible video data on the Internet. However, for video action recognition, the action of interest might only exist in arbitrary clips of untrimmed web videos, resulting in high label noises in the temporal space. To address this issue, we introduce a new method for pre-training video action recognition models using queried web videos. Instead of trying to filter out, we propose to convert the potential noises in these queried videos to useful supervision signals by defining the concept of Sub-Pseudo Label (SPL). Specifically, SPL spans out a new set of meaningful "middle ground" label space constructed by extrapolating the original weak labels during video querying and the prior knowledge distilled from a teacher model. Consequently, SPL provides enriched supervision for video models to learn better representations. SPL is fairly simple and orthogonal to popular teacher-student self-training frameworks without extra training cost. We validate the effectiveness of our method on four video action recognition datasets and a weakly-labeled image dataset to study the generalization ability. Experiments show that SPL outperforms several existing pre-training strategies using pseudo-labels and the learned representations lead to competitive results when fine-tuning on HMDB-51 and UCF-101 compared with recent pre-training methods.

  • 8 authors
·
Jan 11, 2021

E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding

Recent advances in Video Large Language Models (Video-LLMs) have demonstrated their great potential in general-purpose video understanding. To verify the significance of these models, a number of benchmarks have been proposed to diagnose their capabilities in different scenarios. However, existing benchmarks merely evaluate models through video-level question-answering, lacking fine-grained event-level assessment and task diversity. To fill this gap, we introduce E.T. Bench (Event-Level & Time-Sensitive Video Understanding Benchmark), a large-scale and high-quality benchmark for open-ended event-level video understanding. Categorized within a 3-level task taxonomy, E.T. Bench encompasses 7.3K samples under 12 tasks with 7K videos (251.4h total length) under 8 domains, providing comprehensive evaluations. We extensively evaluated 8 Image-LLMs and 12 Video-LLMs on our benchmark, and the results reveal that state-of-the-art models for coarse-level (video-level) understanding struggle to solve our fine-grained tasks, e.g., grounding event-of-interests within videos, largely due to the short video context length, improper time representations, and lack of multi-event training data. Focusing on these issues, we further propose a strong baseline model, E.T. Chat, together with an instruction-tuning dataset E.T. Instruct 164K tailored for fine-grained event-level understanding. Our simple but effective solution demonstrates superior performance in multiple scenarios.

  • 6 authors
·
Sep 26, 2024 2

OmniVid: A Generative Framework for Universal Video Understanding

The core of video understanding tasks, such as recognition, captioning, and tracking, is to automatically detect objects or actions in a video and analyze their temporal evolution. Despite sharing a common goal, different tasks often rely on distinct model architectures and annotation formats. In contrast, natural language processing benefits from a unified output space, i.e., text sequences, which simplifies the training of powerful foundational language models, such as GPT-3, with extensive training corpora. Inspired by this, we seek to unify the output space of video understanding tasks by using languages as labels and additionally introducing time and box tokens. In this way, a variety of video tasks could be formulated as video-grounded token generation. This enables us to address various types of video tasks, including classification (such as action recognition), captioning (covering clip captioning, video question answering, and dense video captioning), and localization tasks (such as visual object tracking) within a fully shared encoder-decoder architecture, following a generative framework. Through comprehensive experiments, we demonstrate such a simple and straightforward idea is quite effective and can achieve state-of-the-art or competitive results on seven video benchmarks, providing a novel perspective for more universal video understanding. Code is available at https://github.com/wangjk666/OmniVid.

  • 7 authors
·
Mar 26, 2024

Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding

Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.

  • 7 authors
·
May 23 2

Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion

One significant factor we expect the video representation learning to capture, especially in contrast with the image representation learning, is the object motion. However, we found that in the current mainstream video datasets, some action categories are highly related with the scene where the action happens, making the model tend to degrade to a solution where only the scene information is encoded. For example, a trained model may predict a video as playing football simply because it sees the field, neglecting that the subject is dancing as a cheerleader on the field. This is against our original intention towards the video representation learning and may bring scene bias on different dataset that can not be ignored. In order to tackle this problem, we propose to decouple the scene and the motion (DSM) with two simple operations, so that the model attention towards the motion information is better paid. Specifically, we construct a positive clip and a negative clip for each video. Compared to the original video, the positive/negative is motion-untouched/broken but scene-broken/untouched by Spatial Local Disturbance and Temporal Local Disturbance. Our objective is to pull the positive closer while pushing the negative farther to the original clip in the latent space. In this way, the impact of the scene is weakened while the temporal sensitivity of the network is further enhanced. We conduct experiments on two tasks with various backbones and different pre-training datasets, and find that our method surpass the SOTA methods with a remarkable 8.1% and 8.8% improvement towards action recognition task on the UCF101 and HMDB51 datasets respectively using the same backbone.

  • 8 authors
·
Sep 12, 2020

Multimodal Language Models for Domain-Specific Procedural Video Summarization

Videos serve as a powerful medium to convey ideas, tell stories, and provide detailed instructions, especially through long-format tutorials. Such tutorials are valuable for learning new skills at one's own pace, yet they can be overwhelming due to their length and dense content. Viewers often seek specific information, like precise measurements or step-by-step execution details, making it essential to extract and summarize key segments efficiently. An intelligent, time-sensitive video assistant capable of summarizing and detecting highlights in long videos is highly sought after. Recent advancements in Multimodal Large Language Models offer promising solutions to develop such an assistant. Our research explores the use of multimodal models to enhance video summarization and step-by-step instruction generation within specific domains. These models need to understand temporal events and relationships among actions across video frames. Our approach focuses on fine-tuning TimeChat to improve its performance in specific domains: cooking and medical procedures. By training the model on domain-specific datasets like Tasty for cooking and MedVidQA for medical procedures, we aim to enhance its ability to generate concise, accurate summaries of instructional videos. We curate and restructure these datasets to create high-quality video-centric instruction data. Our findings indicate that when finetuned on domain-specific procedural data, TimeChat can significantly improve the extraction and summarization of key instructional steps in long-format videos. This research demonstrates the potential of specialized multimodal models to assist with practical tasks by providing personalized, step-by-step guidance tailored to the unique aspects of each domain.

  • 1 authors
·
Jul 7, 2024

ViSMaP: Unsupervised Hour-long Video Summarisation by Meta-Prompting

We introduce ViSMap: Unsupervised Video Summarisation by Meta Prompting, a system to summarise hour long videos with no-supervision. Most existing video understanding models work well on short videos of pre-segmented events, yet they struggle to summarise longer videos where relevant events are sparsely distributed and not pre-segmented. Moreover, long-form video understanding often relies on supervised hierarchical training that needs extensive annotations which are costly, slow and prone to inconsistency. With ViSMaP we bridge the gap between short videos (where annotated data is plentiful) and long ones (where it's not). We rely on LLMs to create optimised pseudo-summaries of long videos using segment descriptions from short ones. These pseudo-summaries are used as training data for a model that generates long-form video summaries, bypassing the need for expensive annotations of long videos. Specifically, we adopt a meta-prompting strategy to iteratively generate and refine creating pseudo-summaries of long videos. The strategy leverages short clip descriptions obtained from a supervised short video model to guide the summary. Each iteration uses three LLMs working in sequence: one to generate the pseudo-summary from clip descriptions, another to evaluate it, and a third to optimise the prompt of the generator. This iteration is necessary because the quality of the pseudo-summaries is highly dependent on the generator prompt, and varies widely among videos. We evaluate our summaries extensively on multiple datasets; our results show that ViSMaP achieves performance comparable to fully supervised state-of-the-art models while generalising across domains without sacrificing performance. Code will be released upon publication.

  • 4 authors
·
Apr 22 2

ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding

Video understanding is fundamental to tasks such as action recognition, video reasoning, and robotic control. Early video understanding methods based on large vision-language models (LVLMs) typically adopt a single-pass reasoning paradigm without dynamic feedback, limiting the model's capacity to self-correct and adapt in complex scenarios. Recent efforts have attempted to address this limitation by incorporating reward models and reinforcement learning to enhance reasoning, or by employing tool-agent frameworks. However, these approaches face several challenges, including high annotation costs, reward signals that fail to capture real-time reasoning states, and low inference efficiency. To overcome these issues, we propose ReAgent-V, a novel agentic video understanding framework that integrates efficient frame selection with real-time reward generation during inference. These reward signals not only guide iterative answer refinement through a multi-perspective reflection mechanism-adjusting predictions from conservative, neutral, and aggressive viewpoints-but also enable automatic filtering of high-quality data for supervised fine-tuning (SFT), direct preference optimization (DPO), and group relative policy optimization (GRPO). ReAgent-V is lightweight, modular, and extensible, supporting flexible tool integration tailored to diverse tasks. Extensive experiments on 12 datasets across three core applications-video understanding, video reasoning enhancement, and vision-language-action model alignment-demonstrate significant gains in generalization and reasoning, with improvements of up to 6.9%, 2.1%, and 9.8%, respectively, highlighting the effectiveness and versatility of the proposed framework.

  • 8 authors
·
Jun 2

VideoMind: An Omni-Modal Video Dataset with Intent Grounding for Deep-Cognitive Video Understanding

This paper introduces VideoMind, a video-centric omni-modal dataset designed for deep video content cognition and enhanced multi-modal feature representation. The dataset comprises 103K video samples (3K reserved for testing), each paired with audio and systematically detailed textual descriptions. Specifically, every video and its audio is described across three hierarchical layers (factual, abstract, and intent), progressing from surface to depth. It contains over 22 million words, averaging ~225 words per sample. VideoMind's key distinction from existing datasets is its provision of intent expressions, which require contextual integration across the entire video and are not directly observable. These deep-cognitive expressions are generated using a Chain-of-Thought (COT) approach, prompting the mLLM through step-by-step reasoning. Each description includes annotations for subject, place, time, event, action, and intent, supporting downstream recognition tasks. Crucially, we establish a gold-standard benchmark with 3,000 manually validated samples for evaluating deep-cognitive video understanding. We design hybrid-cognitive retrieval experiments, scored by multi-level retrieval metrics, to appropriately assess deep video comprehension. Evaluation results for models (e.g., InternVideo, VAST, UMT-L) are released. VideoMind serves as a powerful benchmark for fine-grained cross-modal alignment and advances fields requiring in-depth video understanding, such as emotion and intent recognition. The data is publicly available on GitHub, HuggingFace, and OpenDataLab, https://github.com/cdx-cindy/VideoMind.

  • 6 authors
·
Jul 24

LALM: Long-Term Action Anticipation with Language Models

Understanding human activity is a crucial yet intricate task in egocentric vision, a field that focuses on capturing visual perspectives from the camera wearer's viewpoint. While traditional methods heavily rely on representation learning trained on extensive video data, there exists a significant limitation: obtaining effective video representations proves challenging due to the inherent complexity and variability in human activities.Furthermore, exclusive dependence on video-based learning may constrain a model's capability to generalize across long-tail classes and out-of-distribution scenarios. In this study, we introduce a novel approach for long-term action anticipation using language models (LALM), adept at addressing the complex challenges of long-term activity understanding without the need for extensive training. Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details. By leveraging the context provided by these past events, we devise a prompting strategy for action anticipation using large language models (LLMs). Moreover, we implement Maximal Marginal Relevance for example selection to facilitate in-context learning of the LLMs. Our experimental results demonstrate that LALM surpasses the state-of-the-art methods in the task of long-term action anticipation on the Ego4D benchmark. We further validate LALM on two additional benchmarks, affirming its capacity for generalization across intricate activities with different sets of taxonomies. These are achieved without specific fine-tuning.

  • 6 authors
·
Nov 28, 2023

VLog: Video-Language Models by Generative Retrieval of Narration Vocabulary

Human daily activities can be concisely narrated as sequences of routine events (e.g., turning off an alarm) in video streams, forming an event vocabulary. Motivated by this, we introduce VLog, a novel video understanding framework that define video narrations as vocabulary, going beyond the typical subword vocabularies in existing generative video-language models. Built on the lightweight language model GPT-2, VLog feature three key innovations: (i) A generative retrieval model, marrying language model's complex reasoning capabilities with contrastive retrieval's efficient similarity search. (ii) A hierarchical vocabulary derived from large-scale video narrations using our narration pair encoding algorithm, enabling efficient indexing of specific events (e.g., cutting a tomato) by identifying broader scenarios (e.g., kitchen) with expressive postfixes (e.g., by the left hand). (iii) A vocabulary update strategy leveraging generative models to extend the vocabulary for novel events encountered during inference. To validate our approach, we introduce VidCap-Eval, a development set requiring concise narrations with reasoning relationships (e.g., before and after). Experiments on EgoSchema, COIN, and HiREST further demonstrate the effectiveness of VLog, highlighting its ability to generate concise, contextually accurate, and efficient narrations, offering a novel perspective on video understanding. Codes are released at https://github.com/showlab/VLog.

  • 2 authors
·
Mar 12 2

Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection to Image-Text Pre-Training

The correlation between the vision and text is essential for video moment retrieval (VMR), however, existing methods heavily rely on separate pre-training feature extractors for visual and textual understanding. Without sufficient temporal boundary annotations, it is non-trivial to learn universal video-text alignments. In this work, we explore multi-modal correlations derived from large-scale image-text data to facilitate generalisable VMR. To address the limitations of image-text pre-training models on capturing the video changes, we propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments. Whilst existing VMR methods are focusing on building temporal-aware video features, being aware of the text descriptions about the temporal changes is also critical but originally overlooked in pre-training by matching static images with sentences. Therefore, we extract visual context and spatial dynamic information from video frames and explicitly enforce their alignments with the phrases describing video changes (e.g. verb). By doing so, the potentially relevant visual and motion patterns in videos are encoded in the corresponding text embeddings (injected) so to enable more accurate video-text alignments. We conduct extensive experiments on two VMR benchmark datasets (Charades-STA and ActivityNet-Captions) and achieve state-of-the-art performances. Especially, VDI yields notable advantages when being tested on the out-of-distribution splits where the testing samples involve novel scenes and vocabulary.

  • 5 authors
·
Feb 28, 2023

SF2T: Self-supervised Fragment Finetuning of Video-LLMs for Fine-Grained Understanding

Video-based Large Language Models (Video-LLMs) have witnessed substantial advancements in recent years, propelled by the advancement in multi-modal LLMs. Although these models have demonstrated proficiency in providing the overall description of videos, they struggle with fine-grained understanding, particularly in aspects such as visual dynamics and video details inquiries. To tackle these shortcomings, we find that fine-tuning Video-LLMs on self-supervised fragment tasks, greatly improve their fine-grained video understanding abilities. Hence we propose two key contributions:(1) Self-Supervised Fragment Fine-Tuning (SF^2T), a novel effortless fine-tuning method, employs the rich inherent characteristics of videos for training, while unlocking more fine-grained understanding ability of Video-LLMs. Moreover, it relieves researchers from labor-intensive annotations and smartly circumvents the limitations of natural language, which often fails to capture the complex spatiotemporal variations in videos; (2) A novel benchmark dataset, namely FineVidBench, for rigorously assessing Video-LLMs' performance at both the scene and fragment levels, offering a comprehensive evaluation of their capabilities. We assessed multiple models and validated the effectiveness of SF^2T on them. Experimental results reveal that our approach improves their ability to capture and interpret spatiotemporal details.

  • 7 authors
·
Apr 10

A Video Is Worth 4096 Tokens: Verbalize Story Videos To Understand Them In Zero Shot

Multimedia content, such as advertisements and story videos, exhibit a rich blend of creativity and multiple modalities. They incorporate elements like text, visuals, audio, and storytelling techniques, employing devices like emotions, symbolism, and slogans to convey meaning. While previous research in multimedia understanding has focused mainly on videos with specific actions like cooking, there is a dearth of large annotated training datasets, hindering the development of supervised learning models with satisfactory performance for real-world applications. However, the rise of large language models (LLMs) has witnessed remarkable zero-shot performance in various natural language processing (NLP) tasks, such as emotion classification, question-answering, and topic classification. To bridge this performance gap in multimedia understanding, we propose verbalizing story videos to generate their descriptions in natural language and then performing video-understanding tasks on the generated story as opposed to the original video. Through extensive experiments on five video-understanding tasks, we demonstrate that our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding. Further, alleviating a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science, persuasion strategy identification.

  • 5 authors
·
May 16, 2023 1

LLMs Meet Long Video: Advancing Long Video Comprehension with An Interactive Visual Adapter in LLMs

Long video understanding is a significant and ongoing challenge in the intersection of multimedia and artificial intelligence. Employing large language models (LLMs) for comprehending video becomes an emerging and promising method. However, this approach incurs high computational costs due to the extensive array of video tokens, experiences reduced visual clarity as a consequence of token aggregation, and confronts challenges arising from irrelevant visual tokens while answering video-related questions. To alleviate these issues, we present an Interactive Visual Adapter (IVA) within LLMs, designed to enhance interaction with fine-grained visual elements. Specifically, we first transform long videos into temporal video tokens via leveraging a visual encoder alongside a pretrained causal transformer, then feed them into LLMs with the video instructions. Subsequently, we integrated IVA, which contains a lightweight temporal frame selector and a spatial feature interactor, within the internal blocks of LLMs to capture instruction-aware and fine-grained visual signals. Consequently, the proposed video-LLM facilitates a comprehensive understanding of long video content through appropriate long video modeling and precise visual interactions. We conducted extensive experiments on nine video understanding benchmarks and experimental results show that our interactive visual adapter significantly improves the performance of video LLMs on long video QA tasks. Ablation studies further verify the effectiveness of IVA in long and short video understandings.

  • 4 authors
·
Feb 21, 2024 1

Goldfish: Vision-Language Understanding of Arbitrarily Long Videos

Most current LLM-based models for video understanding can process videos within minutes. However, they struggle with lengthy videos due to challenges such as "noise and redundancy", as well as "memory and computation" constraints. In this paper, we present Goldfish, a methodology tailored for comprehending videos of arbitrary lengths. We also introduce the TVQA-long benchmark, specifically designed to evaluate models' capabilities in understanding long videos with questions in both vision and text content. Goldfish approaches these challenges with an efficient retrieval mechanism that initially gathers the top-k video clips relevant to the instruction before proceeding to provide the desired response. This design of the retrieval mechanism enables the Goldfish to efficiently process arbitrarily long video sequences, facilitating its application in contexts such as movies or television series. To facilitate the retrieval process, we developed MiniGPT4-Video that generates detailed descriptions for the video clips. In addressing the scarcity of benchmarks for long video evaluation, we adapted the TVQA short video benchmark for extended content analysis by aggregating questions from entire episodes, thereby shifting the evaluation from partial to full episode comprehension. We attained a 41.78% accuracy rate on the TVQA-long benchmark, surpassing previous methods by 14.94%. Our MiniGPT4-Video also shows exceptional performance in short video comprehension, exceeding existing state-of-the-art methods by 3.23%, 2.03%, 16.5% and 23.59% on the MSVD, MSRVTT, TGIF, and TVQA short video benchmarks, respectively. These results indicate that our models have significant improvements in both long and short-video understanding. Our models and code have been made publicly available at https://vision-cair.github.io/Goldfish_website/

  • 9 authors
·
Jul 17, 2024 2

Video-MTR: Reinforced Multi-Turn Reasoning for Long Video Understanding

Long-form video understanding, characterized by long-range temporal dependencies and multiple events, remains a challenge. Existing methods often rely on static reasoning or external visual-language models (VLMs), which face issues like complexity and sub-optimal performance due to the lack of end-to-end training. In this paper, we propose Video-MTR, a reinforced multi-turn reasoning framework designed to enable iterative key video segment selection and question comprehension. Unlike traditional video reasoning pipeline, which generate predictions in a single turn, Video-MTR performs reasoning in multiple turns, selecting video segments progressively based on the evolving understanding of previously processed segments and the current question. This iterative process allows for a more refined and contextually aware analysis of the video. To ensure intermediate reasoning process, we introduce a novel gated bi-level reward system, combining trajectory-level rewards based on answer correctness and turn-level rewards emphasizing frame-query relevance. This system optimizes both video segment selection and question comprehension, eliminating the need for external VLMs and allowing end-to-end training. Extensive experiments on benchmarks like VideoMME, MLVU, and EgoSchema demonstrate that Video-MTR outperforms existing methods in both accuracy and efficiency, advancing the state-of-the-art in long video understanding.

  • 4 authors
·
Aug 28 2

iPerceive: Applying Common-Sense Reasoning to Multi-Modal Dense Video Captioning and Video Question Answering

Most prior art in visual understanding relies solely on analyzing the "what" (e.g., event recognition) and "where" (e.g., event localization), which in some cases, fails to describe correct contextual relationships between events or leads to incorrect underlying visual attention. Part of what defines us as human and fundamentally different from machines is our instinct to seek causality behind any association, say an event Y that happened as a direct result of event X. To this end, we propose iPerceive, a framework capable of understanding the "why" between events in a video by building a common-sense knowledge base using contextual cues to infer causal relationships between objects in the video. We demonstrate the effectiveness of our technique using the dense video captioning (DVC) and video question answering (VideoQA) tasks. Furthermore, while most prior work in DVC and VideoQA relies solely on visual information, other modalities such as audio and speech are vital for a human observer's perception of an environment. We formulate DVC and VideoQA tasks as machine translation problems that utilize multiple modalities. By evaluating the performance of iPerceive DVC and iPerceive VideoQA on the ActivityNet Captions and TVQA datasets respectively, we show that our approach furthers the state-of-the-art. Code and samples are available at: iperceive.amanchadha.com.

  • 3 authors
·
Nov 16, 2020

H2VU-Benchmark: A Comprehensive Benchmark for Hierarchical Holistic Video Understanding

With the rapid development of multimodal models, the demand for assessing video understanding capabilities has been steadily increasing. However, existing benchmarks for evaluating video understanding exhibit significant limitations in coverage, task diversity, and scene adaptability. These shortcomings hinder the accurate assessment of models' comprehensive video understanding capabilities. To tackle this challenge, we propose a hierarchical and holistic video understanding (H2VU) benchmark designed to evaluate both general video and online streaming video comprehension. This benchmark contributes three key features: Extended video duration: Spanning videos from brief 3-second clips to comprehensive 1.5-hour recordings, thereby bridging the temporal gaps found in current benchmarks. Comprehensive assessment tasks: Beyond traditional perceptual and reasoning tasks, we have introduced modules for countercommonsense comprehension and trajectory state tracking. These additions test the models' deep understanding capabilities beyond mere prior knowledge. Enriched video data: To keep pace with the rapid evolution of current AI agents, we have expanded first-person streaming video datasets. This expansion allows for the exploration of multimodal models' performance in understanding streaming videos from a first-person perspective. Extensive results from H2VU reveal that existing multimodal large language models (MLLMs) possess substantial potential for improvement in our newly proposed evaluation tasks. We expect that H2VU will facilitate advancements in video understanding research by offering a comprehensive and in-depth analysis of MLLMs.

  • 11 authors
·
Mar 31

VT-LVLM-AR: A Video-Temporal Large Vision-Language Model Adapter for Fine-Grained Action Recognition in Long-Term Videos

Human action recognition in long-term videos, characterized by complex backgrounds and subtle action differences, poses significant challenges for traditional deep learning models due to computational overhead, difficulty in capturing long-range temporal dependencies, and limited semantic understanding. While Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) have shown remarkable capabilities in multi-modal understanding and reasoning, their direct application to continuous video streams for fine-grained action recognition remains an open problem. This paper introduces VT-LVLM-AR (Video-Temporal Large Vision-Language Model Adapter for Action Recognition), a novel framework designed to bridge this gap. VT-LVLM-AR comprises a Video-to-Event Mapper (VTEM) that efficiently transforms raw video into compact, semantically rich, and temporally coherent "visual event sequences" through lightweight spatio-temporal feature extraction, adaptive temporal pooling, and conceptual quantization with an event coherence bias. These visual event sequences are then fed into an LVLM-based Action Reasoning module, specifically a frozen LLaVA-1.5 model, adapted using parameter-efficient Prompt Tuning (P-Tuning v2) for action classification. Comprehensive evaluations on the NTU RGB+D and NTU RGB+D 120 datasets demonstrate that VT-LVLM-AR consistently achieves state-of-the-art performance, surpassing existing methods (e.g., 94.1% accuracy on NTU RGB+D X-Sub). Ablation studies confirm the critical contributions of VTEM's components and the efficacy of Prompt Tuning, while human evaluations underscore the interpretability of our visual event representations. This work highlights the immense potential of leveraging LVLMs for robust and interpretable video action understanding through effective video-to-language translation and efficient model adaptation.

  • 3 authors
·
Aug 21

Kwai Keye-VL 1.5 Technical Report

In recent years, the development of Large Language Models (LLMs) has significantly advanced, extending their capabilities to multimodal tasks through Multimodal Large Language Models (MLLMs). However, video understanding remains a challenging area due to the dynamic and information-dense nature of videos. Existing models struggle with the trade-off between spatial resolution and temporal coverage when processing video content. We present Keye-VL-1.5, which addresses fundamental challenges in video comprehension through three key innovations. First, we introduce a novel Slow-Fast video encoding strategy that dynamically allocates computational resources based on inter-frame similarity, processing key frames with significant visual changes at higher resolution (Slow pathway) while handling relatively static frames with increased temporal coverage at lower resolution (Fast pathway). Second, we implement a progressive four-stage pre-training methodology that systematically extends the model's context length from 8K to 128K tokens, enabling processing of longer videos and more complex visual content. Third, we develop a comprehensive post-training pipeline focusing on reasoning enhancement and human preference alignment, incorporating a 5-step chain-of-thought data construction process, iterative GSPO-based reinforcement learning with progressive prompt hinting for difficult cases, and alignment training. Through extensive evaluation on public benchmarks and rigorous internal human assessment, Keye-VL-1.5 demonstrates significant improvements over existing models, particularly excelling in video understanding tasks while maintaining competitive performance on general multimodal benchmarks.

Tell me what you see: A zero-shot action recognition method based on natural language descriptions

This paper presents a novel approach to Zero-Shot Action Recognition. Recent works have explored the detection and classification of objects to obtain semantic information from videos with remarkable performance. Inspired by them, we propose using video captioning methods to extract semantic information about objects, scenes, humans, and their relationships. To the best of our knowledge, this is the first work to represent both videos and labels with descriptive sentences. More specifically, we represent videos using sentences generated via video captioning methods and classes using sentences extracted from documents acquired through search engines on the Internet. Using these representations, we build a shared semantic space employing BERT-based embedders pre-trained in the paraphrasing task on multiple text datasets. The projection of both visual and semantic information onto this space is straightforward, as they are sentences, enabling classification using the nearest neighbor rule. We demonstrate that representing videos and labels with sentences alleviates the domain adaptation problem. Additionally, we show that word vectors are unsuitable for building the semantic embedding space of our descriptions. Our method outperforms the state-of-the-art performance on the UCF101 dataset by 3.3 p.p. in accuracy under the TruZe protocol and achieves competitive results on both the UCF101 and HMDB51 datasets under the conventional protocol (0/50\% - training/testing split). Our code is available at https://github.com/valterlej/zsarcap.

  • 4 authors
·
Dec 18, 2021

From Seconds to Hours: Reviewing MultiModal Large Language Models on Comprehensive Long Video Understanding

The integration of Large Language Models (LLMs) with visual encoders has recently shown promising performance in visual understanding tasks, leveraging their inherent capability to comprehend and generate human-like text for visual reasoning. Given the diverse nature of visual data, MultiModal Large Language Models (MM-LLMs) exhibit variations in model designing and training for understanding images, short videos, and long videos. Our paper focuses on the substantial differences and unique challenges posed by long video understanding compared to static image and short video understanding. Unlike static images, short videos encompass sequential frames with both spatial and within-event temporal information, while long videos consist of multiple events with between-event and long-term temporal information. In this survey, we aim to trace and summarize the advancements of MM-LLMs from image understanding to long video understanding. We review the differences among various visual understanding tasks and highlight the challenges in long video understanding, including more fine-grained spatiotemporal details, dynamic events, and long-term dependencies. We then provide a detailed summary of the advancements in MM-LLMs in terms of model design and training methodologies for understanding long videos. Finally, we compare the performance of existing MM-LLMs on video understanding benchmarks of various lengths and discuss potential future directions for MM-LLMs in long video understanding.

  • 11 authors
·
Sep 27, 2024

Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

This paper focuses on tackling the problem of temporal language localization in videos, which aims to identify the start and end points of a moment described by a natural language sentence in an untrimmed video. However, it is non-trivial since it requires not only the comprehensive understanding of the video and sentence query, but also the accurate semantic correspondence capture between them. Existing efforts are mainly centered on exploring the sequential relation among video clips and query words to reason the video and sentence query, neglecting the other intra-modal relations (e.g., semantic similarity among video clips and syntactic dependency among the query words). Towards this end, in this work, we propose a Multi-modal Interaction Graph Convolutional Network (MIGCN), which jointly explores the complex intra-modal relations and inter-modal interactions residing in the video and sentence query to facilitate the understanding and semantic correspondence capture of the video and sentence query. In addition, we devise an adaptive context-aware localization method, where the context information is taken into the candidate moments and the multi-scale fully connected layers are designed to rank and adjust the boundary of the generated coarse candidate moments with different lengths. Extensive experiments on Charades-STA and ActivityNet datasets demonstrate the promising performance and superior efficiency of our model.

  • 5 authors
·
Oct 12, 2021

FMI-TAL: Few-shot Multiple Instances Temporal Action Localization by Probability Distribution Learning and Interval Cluster Refinement

The present few-shot temporal action localization model can't handle the situation where videos contain multiple action instances. So the purpose of this paper is to achieve manifold action instances localization in a lengthy untrimmed query video using limited trimmed support videos. To address this challenging problem effectively, we proposed a novel solution involving a spatial-channel relation transformer with probability learning and cluster refinement. This method can accurately identify the start and end boundaries of actions in the query video, utilizing only a limited number of labeled videos. Our proposed method is adept at capturing both temporal and spatial contexts to effectively classify and precisely locate actions in videos, enabling a more comprehensive utilization of these crucial details. The selective cosine penalization algorithm is designed to suppress temporal boundaries that do not include action scene switches. The probability learning combined with the label generation algorithm alleviates the problem of action duration diversity and enhances the model's ability to handle fuzzy action boundaries. The interval cluster can help us get the final results with multiple instances situations in few-shot temporal action localization. Our model achieves competitive performance through meticulous experimentation utilizing the benchmark datasets ActivityNet1.3 and THUMOS14. Our code is readily available at https://github.com/ycwfs/FMI-TAL.

  • 3 authors
·
Aug 25, 2024

Self-supervised Video Representation Learning by Uncovering Spatio-temporal Statistics

This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc. Then a neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source code is publicly available at: https://github.com/laura-wang/video_repres_sts.

  • 6 authors
·
Aug 31, 2020

VideoChat-A1: Thinking with Long Videos by Chain-of-Shot Reasoning

The recent advance in video understanding has been driven by multimodal large language models (MLLMs). But these MLLMs are good at analyzing short videos, while suffering from difficulties in understanding videos with a longer context. To address this difficulty, several agent paradigms have recently been proposed, using MLLMs as agents for retrieving extra contextual knowledge in a long video. However, most existing agents ignore the key fact that a long video is composed with multiple shots, i.e., to answer the user question from a long video, it is critical to deeply understand its relevant shots like human. Without such insight, these agents often mistakenly find redundant even noisy temporal context, restricting their capacity for long video understanding. To fill this gap, we propose VideoChat-A1, a novel long video agent paradigm. Different from the previous works, our VideoChat-A1 can deeply think with long videos, via a distinct chain-of-shot reasoning paradigm. More specifically, it can progressively select the relevant shots of user question, and look into these shots in a coarse-to-fine partition. By multi-modal reasoning along the shot chain, VideoChat-A1 can effectively mimic step-by-step human thinking process, allowing to interactively discover preferable temporal context for thoughtful understanding in long videos. Extensive experiments show that, our VideoChat-A1 achieves the state-of-the-art performance on the mainstream long video QA benchmarks, e.g., it achieves 77.0 on VideoMME and 70.1 on EgoSchema, outperforming its strong baselines (e.g., Intern2.5VL-8B and InternVideo2.5-8B), by up to 10.8\% and 6.2\%. Compared to leading close-source GPT-4o and Gemini 1.5 Pro, VideoChat-A1 offers competitive accuracy, but with 7\% input frames and 12\% inference time on average.

  • 7 authors
·
Jun 6

Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data

Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this paper, we aim to better assess the capabilities of current video-text models and understand their limitations. We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD), and a new Feint6K dataset. To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning. Analyses show that previous video-text foundation models can be easily fooled by counterfactually augmented data and are far behind human-level performance. In order to narrow the gap between video-text models and human performance on RCAD, we identify a key limitation of current contrastive approaches on video-text data and introduce LLM-teacher, a more effective approach to learn action semantics by leveraging knowledge obtained from a pretrained large language model. Experiments and analyses show that our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models. Our Feint6K dataset and project page is available at https://feint6k.github.io.

  • 8 authors
·
Jul 17, 2024

VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding

Building on the advances of language models, Large Multimodal Models (LMMs) have contributed significant improvements in video understanding. While the current video LMMs utilize advanced Large Language Models (LLMs), they rely on either image or video encoders to process visual inputs, each of which has its own limitations. Image encoders excel at capturing rich spatial details from frame sequences but lack explicit temporal context, which can be important in videos with intricate action sequences. On the other hand, video encoders provide temporal context but are often limited by computational constraints that lead to processing only sparse frames at lower resolutions, resulting in reduced contextual and spatial understanding. To this end, we introduce VideoGPT+, which combines the complementary benefits of the image encoder (for detailed spatial understanding) and the video encoder (for global temporal context modeling). The model processes videos by dividing them into smaller segments and applies an adaptive pooling strategy on features extracted by both image and video encoders. Our architecture showcases improved performance across multiple video benchmarks, including VCGBench, MVBench and Zero-shot question-answering. Further, we develop 112K video-instruction set using a novel semi-automatic annotation pipeline which further improves the model performance. Additionally, to comprehensively evaluate video LMMs, we present VCGBench-Diverse, covering 18 broad video categories such as lifestyle, sports, science, gaming, and surveillance videos. This benchmark with 4,354 question-answer pairs evaluates the generalization of existing LMMs on dense video captioning, spatial and temporal understanding, and complex reasoning, ensuring comprehensive assessment across diverse video types and dynamics. Code: https://github.com/mbzuai-oryx/VideoGPT-plus.

  • 4 authors
·
Jun 13, 2024

SeViCES: Unifying Semantic-Visual Evidence Consensus for Long Video Understanding

Long video understanding remains challenging due to its complex, diverse, and temporally scattered content. Although video large language models (Video-LLMs) can process videos lasting tens of minutes, applying them to truly long sequences is computationally prohibitive and often leads to unfocused or inconsistent reasoning. A promising solution is to select only the most informative frames, yet existing approaches typically ignore temporal dependencies or rely on unimodal evidence, limiting their ability to provide complete and query-relevant context. We propose a Semantic-Visual Consensus Evidence Selection (SeViCES) framework for effective and reliable long video understanding. SeViCES is training-free and model-agnostic, and introduces two key components. The Semantic-Visual Consensus Frame Selection (SVCFS) module selects frames through (1) a temporal-aware semantic branch that leverages LLM reasoning over captions, and (2) a cluster-guided visual branch that aligns embeddings with semantic scores via mutual information. The Answer Consensus Refinement (ACR) module further resolves inconsistencies between semantic- and visual-based predictions by fusing evidence and constraining the answer space. Extensive experiments on long video understanding benchmarks show that SeViCES consistently outperforms state-of-the-art methods in both accuracy and robustness, demonstrating the importance of consensus-driven evidence selection for Video-LLMs.

  • 5 authors
·
Oct 23

Map the Flow: Revealing Hidden Pathways of Information in VideoLLMs

Video Large Language Models (VideoLLMs) extend the capabilities of vision-language models to spatiotemporal inputs, enabling tasks such as video question answering (VideoQA). Despite recent advances in VideoLLMs, their internal mechanisms on where and how they extract and propagate video and textual information remain less explored. In this study, we investigate the internal information flow of VideoLLMs using mechanistic interpretability techniques. Our analysis reveals consistent patterns across diverse VideoQA tasks: (1) temporal reasoning in VideoLLMs initiates with active cross-frame interactions in early-to-middle layers, (2) followed by progressive video-language integration in middle layers. This is facilitated by alignment between video representations and linguistic embeddings containing temporal concepts. (3) Upon completion of this integration, the model is ready to generate correct answers in middle-to-late layers. (4) Based on our analysis, we show that VideoLLMs can retain their VideoQA performance by selecting these effective information pathways while suppressing a substantial amount of attention edges, e.g., 58% in LLaVA-NeXT-7B-Video-FT. These findings provide a blueprint on how VideoLLMs perform temporal reasoning and offer practical insights for improving model interpretability and downstream generalization. Our project page with the source code is available at https://map-the-flow.github.io

  • 3 authors
·
Oct 15 1

Needle In A Video Haystack: A Scalable Synthetic Framework for Benchmarking Video MLLMs

Video understanding is a crucial next step for multimodal large language models (MLLMs). To probe specific aspects of video understanding ability, existing video benchmarks typically require careful video selection based on the target capability, along with laborious annotation of query-response pairs to match the specific video content. This process is both challenging and resource-intensive. In this paper, we propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation. VideoNIAH decouples test video content from their query-responses by inserting unrelated image/text 'needles' into original videos. It generates annotations solely from these needles, ensuring diversity in video sources and a variety of query-responses. Additionally, by inserting multiple needles, VideoNIAH rigorously evaluates the temporal understanding capabilities of models. We utilized VideoNIAH to compile a video benchmark VNBench, including tasks such as retrieval, ordering, and counting. VNBench can efficiently evaluate the fine-grained understanding ability and spatio-temporal modeling ability of a video model, while also supporting the long-context evaluation. Additionally, we evaluated recent video-centric multimodal large language models (MLLMs), both open-source and proprietary, providing a comprehensive analysis. We found that although proprietary models have significant advantages over open-source models, all existing video models still perform poorly on long-distance dependency tasks. VideoNIAH is a simple yet highly scalable benchmark construction framework, and we believe it will inspire future video benchmark works. The code and data are available at https://github.com/joez17/VideoNIAH.

  • 9 authors
·
Jun 13, 2024

RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning

We study unsupervised video representation learning that seeks to learn both motion and appearance features from unlabeled video only, which can be reused for downstream tasks such as action recognition. This task, however, is extremely challenging due to 1) the highly complex spatial-temporal information in videos; and 2) the lack of labeled data for training. Unlike the representation learning for static images, it is difficult to construct a suitable self-supervised task to well model both motion and appearance features. More recently, several attempts have been made to learn video representation through video playback speed prediction. However, it is non-trivial to obtain precise speed labels for the videos. More critically, the learnt models may tend to focus on motion pattern and thus may not learn appearance features well. In this paper, we observe that the relative playback speed is more consistent with motion pattern, and thus provide more effective and stable supervision for representation learning. Therefore, we propose a new way to perceive the playback speed and exploit the relative speed between two video clips as labels. In this way, we are able to well perceive speed and learn better motion features. Moreover, to ensure the learning of appearance features, we further propose an appearance-focused task, where we enforce the model to perceive the appearance difference between two video clips. We show that optimizing the two tasks jointly consistently improves the performance on two downstream tasks, namely action recognition and video retrieval. Remarkably, for action recognition on UCF101 dataset, we achieve 93.7% accuracy without the use of labeled data for pre-training, which outperforms the ImageNet supervised pre-trained model. Code and pre-trained models can be found at https://github.com/PeihaoChen/RSPNet.

  • 8 authors
·
Oct 27, 2020

ARC-Hunyuan-Video-7B: Structured Video Comprehension of Real-World Shorts

Real-world user-generated short videos, especially those distributed on platforms such as WeChat Channel and TikTok, dominate the mobile internet. However, current large multimodal models lack essential temporally-structured, detailed, and in-depth video comprehension capabilities, which are the cornerstone of effective video search and recommendation, as well as emerging video applications. Understanding real-world shorts is actually challenging due to their complex visual elements, high information density in both visuals and audio, and fast pacing that focuses on emotional expression and viewpoint delivery. This requires advanced reasoning to effectively integrate multimodal information, including visual, audio, and text. In this work, we introduce ARC-Hunyuan-Video, a multimodal model that processes visual, audio, and textual signals from raw video inputs end-to-end for structured comprehension. The model is capable of multi-granularity timestamped video captioning and summarization, open-ended video question answering, temporal video grounding, and video reasoning. Leveraging high-quality data from an automated annotation pipeline, our compact 7B-parameter model is trained through a comprehensive regimen: pre-training, instruction fine-tuning, cold start, reinforcement learning (RL) post-training, and final instruction fine-tuning. Quantitative evaluations on our introduced benchmark ShortVid-Bench and qualitative comparisons demonstrate its strong performance in real-world video comprehension, and it supports zero-shot or fine-tuning with a few samples for diverse downstream applications. The real-world production deployment of our model has yielded tangible and measurable improvements in user engagement and satisfaction, a success supported by its remarkable efficiency, with stress tests indicating an inference time of just 10 seconds for a one-minute video on H20 GPU.

VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM

Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding. However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details. Besides, the lack of high-quality object-level video instruction data and a comprehensive benchmark further hinders their advancements. To tackle these challenges, we introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding, i.e., enabling perception and reasoning on any objects throughout the video. Specially, we thoroughly develop VideoRefer Suite across three essential aspects: dataset, model, and benchmark. Firstly, we introduce a multi-agent data engine to meticulously curate a large-scale, high-quality object-level video instruction dataset, termed VideoRefer-700K. Next, we present the VideoRefer model, which equips a versatile spatial-temporal object encoder to capture precise regional and sequential representations. Finally, we meticulously create a VideoRefer-Bench to comprehensively assess the spatial-temporal understanding capability of a Video LLM, evaluating it across various aspects. Extensive experiments and analyses demonstrate that our VideoRefer model not only achieves promising performance on video referring benchmarks but also facilitates general video understanding capabilities.

  • 12 authors
·
Dec 31, 2024 2

VideoVista: A Versatile Benchmark for Video Understanding and Reasoning

Despite significant breakthroughs in video analysis driven by the rapid development of large multimodal models (LMMs), there remains a lack of a versatile evaluation benchmark to comprehensively assess these models' performance in video understanding and reasoning. To address this, we present VideoVista, a video QA benchmark that integrates challenges across diverse content categories, durations, and abilities. Specifically, VideoVista comprises 25,000 questions derived from 3,400 videos spanning 14 categories (e.g., Howto, Film, and Entertainment) with durations ranging from a few seconds to over 10 minutes. Besides, it encompasses 19 types of understanding tasks (e.g., anomaly detection, interaction understanding) and 8 reasoning tasks (e.g., logical reasoning, causal reasoning). To achieve this, we present an automatic data construction framework, leveraging powerful GPT-4o alongside advanced analysis tools (e.g., video splitting, object segmenting, and tracking). We also utilize this framework to construct training data to enhance the capabilities of video-related LMMs (Video-LMMs). Through a comprehensive and quantitative evaluation of cutting-edge models, we reveal that: 1) Video-LMMs face difficulties in fine-grained video tasks involving temporal location, object tracking, and anomaly detection; 2) Video-LMMs present inferior logical and relation reasoning abilities; 3) Open-source Video-LMMs' performance is significantly lower than GPT-4o and Gemini-1.5, lagging by 20 points. This highlights the crucial role VideoVista will play in advancing LMMs that can accurately understand videos and perform precise reasoning.

  • 6 authors
·
Jun 17, 2024 1