Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFew-Shot Bot: Prompt-Based Learning for Dialogue Systems
Learning to converse using only a few examples is a great challenge in conversational AI. The current best conversational models, which are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL), are language models (LMs) fine-tuned on large conversational datasets. Training these models is expensive, both in terms of computational resources and time, and it is hard to keep them up to date with new conversational skills. A simple yet unexplored solution is prompt-based few-shot learning (Brown et al. 2020) which does not require gradient-based fine-tuning but instead uses a few examples in the LM context as the only source of learning. In this paper, we explore prompt-based few-shot learning in dialogue tasks. We benchmark LMs of different sizes in nine response generation tasks, which include four knowledge-grounded tasks, a task-oriented generations task, three open-chat tasks, and controlled stylistic generation, and five conversational parsing tasks, which include dialogue state tracking, graph path generation, persona information extraction, document retrieval, and internet query generation. The current largest released LM (GPT-J-6B) using prompt-based few-shot learning, and thus requiring no training, achieves competitive performance to fully trained state-of-the-art models. Moreover, we propose a novel prompt-based few-shot classifier, that also does not require any fine-tuning, to select the most appropriate prompt given a dialogue history. Finally, by combining the power of prompt-based few-shot learning and a Skill Selector, we create an end-to-end chatbot named the Few-Shot Bot (FSB), which automatically selects the most appropriate conversational skill, queries different knowledge bases or the internet, and uses the retrieved knowledge to generate a human-like response, all using only few dialogue examples per skill.
DialoKG: Knowledge-Structure Aware Task-Oriented Dialogue Generation
Task-oriented dialogue generation is challenging since the underlying knowledge is often dynamic and effectively incorporating knowledge into the learning process is hard. It is particularly challenging to generate both human-like and informative responses in this setting. Recent research primarily focused on various knowledge distillation methods where the underlying relationship between the facts in a knowledge base is not effectively captured. In this paper, we go one step further and demonstrate how the structural information of a knowledge graph can improve the system's inference capabilities. Specifically, we propose DialoKG, a novel task-oriented dialogue system that effectively incorporates knowledge into a language model. Our proposed system views relational knowledge as a knowledge graph and introduces (1) a structure-aware knowledge embedding technique, and (2) a knowledge graph-weighted attention masking strategy to facilitate the system selecting relevant information during the dialogue generation. An empirical evaluation demonstrates the effectiveness of DialoKG over state-of-the-art methods on several standard benchmark datasets.
An Interpretable Neuro-Symbolic Reasoning Framework for Task-Oriented Dialogue Generation
We study the interpretability issue of task-oriented dialogue systems in this paper. Previously, most neural-based task-oriented dialogue systems employ an implicit reasoning strategy that makes the model predictions uninterpretable to humans. To obtain a transparent reasoning process, we introduce neuro-symbolic to perform explicit reasoning that justifies model decisions by reasoning chains. Since deriving reasoning chains requires multi-hop reasoning for task-oriented dialogues, existing neuro-symbolic approaches would induce error propagation due to the one-phase design. To overcome this, we propose a two-phase approach that consists of a hypothesis generator and a reasoner. We first obtain multiple hypotheses, i.e., potential operations to perform the desired task, through the hypothesis generator. Each hypothesis is then verified by the reasoner, and the valid one is selected to conduct the final prediction. The whole system is trained by exploiting raw textual dialogues without using any reasoning chain annotations. Experimental studies on two public benchmark datasets demonstrate that the proposed approach not only achieves better results, but also introduces an interpretable decision process.
Task-Oriented Dialog Systems that Consider Multiple Appropriate Responses under the Same Context
Conversations have an intrinsic one-to-many property, which means that multiple responses can be appropriate for the same dialog context. In task-oriented dialogs, this property leads to different valid dialog policies towards task completion. However, none of the existing task-oriented dialog generation approaches takes this property into account. We propose a Multi-Action Data Augmentation (MADA) framework to utilize the one-to-many property to generate diverse appropriate dialog responses. Specifically, we first use dialog states to summarize the dialog history, and then discover all possible mappings from every dialog state to its different valid system actions. During dialog system training, we enable the current dialog state to map to all valid system actions discovered in the previous process to create additional state-action pairs. By incorporating these additional pairs, the dialog policy learns a balanced action distribution, which further guides the dialog model to generate diverse responses. Experimental results show that the proposed framework consistently improves dialog policy diversity, and results in improved response diversity and appropriateness. Our model obtains state-of-the-art results on MultiWOZ.
Controlling Personality-Based Stylistic Variation with Neural Natural Language Generators
Natural language generators for task-oriented dialogue must effectively realize system dialogue actions and their associated semantics. In many applications, it is also desirable for generators to control the style of an utterance. To date, work on task-oriented neural generation has primarily focused on semantic fidelity rather than achieving stylistic goals, while work on style has been done in contexts where it is difficult to measure content preservation. Here we present three different sequence-to-sequence models and carefully test how well they disentangle content and style. We use a statistical generator, Personage, to synthesize a new corpus of over 88,000 restaurant domain utterances whose style varies according to models of personality, giving us total control over both the semantic content and the stylistic variation in the training data. We then vary the amount of explicit stylistic supervision given to the three models. We show that our most explicit model can simultaneously achieve high fidelity to both semantic and stylistic goals: this model adds a context vector of 36 stylistic parameters as input to the hidden state of the encoder at each time step, showing the benefits of explicit stylistic supervision, even when the amount of training data is large.
Meta-DT: Offline Meta-RL as Conditional Sequence Modeling with World Model Disentanglement
A longstanding goal of artificial general intelligence is highly capable generalists that can learn from diverse experiences and generalize to unseen tasks. The language and vision communities have seen remarkable progress toward this trend by scaling up transformer-based models trained on massive datasets, while reinforcement learning (RL) agents still suffer from poor generalization capacity under such paradigms. To tackle this challenge, we propose Meta Decision Transformer (Meta-DT), which leverages the sequential modeling ability of the transformer architecture and robust task representation learning via world model disentanglement to achieve efficient generalization in offline meta-RL. We pretrain a context-aware world model to learn a compact task representation, and inject it as a contextual condition to the causal transformer to guide task-oriented sequence generation. Then, we subtly utilize history trajectories generated by the meta-policy as a self-guided prompt to exploit the architectural inductive bias. We select the trajectory segment that yields the largest prediction error on the pretrained world model to construct the prompt, aiming to encode task-specific information complementary to the world model maximally. Notably, the proposed framework eliminates the requirement of any expert demonstration or domain knowledge at test time. Experimental results on MuJoCo and Meta-World benchmarks across various dataset types show that Meta-DT exhibits superior few and zero-shot generalization capacity compared to strong baselines while being more practical with fewer prerequisites. Our code is available at https://github.com/NJU-RL/Meta-DT.
MesaTask: Towards Task-Driven Tabletop Scene Generation via 3D Spatial Reasoning
The ability of robots to interpret human instructions and execute manipulation tasks necessitates the availability of task-relevant tabletop scenes for training. However, traditional methods for creating these scenes rely on time-consuming manual layout design or purely randomized layouts, which are limited in terms of plausibility or alignment with the tasks. In this paper, we formulate a novel task, namely task-oriented tabletop scene generation, which poses significant challenges due to the substantial gap between high-level task instructions and the tabletop scenes. To support research on such a challenging task, we introduce MesaTask-10K, a large-scale dataset comprising approximately 10,700 synthetic tabletop scenes with manually crafted layouts that ensure realistic layouts and intricate inter-object relations. To bridge the gap between tasks and scenes, we propose a Spatial Reasoning Chain that decomposes the generation process into object inference, spatial interrelation reasoning, and scene graph construction for the final 3D layout. We present MesaTask, an LLM-based framework that utilizes this reasoning chain and is further enhanced with DPO algorithms to generate physically plausible tabletop scenes that align well with given task descriptions. Exhaustive experiments demonstrate the superior performance of MesaTask compared to baselines in generating task-conforming tabletop scenes with realistic layouts. Project page is at https://mesatask.github.io/
Efficient Retrieval Augmented Generation from Unstructured Knowledge for Task-Oriented Dialog
This paper summarizes our work on the first track of the ninth Dialog System Technology Challenge (DSTC 9), "Beyond Domain APIs: Task-oriented Conversational Modeling with Unstructured Knowledge Access". The goal of the task is to generate responses to user turns in a task-oriented dialog that require knowledge from unstructured documents. The task is divided into three subtasks: detection, selection and generation. In order to be compute efficient, we formulate the selection problem in terms of hierarchical classification steps. We achieve our best results with this model. Alternatively, we employ siamese sequence embedding models, referred to as Dense Knowledge Retrieval, to retrieve relevant documents. This method further reduces the computation time by a factor of more than 100x at the cost of degradation in R@1 of 5-6% compared to the first model. Then for either approach, we use Retrieval Augmented Generation to generate responses based on multiple selected snippets and we show how the method can be used to fine-tune trained embeddings.
Retrieval-Generation Alignment for End-to-End Task-Oriented Dialogue System
Developing an efficient retriever to retrieve knowledge from a large-scale knowledge base (KB) is critical for task-oriented dialogue systems to effectively handle localized and specialized tasks. However, widely used generative models such as T5 and ChatGPT often struggle to differentiate subtle differences among the retrieved KB records when generating responses, resulting in suboptimal quality of generated responses. In this paper, we propose the application of maximal marginal likelihood to train a perceptive retriever by utilizing signals from response generation for supervision. In addition, our approach goes beyond considering solely retrieved entities and incorporates various meta knowledge to guide the generator, thus improving the utilization of knowledge. We evaluate our approach on three task-oriented dialogue datasets using T5 and ChatGPT as the backbone models. The results demonstrate that when combined with meta knowledge, the response generator can effectively leverage high-quality knowledge records from the retriever and enhance the quality of generated responses. The codes and models of this paper are available at https://github.com/shenwzh3/MK-TOD.
Template Guided Text Generation for Task-Oriented Dialogue
Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency.
GraspMolmo: Generalizable Task-Oriented Grasping via Large-Scale Synthetic Data Generation
We present GrasMolmo, a generalizable open-vocabulary task-oriented grasping (TOG) model. GraspMolmo predicts semantically appropriate, stable grasps conditioned on a natural language instruction and a single RGB-D frame. For instance, given "pour me some tea", GraspMolmo selects a grasp on a teapot handle rather than its body. Unlike prior TOG methods, which are limited by small datasets, simplistic language, and uncluttered scenes, GraspMolmo learns from PRISM, a novel large-scale synthetic dataset of 379k samples featuring cluttered environments and diverse, realistic task descriptions. We fine-tune the Molmo visual-language model on this data, enabling GraspMolmo to generalize to novel open-vocabulary instructions and objects. In challenging real-world evaluations, GraspMolmo achieves state-of-the-art results, with a 70% prediction success on complex tasks, compared to the 35% achieved by the next best alternative. GraspMolmo also successfully demonstrates the ability to predict semantically correct bimanual grasps zero-shot. We release our synthetic dataset, code, model, and benchmarks to accelerate research in task-semantic robotic manipulation, which, along with videos, are available at https://abhaybd.github.io/GraspMolmo/.
Few-shot Natural Language Generation for Task-Oriented Dialog
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.
HR-MultiWOZ: A Task Oriented Dialogue (TOD) Dataset for HR LLM Agent
Recent advancements in Large Language Models (LLMs) have been reshaping Natural Language Processing (NLP) task in several domains. Their use in the field of Human Resources (HR) has still room for expansions and could be beneficial for several time consuming tasks. Examples such as time-off submissions, medical claims filing, and access requests are noteworthy, but they are by no means the sole instances. However, the aforementioned developments must grapple with the pivotal challenge of constructing a high-quality training dataset. On one hand, most conversation datasets are solving problems for customers not employees. On the other hand, gathering conversations with HR could raise privacy concerns. To solve it, we introduce HR-Multiwoz, a fully-labeled dataset of 550 conversations spanning 10 HR domains to evaluate LLM Agent. Our work has the following contributions: (1) It is the first labeled open-sourced conversation dataset in the HR domain for NLP research. (2) It provides a detailed recipe for the data generation procedure along with data analysis and human evaluations. The data generation pipeline is transferable and can be easily adapted for labeled conversation data generation in other domains. (3) The proposed data-collection pipeline is mostly based on LLMs with minimal human involvement for annotation, which is time and cost-efficient.
User-Oriented Multi-Turn Dialogue Generation with Tool Use at scale
The recent paradigm shift toward large reasoning models (LRMs) as autonomous agents has intensified the demand for sophisticated, multi-turn tool-use capabilities. Yet, existing datasets and data-generation approaches are limited by static, predefined toolsets that cannot scale to the complexity of open-ended human-agent collaboration. To address this, we initially developed a framework for automated task-oriented multi-turn dialogue generation at scale, utilizing an LRM-based simulator to dynamically generate high-value, domain-specific tools to solve specified tasks. However, we observe that a purely task-oriented design often results in "solely task-solving" trajectories, where the agent completes the objective with minimal interaction, failing to generate the high turn-count conversations seen in realistic scenarios. To bridge this gap, we shift toward a user-oriented simulation paradigm. By decoupling task generation from a dedicated user simulator that mimics human behavioral rules - such as incremental request-making and turn-by-turn feedback - we facilitate more authentic, extended multi-turn dialogues that reflect the iterative nature of real-world problem solving. Our generation pipeline operates as a versatile, plug-and-play module capable of initiating generation from any state, ensuring high scalability in producing extended tool-use data. Furthermore, by facilitating multiple task completions within a single trajectory, it yields a high-density dataset that reflects the multifaceted demands of real-world human-agent interaction.
Task-oriented Sequential Grounding in 3D Scenes
Grounding natural language in physical 3D environments is essential for the advancement of embodied artificial intelligence. Current datasets and models for 3D visual grounding predominantly focus on identifying and localizing objects from static, object-centric descriptions. These approaches do not adequately address the dynamic and sequential nature of task-oriented grounding necessary for practical applications. In this work, we propose a new task: Task-oriented Sequential Grounding in 3D scenes, wherein an agent must follow detailed step-by-step instructions to complete daily activities by locating a sequence of target objects in indoor scenes. To facilitate this task, we introduce SG3D, a large-scale dataset containing 22,346 tasks with 112,236 steps across 4,895 real-world 3D scenes. The dataset is constructed using a combination of RGB-D scans from various 3D scene datasets and an automated task generation pipeline, followed by human verification for quality assurance. We adapted three state-of-the-art 3D visual grounding models to the sequential grounding task and evaluated their performance on SG3D. Our results reveal that while these models perform well on traditional benchmarks, they face significant challenges with task-oriented sequential grounding, underscoring the need for further research in this area.
DexTOG: Learning Task-Oriented Dexterous Grasp with Language
This study introduces a novel language-guided diffusion-based learning framework, DexTOG, aimed at advancing the field of task-oriented grasping (TOG) with dexterous hands. Unlike existing methods that mainly focus on 2-finger grippers, this research addresses the complexities of dexterous manipulation, where the system must identify non-unique optimal grasp poses under specific task constraints, cater to multiple valid grasps, and search in a high degree-of-freedom configuration space in grasp planning. The proposed DexTOG includes a diffusion-based grasp pose generation model, DexDiffu, and a data engine to support the DexDiffu. By leveraging DexTOG, we also proposed a new dataset, DexTOG-80K, which was developed using a shadow robot hand to perform various tasks on 80 objects from 5 categories, showcasing the dexterity and multi-tasking capabilities of the robotic hand. This research not only presents a significant leap in dexterous TOG but also provides a comprehensive dataset and simulation validation, setting a new benchmark in robotic manipulation research.
Task-oriented Document-Grounded Dialog Systems by HLTPR@RWTH for DSTC9 and DSTC10
This paper summarizes our contributions to the document-grounded dialog tasks at the 9th and 10th Dialog System Technology Challenges (DSTC9 and DSTC10). In both iterations the task consists of three subtasks: first detect whether the current turn is knowledge seeking, second select a relevant knowledge document, and third generate a response grounded on the selected document. For DSTC9 we proposed different approaches to make the selection task more efficient. The best method, Hierarchical Selection, actually improves the results compared to the original baseline and gives a speedup of 24x. In the DSTC10 iteration of the task, the challenge was to adapt systems trained on written dialogs to perform well on noisy automatic speech recognition transcripts. Therefore, we proposed data augmentation techniques to increase the robustness of the models as well as methods to adapt the style of generated responses to fit well into the proceeding dialog. Additionally, we proposed a noisy channel model that allows for increasing the factuality of the generated responses. In addition to summarizing our previous contributions, in this work, we also report on a few small improvements and reconsider the automatic evaluation metrics for the generation task which have shown a low correlation to human judgments.
QUARTZ : QA-based Unsupervised Abstractive Refinement for Task-oriented Dialogue Summarization
Dialogue summarization aims to distill the core meaning of a conversation into a concise text. This is crucial for reducing the complexity and noise inherent in dialogue-heavy applications. While recent approaches typically train language models to mimic human-written summaries, such supervision is costly and often results in outputs that lack task-specific focus limiting their effectiveness in downstream applications, such as medical tasks. In this paper, we propose \app, a framework for task-oriented utility-based dialogue summarization. \app starts by generating multiple summaries and task-oriented question-answer pairs from a dialogue in a zero-shot manner using a pool of large language models (LLMs). The quality of the generated summaries is evaluated by having LLMs answer task-related questions before (i) selecting the best candidate answers and (ii) identifying the most informative summary based on these answers. Finally, we fine-tune the best LLM on the selected summaries. When validated on multiple datasets, \app demonstrates its effectiveness by achieving competitive results in various zero-shot settings, rivaling fully-supervised State-of-the-Art (SotA) methods.
Injecting Domain Knowledge in Language Models for Task-Oriented Dialogue Systems
Pre-trained language models (PLM) have advanced the state-of-the-art across NLP applications, but lack domain-specific knowledge that does not naturally occur in pre-training data. Previous studies augmented PLMs with symbolic knowledge for different downstream NLP tasks. However, knowledge bases (KBs) utilized in these studies are usually large-scale and static, in contrast to small, domain-specific, and modifiable knowledge bases that are prominent in real-world task-oriented dialogue (TOD) systems. In this paper, we showcase the advantages of injecting domain-specific knowledge prior to fine-tuning on TOD tasks. To this end, we utilize light-weight adapters that can be easily integrated with PLMs and serve as a repository for facts learned from different KBs. To measure the efficacy of proposed knowledge injection methods, we introduce Knowledge Probing using Response Selection (KPRS) -- a probe designed specifically for TOD models. Experiments on KPRS and the response generation task show improvements of knowledge injection with adapters over strong baselines.
Efficient Task-Oriented Dialogue Systems with Response Selection as an Auxiliary Task
The adoption of pre-trained language models in task-oriented dialogue systems has resulted in significant enhancements of their text generation abilities. However, these architectures are slow to use because of the large number of trainable parameters and can sometimes fail to generate diverse responses. To address these limitations, we propose two models with auxiliary tasks for response selection - (1) distinguishing distractors from ground truth responses and (2) distinguishing synthetic responses from ground truth labels. They achieve state-of-the-art results on the MultiWOZ 2.1 dataset with combined scores of 107.5 and 108.3 and outperform a baseline with three times more parameters. We publish reproducible code and checkpoints and discuss the effects of applying auxiliary tasks to T5-based architectures.
A Simple Language Model for Task-Oriented Dialogue
Task-oriented dialogue is often decomposed into three tasks: understanding user input, deciding actions, and generating a response. While such decomposition might suggest a dedicated model for each sub-task, we find a simple, unified approach leads to state-of-the-art performance on the MultiWOZ dataset. SimpleTOD is a simple approach to task-oriented dialogue that uses a single, causal language model trained on all sub-tasks recast as a single sequence prediction problem. This allows SimpleTOD to fully leverage transfer learning from pre-trained, open domain, causal language models such as GPT-2. SimpleTOD improves over the prior state-of-the-art in joint goal accuracy for dialogue state tracking, and our analysis reveals robustness to noisy annotations in this setting. SimpleTOD also improves the main metrics used to evaluate action decisions and response generation in an end-to-end setting: inform rate by 8.1 points, success rate by 9.7 points, and combined score by 7.2 points.
Hello, It's GPT-2 -- How Can I Help You? Towards the Use of Pretrained Language Models for Task-Oriented Dialogue Systems
Data scarcity is a long-standing and crucial challenge that hinders quick development of task-oriented dialogue systems across multiple domains: task-oriented dialogue models are expected to learn grammar, syntax, dialogue reasoning, decision making, and language generation from absurdly small amounts of task-specific data. In this paper, we demonstrate that recent progress in language modeling pre-training and transfer learning shows promise to overcome this problem. We propose a task-oriented dialogue model that operates solely on text input: it effectively bypasses explicit policy and language generation modules. Building on top of the TransferTransfo framework (Wolf et al., 2019) and generative model pre-training (Radford et al., 2019), we validate the approach on complex multi-domain task-oriented dialogues from the MultiWOZ dataset. Our automatic and human evaluations show that the proposed model is on par with a strong task-specific neural baseline. In the long run, our approach holds promise to mitigate the data scarcity problem, and to support the construction of more engaging and more eloquent task-oriented conversational agents.
Multi-Grained Knowledge Retrieval for End-to-End Task-Oriented Dialog
Retrieving proper domain knowledge from an external database lies at the heart of end-to-end task-oriented dialog systems to generate informative responses. Most existing systems blend knowledge retrieval with response generation and optimize them with direct supervision from reference responses, leading to suboptimal retrieval performance when the knowledge base becomes large-scale. To address this, we propose to decouple knowledge retrieval from response generation and introduce a multi-grained knowledge retriever (MAKER) that includes an entity selector to search for relevant entities and an attribute selector to filter out irrelevant attributes. To train the retriever, we propose a novel distillation objective that derives supervision signals from the response generator. Experiments conducted on three standard benchmarks with both small and large-scale knowledge bases demonstrate that our retriever performs knowledge retrieval more effectively than existing methods. Our code has been made publicly available.https://github.com/18907305772/MAKER
Emotionally Intelligent Task-oriented Dialogue Systems: Architecture, Representation, and Optimisation
Task-oriented dialogue (ToD) systems are designed to help users achieve specific goals through natural language interaction. While recent advances in large language models (LLMs) have significantly improved linguistic fluency and contextual understanding, building effective and emotionally intelligent ToD systems remains a complex challenge. Effective ToD systems must optimise for task success, emotional understanding and responsiveness, and precise information conveyance, all within inherently noisy and ambiguous conversational environments. In this work, we investigate architectural, representational, optimisational as well as emotional considerations of ToD systems. We set up systems covering these design considerations with a challenging evaluation environment composed of a natural-language user simulator coupled with an imperfect natural language understanding module. We propose LUSTER, an LLM-based Unified System for Task-oriented dialogue with End-to-end Reinforcement learning with both short-term (user sentiment) and long-term (task success) rewards. Our findings demonstrate that combining LLM capability with structured reward modelling leads to more resilient and emotionally responsive ToD systems, offering a practical path forward for next-generation conversational agents.
Q-TOD: A Query-driven Task-oriented Dialogue System
Existing pipelined task-oriented dialogue systems usually have difficulties adapting to unseen domains, whereas end-to-end systems are plagued by large-scale knowledge bases in practice. In this paper, we introduce a novel query-driven task-oriented dialogue system, namely Q-TOD. The essential information from the dialogue context is extracted into a query, which is further employed to retrieve relevant knowledge records for response generation. Firstly, as the query is in the form of natural language and not confined to the schema of the knowledge base, the issue of domain adaption is alleviated remarkably in Q-TOD. Secondly, as the query enables the decoupling of knowledge retrieval from the generation, Q-TOD gets rid of the issue of knowledge base scalability. To evaluate the effectiveness of the proposed Q-TOD, we collect query annotations for three publicly available task-oriented dialogue datasets. Comprehensive experiments verify that Q-TOD outperforms strong baselines and establishes a new state-of-the-art performance on these datasets.
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System
Pre-trained language models have been recently shown to benefit task-oriented dialogue (TOD) systems. Despite their success, existing methods often formulate this task as a cascaded generation problem which can lead to error accumulation across different sub-tasks and greater data annotation overhead. In this study, we present PPTOD, a unified plug-and-play model for task-oriented dialogue. In addition, we introduce a new dialogue multi-task pre-training strategy that allows the model to learn the primary TOD task completion skills from heterogeneous dialog corpora. We extensively test our model on three benchmark TOD tasks, including end-to-end dialogue modelling, dialogue state tracking, and intent classification. Experimental results show that PPTOD achieves new state of the art on all evaluated tasks in both high-resource and low-resource scenarios. Furthermore, comparisons against previous SOTA methods show that the responses generated by PPTOD are more factually correct and semantically coherent as judged by human annotators.
End-to-End Learning of Flowchart Grounded Task-Oriented Dialogs
We propose a novel problem within end-to-end learning of task-oriented dialogs (TOD), in which the dialog system mimics a troubleshooting agent who helps a user by diagnosing their problem (e.g., car not starting). Such dialogs are grounded in domain-specific flowcharts, which the agent is supposed to follow during the conversation. Our task exposes novel technical challenges for neural TOD, such as grounding an utterance to the flowchart without explicit annotation, referring to additional manual pages when user asks a clarification question, and ability to follow unseen flowcharts at test time. We release a dataset (FloDial) consisting of 2,738 dialogs grounded on 12 different troubleshooting flowcharts. We also design a neural model, FloNet, which uses a retrieval-augmented generation architecture to train the dialog agent. Our experiments find that FloNet can do zero-shot transfer to unseen flowcharts, and sets a strong baseline for future research.
Bootstrapping a User-Centered Task-Oriented Dialogue System
We present TacoBot, a task-oriented dialogue system built for the inaugural Alexa Prize TaskBot Challenge, which assists users in completing multi-step cooking and home improvement tasks. TacoBot is designed with a user-centered principle and aspires to deliver a collaborative and accessible dialogue experience. Towards that end, it is equipped with accurate language understanding, flexible dialogue management, and engaging response generation. Furthermore, TacoBot is backed by a strong search engine and an automated end-to-end test suite. In bootstrapping the development of TacoBot, we explore a series of data augmentation strategies to train advanced neural language processing models and continuously improve the dialogue experience with collected real conversations. At the end of the semifinals, TacoBot achieved an average rating of 3.55/5.0.
GALAXY: A Generative Pre-trained Model for Task-Oriented Dialog with Semi-Supervised Learning and Explicit Policy Injection
Pre-trained models have proved to be powerful in enhancing task-oriented dialog systems. However, current pre-training methods mainly focus on enhancing dialog understanding and generation tasks while neglecting the exploitation of dialog policy. In this paper, we propose GALAXY, a novel pre-trained dialog model that explicitly learns dialog policy from limited labeled dialogs and large-scale unlabeled dialog corpora via semi-supervised learning. Specifically, we introduce a dialog act prediction task for policy optimization during pre-training and employ a consistency regularization term to refine the learned representation with the help of unlabeled dialogs. We also implement a gating mechanism to weigh suitable unlabeled dialog samples. Empirical results show that GALAXY substantially improves the performance of task-oriented dialog systems, and achieves new state-of-the-art results on benchmark datasets: In-Car, MultiWOZ2.0 and MultiWOZ2.1, improving their end-to-end combined scores by 2.5, 5.3 and 5.5 points, respectively. We also show that GALAXY has a stronger few-shot ability than existing models under various low-resource settings.
TransferTOD: A Generalizable Chinese Multi-Domain Task-Oriented Dialogue System with Transfer Capabilities
Task-oriented dialogue (TOD) systems aim to efficiently handle task-oriented conversations, including information collection. How to utilize TOD accurately, efficiently and effectively for information collection has always been a critical and challenging task. Recent studies have demonstrated that Large Language Models (LLMs) excel in dialogue, instruction generation, and reasoning, and can significantly enhance the performance of TOD through fine-tuning. However, current datasets primarily cater to user-led systems and are limited to predefined specific scenarios and slots, thereby necessitating improvements in the proactiveness, diversity, and capabilities of TOD. In this study, we present a detailed multi-domain task-oriented data construction process for conversations, and a Chinese dialogue dataset generated based on this process, TransferTOD, which authentically simulates human-computer dialogues in 30 popular life service scenarios. Leveraging this dataset, we trained a model called TransferTOD-7B using full-parameter fine-tuning, showcasing notable abilities in slot filling and questioning. Our work has demonstrated its strong generalization capabilities in various downstream scenarios, significantly enhancing both data utilization efficiency and system performance. The data is released in https://github.com/KongLongGeFDU/TransferTOD.
A Hybrid Task-Oriented Dialog System with Domain and Task Adaptive Pretraining
This paper describes our submission for the End-to-end Multi-domain Task Completion Dialog shared task at the 9th Dialog System Technology Challenge (DSTC-9). Participants in the shared task build an end-to-end task completion dialog system which is evaluated by human evaluation and a user simulator based automatic evaluation. Different from traditional pipelined approaches where modules are optimized individually and suffer from cascading failure, we propose an end-to-end dialog system that 1) uses Generative Pretraining 2 (GPT-2) as the backbone to jointly solve Natural Language Understanding, Dialog State Tracking, and Natural Language Generation tasks, 2) adopts Domain and Task Adaptive Pretraining to tailor GPT-2 to the dialog domain before finetuning, 3) utilizes heuristic pre/post-processing rules that greatly simplify the prediction tasks and improve generalizability, and 4) equips a fault tolerance module to correct errors and inappropriate responses. Our proposed method significantly outperforms baselines and ties for first place in the official evaluation. We make our source code publicly available.
Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog
Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured knowledge base (KB) while information about aspects such as entrance ticket prices, would always be available in documents. In this paper, we create a modified version of the MutliWOZ-based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.
SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues
Dialogue systems are usually categorized into two types, open-domain and task-oriented. The first one focuses on chatting with users and making them engage in the conversations, where selecting a proper topic to fit the dialogue context is essential for a successful dialogue. The other one focuses on a specific task instead of casual talks, e.g., finding a movie on Friday night, or playing a song. These two directions have been studied separately due to their different purposes. However, how smoothly transitioning from social chatting to task-oriented dialogues is important for triggering business opportunities, and there is no public data focusing on such scenarios. Hence, this paper focuses on investigating the conversations starting from open-domain social chatting and then gradually transitioning to task-oriented purposes, and releases a large-scale dataset with detailed annotations for encouraging this research direction. To achieve this goal, this paper proposes a framework to automatically generate many dialogues without human involvement, in which any powerful open-domain dialogue generation model can be easily leveraged. The human evaluation shows that our generated dialogue data has a natural flow at a reasonable quality, showing that our released data has a great potential of guiding future research directions and commercial activities. Furthermore, the released models allow researchers to automatically generate unlimited dialogues in the target scenarios, which can greatly benefit semi-supervised and unsupervised approaches.
Many Hands Make Light Work: Task-Oriented Dialogue System with Module-Based Mixture-of-Experts
Task-oriented dialogue systems are broadly used in virtual assistants and other automated services, providing interfaces between users and machines to facilitate specific tasks. Nowadays, task-oriented dialogue systems have greatly benefited from pre-trained language models (PLMs). However, their task-solving performance is constrained by the inherent capacities of PLMs, and scaling these models is expensive and complex as the model size becomes larger. To address these challenges, we propose Soft Mixture-of-Expert Task-Oriented Dialogue system (SMETOD) which leverages an ensemble of Mixture-of-Experts (MoEs) to excel at subproblems and generate specialized outputs for task-oriented dialogues. SMETOD also scales up a task-oriented dialogue system with simplicity and flexibility while maintaining inference efficiency. We extensively evaluate our model on three benchmark functionalities: intent prediction, dialogue state tracking, and dialogue response generation. Experimental results demonstrate that SMETOD achieves state-of-the-art performance on most evaluated metrics. Moreover, comparisons against existing strong baselines show that SMETOD has a great advantage in the cost of inference and correctness in problem-solving.
DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues
User Simulators play a pivotal role in training and evaluating task-oriented dialogue systems. Traditional user simulators typically rely on human-engineered agendas, resulting in generated responses that often lack diversity and spontaneity. Although large language models (LLMs) exhibit a remarkable capacity for generating coherent and contextually appropriate utterances, they may fall short when tasked with generating responses that effectively guide users towards their goals, particularly in dialogues with intricate constraints and requirements. This paper introduces DuetSim, a novel framework designed to address the intricate demands of task-oriented dialogues by leveraging LLMs. DuetSim stands apart from conventional approaches by employing two LLMs in tandem: one dedicated to response generation and the other focused on verification. This dual LLM approach empowers DuetSim to produce responses that not only exhibit diversity but also demonstrate accuracy and are preferred by human users. We validate the efficacy of our method through extensive experiments conducted on the MultiWOZ dataset, highlighting improvements in response quality and correctness, largely attributed to the incorporation of the second LLM. Our code is accessible at: https://github.com/suntea233/DuetSim.
AgentLite: A Lightweight Library for Building and Advancing Task-Oriented LLM Agent System
The booming success of LLMs initiates rapid development in LLM agents. Though the foundation of an LLM agent is the generative model, it is critical to devise the optimal reasoning strategies and agent architectures. Accordingly, LLM agent research advances from the simple chain-of-thought prompting to more complex ReAct and Reflection reasoning strategy; agent architecture also evolves from single agent generation to multi-agent conversation, as well as multi-LLM multi-agent group chat. However, with the existing intricate frameworks and libraries, creating and evaluating new reasoning strategies and agent architectures has become a complex challenge, which hinders research investigation into LLM agents. Thus, we open-source a new AI agent library, AgentLite, which simplifies this process by offering a lightweight, user-friendly platform for innovating LLM agent reasoning, architectures, and applications with ease. AgentLite is a task-oriented framework designed to enhance the ability of agents to break down tasks and facilitate the development of multi-agent systems. Furthermore, we introduce multiple practical applications developed with AgentLite to demonstrate its convenience and flexibility. Get started now at: https://github.com/SalesforceAIResearch/AgentLite.
MultiWOZ -- A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
Even though machine learning has become the major scene in dialogue research community, the real breakthrough has been blocked by the scale of data available. To address this fundamental obstacle, we introduce the Multi-Domain Wizard-of-Oz dataset (MultiWOZ), a fully-labeled collection of human-human written conversations spanning over multiple domains and topics. At a size of 10k dialogues, it is at least one order of magnitude larger than all previous annotated task-oriented corpora. The contribution of this work apart from the open-sourced dataset labelled with dialogue belief states and dialogue actions is two-fold: firstly, a detailed description of the data collection procedure along with a summary of data structure and analysis is provided. The proposed data-collection pipeline is entirely based on crowd-sourcing without the need of hiring professional annotators; secondly, a set of benchmark results of belief tracking, dialogue act and response generation is reported, which shows the usability of the data and sets a baseline for future studies.
Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation
Multilingual task-oriented dialogue (ToD) facilitates access to services and information for many (communities of) speakers. Nevertheless, the potential of this technology is not fully realised, as current datasets for multilingual ToD - both for modular and end-to-end modelling - suffer from severe limitations. 1) When created from scratch, they are usually small in scale and fail to cover many possible dialogue flows. 2) Translation-based ToD datasets might lack naturalness and cultural specificity in the target language. In this work, to tackle these limitations we propose a novel outline-based annotation process for multilingual ToD datasets, where domain-specific abstract schemata of dialogue are mapped into natural language outlines. These in turn guide the target language annotators in writing a dialogue by providing instructions about each turn's intents and slots. Through this process we annotate a new large-scale dataset for training and evaluation of multilingual and cross-lingual ToD systems. Our Cross-lingual Outline-based Dialogue dataset (termed COD) enables natural language understanding, dialogue state tracking, and end-to-end dialogue modelling and evaluation in 4 diverse languages: Arabic, Indonesian, Russian, and Kiswahili. Qualitative and quantitative analyses of COD versus an equivalent translation-based dataset demonstrate improvements in data quality, unlocked by the outline-based approach. Finally, we benchmark a series of state-of-the-art systems for cross-lingual ToD, setting reference scores for future work and demonstrating that COD prevents over-inflated performance, typically met with prior translation-based ToD datasets.
Long-term Control for Dialogue Generation: Methods and Evaluation
Current approaches for controlling dialogue response generation are primarily focused on high-level attributes like style, sentiment, or topic. In this work, we focus on constrained long-term dialogue generation, which involves more fine-grained control and requires a given set of control words to appear in generated responses. This setting requires a model to not only consider the generation of these control words in the immediate context, but also produce utterances that will encourage the generation of the words at some time in the (possibly distant) future. We define the problem of constrained long-term control for dialogue generation, identify gaps in current methods for evaluation, and propose new metrics that better measure long-term control. We also propose a retrieval-augmented method that improves performance of long-term controlled generation via logit modification techniques. We show through experiments on three task-oriented dialogue datasets that our metrics better assess dialogue control relative to current alternatives and that our method outperforms state-of-the-art constrained generation baselines.
SAGE: Steering and Refining Dialog Generation with State-Action Augmentation
Recent advances in large language models have demonstrated impressive capabilities in task-oriented applications, yet building emotionally intelligent chatbots that can engage in natural, strategic conversations remains a challenge. We present a novel approach called SAGE that uses latent variables to control long-horizon behavior in dialogue generation. At the core of our method is the State-Action Chain (SAC), which augments standard language model fine-tuning by introducing latent variables that encapsulate emotional states and conversational strategies between dialogue turns. During inference, these variables are generated before each response, enabling coarse-grained control over dialogue progression while maintaining natural interaction patterns. We also introduce a self-improvement pipeline that leverages dialogue tree search, LLM-based reward modeling, and targeted fine-tuning to optimize conversational trajectories. Our experimental results show that models trained with this approach demonstrate improved performance in emotional intelligence metrics while maintaining strong capabilities on LLM benchmarks. The discrete nature of our latent variables facilitates search-based strategies and provides a foundation for future applications of reinforcement learning to dialogue systems, where learning can occur at the state level rather than the token level.
Multi-Domain Dialogue Acts and Response Co-Generation
Generating fluent and informative responses is of critical importance for task-oriented dialogue systems. Existing pipeline approaches generally predict multiple dialogue acts first and use them to assist response generation. There are at least two shortcomings with such approaches. First, the inherent structures of multi-domain dialogue acts are neglected. Second, the semantic associations between acts and responses are not taken into account for response generation. To address these issues, we propose a neural co-generation model that generates dialogue acts and responses concurrently. Unlike those pipeline approaches, our act generation module preserves the semantic structures of multi-domain dialogue acts and our response generation module dynamically attends to different acts as needed. We train the two modules jointly using an uncertainty loss to adjust their task weights adaptively. Extensive experiments are conducted on the large-scale MultiWOZ dataset and the results show that our model achieves very favorable improvement over several state-of-the-art models in both automatic and human evaluations.
TrICy: Trigger-guided Data-to-text Generation with Intent aware Attention-Copy
Data-to-text (D2T) generation is a crucial task in many natural language understanding (NLU) applications and forms the foundation of task-oriented dialog systems. In the context of conversational AI solutions that can work directly with local data on the user's device, architectures utilizing large pre-trained language models (PLMs) are impractical for on-device deployment due to a high memory footprint. To this end, we propose TrICy, a novel lightweight framework for an enhanced D2T task that generates text sequences based on the intent in context and may further be guided by user-provided triggers. We leverage an attention-copy mechanism to predict out-of-vocabulary (OOV) words accurately. Performance analyses on E2E NLG dataset (BLEU: 66.43%, ROUGE-L: 70.14%), WebNLG dataset (BLEU: Seen 64.08%, Unseen 52.35%), and our Custom dataset related to text messaging applications, showcase our architecture's effectiveness. Moreover, we show that by leveraging an optional trigger input, data-to-text generation quality increases significantly and achieves the new SOTA score of 69.29% BLEU for E2E NLG. Furthermore, our analyses show that TrICy achieves at least 24% and 3% improvement in BLEU and METEOR respectively over LLMs like GPT-3, ChatGPT, and Llama 2. We also demonstrate that in some scenarios, performance improvement due to triggers is observed even when they are absent in training.
Towards Physical Understanding in Video Generation: A 3D Point Regularization Approach
We present a novel video generation framework that integrates 3-dimensional geometry and dynamic awareness. To achieve this, we augment 2D videos with 3D point trajectories and align them in pixel space. The resulting 3D-aware video dataset, PointVid, is then used to fine-tune a latent diffusion model, enabling it to track 2D objects with 3D Cartesian coordinates. Building on this, we regularize the shape and motion of objects in the video to eliminate undesired artifacts, \eg, nonphysical deformation. Consequently, we enhance the quality of generated RGB videos and alleviate common issues like object morphing, which are prevalent in current video models due to a lack of shape awareness. With our 3D augmentation and regularization, our model is capable of handling contact-rich scenarios such as task-oriented videos. These videos involve complex interactions of solids, where 3D information is essential for perceiving deformation and contact. Furthermore, our model improves the overall quality of video generation by promoting the 3D consistency of moving objects and reducing abrupt changes in shape and motion.
Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) mitigates issues of the factual errors and hallucinated outputs generated by Large Language Models (LLMs) in open-domain question-answering tasks (OpenQA) via introducing external knowledge. For complex QA, however, existing RAG methods use LLMs to actively predict retrieval timing and directly use the retrieved information for generation, regardless of whether the retrieval timing accurately reflects the actual information needs, or sufficiently considers prior retrieved knowledge, which may result in insufficient information gathering and interaction, yielding low-quality answers. To address these, we propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks, which includes the iterative information collector, adaptive memory reviewer, and task-oriented generator, while following a new Retriever-and-Memory paradigm. Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes and updating them into the existing optimal knowledge structure, enhancing high-quality knowledge interactions. In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration. We conduct extensive experiments on five complex QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The code and data are at https://github.com/thunlp/Adaptive-Note.
CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation
With the rapid advancement of Large Language Models (LLMs), the demand for robust instruction-following capabilities in code generation tasks has grown significantly. Code generation not only facilitates faster prototyping and automated testing, but also augments developer efficiency through improved maintainability and reusability of code. In this paper, we introduce CodeIF, the first benchmark specifically designed to assess the abilities of LLMs to adhere to task-oriented instructions within diverse code generation scenarios. CodeIF encompasses a broad range of tasks, including function synthesis, error debugging, algorithmic refactoring, and code explanation, thereby providing a comprehensive suite to evaluate model performance across varying complexity levels and programming domains. We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks. The experimental results offer valuable insights into how well current models align with human instructions, as well as the extent to which they can generate consistent, maintainable, and contextually relevant code. Our findings not only underscore the critical role that instruction-following LLMs can play in modern software development, but also illuminate pathways for future research aimed at enhancing their adaptability, reliability, and overall effectiveness in automated code generation.
PLATO-XL: Exploring the Large-scale Pre-training of Dialogue Generation
To explore the limit of dialogue generation pre-training, we present the models of PLATO-XL with up to 11 billion parameters, trained on both Chinese and English social media conversations. To train such large models, we adopt the architecture of unified transformer with high computation and parameter efficiency. In addition, we carry out multi-party aware pre-training to better distinguish the characteristic information in social media conversations. With such designs, PLATO-XL successfully achieves superior performances as compared to other approaches in both Chinese and English chitchat. We further explore the capacity of PLATO-XL on other conversational tasks, such as knowledge grounded dialogue and task-oriented conversation. The experimental results indicate that PLATO-XL obtains state-of-the-art results across multiple conversational tasks, verifying its potential as a foundation model of conversational AI.
Dual Semantic Knowledge Composed Multimodal Dialog Systems
Textual response generation is an essential task for multimodal task-oriented dialog systems.Although existing studies have achieved fruitful progress, they still suffer from two critical limitations: 1) focusing on the attribute knowledge but ignoring the relation knowledge that can reveal the correlations between different entities and hence promote the response generation}, and 2) only conducting the cross-entropy loss based output-level supervision but lacking the representation-level regularization. To address these limitations, we devise a novel multimodal task-oriented dialog system (named MDS-S2). Specifically, MDS-S2 first simultaneously acquires the context related attribute and relation knowledge from the knowledge base, whereby the non-intuitive relation knowledge is extracted by the n-hop graph walk. Thereafter, considering that the attribute knowledge and relation knowledge can benefit the responding to different levels of questions, we design a multi-level knowledge composition module in MDS-S2 to obtain the latent composed response representation. Moreover, we devise a set of latent query variables to distill the semantic information from the composed response representation and the ground truth response representation, respectively, and thus conduct the representation-level semantic regularization. Extensive experiments on a public dataset have verified the superiority of our proposed MDS-S2. We have released the codes and parameters to facilitate the research community.
Benchmarks Underestimate the Readiness of Multi-lingual Dialogue Agents
Creating multilingual task-oriented dialogue (TOD) agents is challenging due to the high cost of training data acquisition. Following the research trend of improving training data efficiency, we show for the first time, that in-context learning is sufficient to tackle multilingual TOD. To handle the challenging dialogue state tracking (DST) subtask, we break it down to simpler steps that are more compatible with in-context learning where only a handful of few-shot examples are used. We test our approach on the multilingual TOD dataset X-RiSAWOZ, which has 12 domains in Chinese, English, French, Korean, Hindi, and code-mixed Hindi-English. Our turn-by-turn DST accuracy on the 6 languages range from 55.6% to 80.3%, seemingly worse than the SOTA results from fine-tuned models that achieve from 60.7% to 82.8%; our BLEU scores in the response generation (RG) subtask are also significantly lower than SOTA. However, after manual evaluation of the validation set, we find that by correcting gold label errors and improving dataset annotation schema, GPT-4 with our prompts can achieve (1) 89.6%-96.8% accuracy in DST, and (2) more than 99% correct response generation across different languages. This leads us to conclude that current automatic metrics heavily underestimate the effectiveness of in-context learning.
Large Language Models as Zero-shot Dialogue State Tracker through Function Calling
Large language models (LLMs) are increasingly prevalent in conversational systems due to their advanced understanding and generative capabilities in general contexts. However, their effectiveness in task-oriented dialogues (TOD), which requires not only response generation but also effective dialogue state tracking (DST) within specific tasks and domains, remains less satisfying. In this work, we propose a novel approach FnCTOD for solving DST with LLMs through function calling. This method improves zero-shot DST, allowing adaptation to diverse domains without extensive data collection or model tuning. Our experimental results demonstrate that our approach achieves exceptional performance with both modestly sized open-source and also proprietary LLMs: with in-context prompting it enables various 7B or 13B parameter models to surpass the previous state-of-the-art (SOTA) achieved by ChatGPT, and improves ChatGPT's performance beating the SOTA by 5.6% Avg. JGA. Individual model results for GPT-3.5 and GPT-4 are boosted by 4.8% and 14%, respectively. We also show that by fine-tuning on a small collection of diverse task-oriented dialogues, we can equip modestly sized models, specifically a 13B parameter LLaMA2-Chat model, with function-calling capabilities and DST performance comparable to ChatGPT while maintaining their chat capabilities. We plan to open-source experimental code and model.
Analyzing Modular Approaches for Visual Question Decomposition
Modular neural networks without additional training have recently been shown to surpass end-to-end neural networks on challenging vision-language tasks. The latest such methods simultaneously introduce LLM-based code generation to build programs and a number of skill-specific, task-oriented modules to execute them. In this paper, we focus on ViperGPT and ask where its additional performance comes from and how much is due to the (state-of-art, end-to-end) BLIP-2 model it subsumes vs. additional symbolic components. To do so, we conduct a controlled study (comparing end-to-end, modular, and prompting-based methods across several VQA benchmarks). We find that ViperGPT's reported gains over BLIP-2 can be attributed to its selection of task-specific modules, and when we run ViperGPT using a more task-agnostic selection of modules, these gains go away. Additionally, ViperGPT retains much of its performance if we make prominent alterations to its selection of modules: e.g. removing or retaining only BLIP-2. Finally, we compare ViperGPT against a prompting-based decomposition strategy and find that, on some benchmarks, modular approaches significantly benefit by representing subtasks with natural language, instead of code.
EarthSynth: Generating Informative Earth Observation with Diffusion Models
Remote sensing image (RSI) interpretation typically faces challenges due to the scarcity of labeled data, which limits the performance of RSI interpretation tasks. To tackle this challenge, we propose EarthSynth, a diffusion-based generative foundation model that enables synthesizing multi-category, cross-satellite labeled Earth observation for downstream RSI interpretation tasks. To the best of our knowledge, EarthSynth is the first to explore multi-task generation for remote sensing, tackling the challenge of limited generalization in task-oriented synthesis for RSI interpretation. EarthSynth, trained on the EarthSynth-180K dataset, employs the Counterfactual Composition training strategy with a three-dimensional batch-sample selection mechanism to improve training data diversity and enhance category control. Furthermore, a rule-based method of R-Filter is proposed to filter more informative synthetic data for downstream tasks. We evaluate our EarthSynth on scene classification, object detection, and semantic segmentation in open-world scenarios. There are significant improvements in open-vocabulary understanding tasks, offering a practical solution for advancing RSI interpretation.
MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL
Recently, diffusion model shines as a promising backbone for the sequence modeling paradigm in offline reinforcement learning(RL). However, these works mostly lack the generalization ability across tasks with reward or dynamics change. To tackle this challenge, in this paper we propose a task-oriented conditioned diffusion planner for offline meta-RL(MetaDiffuser), which considers the generalization problem as conditional trajectory generation task with contextual representation. The key is to learn a context conditioned diffusion model which can generate task-oriented trajectories for planning across diverse tasks. To enhance the dynamics consistency of the generated trajectories while encouraging trajectories to achieve high returns, we further design a dual-guided module in the sampling process of the diffusion model. The proposed framework enjoys the robustness to the quality of collected warm-start data from the testing task and the flexibility to incorporate with different task representation method. The experiment results on MuJoCo benchmarks show that MetaDiffuser outperforms other strong offline meta-RL baselines, demonstrating the outstanding conditional generation ability of diffusion architecture.
MULTISCRIPT: Multimodal Script Learning for Supporting Open Domain Everyday Tasks
Automatically generating scripts (i.e. sequences of key steps described in text) from video demonstrations and reasoning about the subsequent steps are crucial to the modern AI virtual assistants to guide humans to complete everyday tasks, especially unfamiliar ones. However, current methods for generative script learning rely heavily on well-structured preceding steps described in text and/or images or are limited to a certain domain, resulting in a disparity with real-world user scenarios. To address these limitations, we present a new benchmark challenge -- MultiScript, with two new tasks on task-oriented multimodal script learning: (1) multimodal script generation, and (2) subsequent step prediction. For both tasks, the input consists of a target task name and a video illustrating what has been done to complete the target task, and the expected output is (1) a sequence of structured step descriptions in text based on the demonstration video, and (2) a single text description for the subsequent step, respectively. Built from WikiHow, MultiScript covers multimodal scripts in videos and text descriptions for over 6,655 human everyday tasks across 19 diverse domains. To establish baseline performance on MultiScript, we propose two knowledge-guided multimodal generative frameworks that incorporate the task-related knowledge prompted from large language models such as Vicuna. Experimental results show that our proposed approaches significantly improve over the competitive baselines.
PlanViz: Evaluating Planning-Oriented Image Generation and Editing for Computer-Use Tasks
Unified multimodal models (UMMs) have shown impressive capabilities in generating natural images and supporting multimodal reasoning. However, their potential in supporting computer-use planning tasks, which are closely related to our lives, remain underexplored. Image generation and editing in computer-use tasks require capabilities like spatial reasoning and procedural understanding, and it is still unknown whether UMMs have these capabilities to finish these tasks or not. Therefore, we propose PlanViz, a new benchmark designed to evaluate image generation and editing for computer-use tasks. To achieve the goal of our evaluation, we focus on sub-tasks which frequently involve in daily life and require planning steps. Specifically, three new sub-tasks are designed: route planning, work diagramming, and web&UI displaying. We address challenges in data quality ensuring by curating human-annotated questions and reference images, and a quality control process. For challenges of comprehensive and exact evaluation, a task-adaptive score, PlanScore, is proposed. The score helps understanding the correctness, visual quality and efficiency of generated images. Through experiments, we highlight key limitations and opportunities for future research on this topic.
Rethinking Video Generation Model for the Embodied World
Video generation models have significantly advanced embodied intelligence, unlocking new possibilities for generating diverse robot data that capture perception, reasoning, and action in the physical world. However, synthesizing high-quality videos that accurately reflect real-world robotic interactions remains challenging, and the lack of a standardized benchmark limits fair comparisons and progress. To address this gap, we introduce a comprehensive robotics benchmark, RBench, designed to evaluate robot-oriented video generation across five task domains and four distinct embodiments. It assesses both task-level correctness and visual fidelity through reproducible sub-metrics, including structural consistency, physical plausibility, and action completeness. Evaluation of 25 representative models highlights significant deficiencies in generating physically realistic robot behaviors. Furthermore, the benchmark achieves a Spearman correlation coefficient of 0.96 with human evaluations, validating its effectiveness. While RBench provides the necessary lens to identify these deficiencies, achieving physical realism requires moving beyond evaluation to address the critical shortage of high-quality training data. Driven by these insights, we introduce a refined four-stage data pipeline, resulting in RoVid-X, the largest open-source robotic dataset for video generation with 4 million annotated video clips, covering thousands of tasks and enriched with comprehensive physical property annotations. Collectively, this synergistic ecosystem of evaluation and data establishes a robust foundation for rigorous assessment and scalable training of video models, accelerating the evolution of embodied AI toward general intelligence.
Cascaded Span Extraction and Response Generation for Document-Grounded Dialog
This paper summarizes our entries to both subtasks of the first DialDoc shared task which focuses on the agent response prediction task in goal-oriented document-grounded dialogs. The task is split into two subtasks: predicting a span in a document that grounds an agent turn and generating an agent response based on a dialog and grounding document. In the first subtask, we restrict the set of valid spans to the ones defined in the dataset, use a biaffine classifier to model spans, and finally use an ensemble of different models. For the second subtask, we use a cascaded model which grounds the response prediction on the predicted span instead of the full document. With these approaches, we obtain significant improvements in both subtasks compared to the baseline.
MVP: Multi-task Supervised Pre-training for Natural Language Generation
Pre-trained language models (PLMs) have achieved remarkable success in natural language generation (NLG) tasks. Up to now, most NLG-oriented PLMs are pre-trained in an unsupervised manner using the large-scale general corpus. In the meanwhile, an increasing number of models pre-trained with labeled data (i.e., ``supervised pre-training'') showcase superior performance compared to unsupervised pre-trained models. Motivated by the success of supervised pre-training, we propose Multi-task superVised Pre-training~(MVP) for natural language generation. We collect a large-scale natural language generation corpus, MVPCorpus, from 77 datasets over 11 diverse NLG tasks. Then we unify these examples into a general text-to-text format to pre-train the text generation model MVP in a supervised manner. For each task, we further pre-train specific soft prompts to stimulate the model's capacity to perform a specific task. Extensive experiments have demonstrated the effectiveness and generality of our MVP model in a number of NLG tasks, which achieves state-of-the-art performance on 13 out of 17 datasets.
Visual Spatial Description: Controlled Spatial-Oriented Image-to-Text Generation
Image-to-text tasks, such as open-ended image captioning and controllable image description, have received extensive attention for decades. Here, we further advance this line of work by presenting Visual Spatial Description (VSD), a new perspective for image-to-text toward spatial semantics. Given an image and two objects inside it, VSD aims to produce one description focusing on the spatial perspective between the two objects. Accordingly, we manually annotate a dataset to facilitate the investigation of the newly-introduced task and build several benchmark encoder-decoder models by using VL-BART and VL-T5 as backbones. In addition, we investigate pipeline and joint end-to-end architectures for incorporating visual spatial relationship classification (VSRC) information into our model. Finally, we conduct experiments on our benchmark dataset to evaluate all our models. Results show that our models are impressive, providing accurate and human-like spatial-oriented text descriptions. Meanwhile, VSRC has great potential for VSD, and the joint end-to-end architecture is the better choice for their integration. We make the dataset and codes public for research purposes.
Similarity is Not All You Need: Endowing Retrieval Augmented Generation with Multi Layered Thoughts
In recent years, large language models (LLMs) have made remarkable achievements in various domains. However, the untimeliness and cost of knowledge updates coupled with hallucination issues of LLMs have curtailed their applications in knowledge intensive tasks, where retrieval augmented generation (RAG) can be of help. Nevertheless, existing retrieval augmented models typically use similarity as a bridge between queries and documents and follow a retrieve then read procedure. In this work, we argue that similarity is not always the panacea and totally relying on similarity would sometimes degrade the performance of retrieval augmented generation. To this end, we propose MetRag, a Multi layEred Thoughts enhanced Retrieval Augmented Generation framework. To begin with, beyond existing similarity oriented thought, we embrace a small scale utility model that draws supervision from an LLM for utility oriented thought and further come up with a smarter model by comprehensively combining the similarity and utility oriented thoughts. Furthermore, given the fact that the retrieved document set tends to be huge and using them in isolation makes it difficult to capture the commonalities and characteristics among them, we propose to make an LLM as a task adaptive summarizer to endow retrieval augmented generation with compactness-oriented thought. Finally, with multi layered thoughts from the precedent stages, an LLM is called for knowledge augmented generation. Extensive experiments on knowledge-intensive tasks have demonstrated the superiority of MetRag.
Compositional Transformers for Scene Generation
We introduce the GANformer2 model, an iterative object-oriented transformer, explored for the task of generative modeling. The network incorporates strong and explicit structural priors, to reflect the compositional nature of visual scenes, and synthesizes images through a sequential process. It operates in two stages: a fast and lightweight planning phase, where we draft a high-level scene layout, followed by an attention-based execution phase, where the layout is being refined, evolving into a rich and detailed picture. Our model moves away from conventional black-box GAN architectures that feature a flat and monolithic latent space towards a transparent design that encourages efficiency, controllability and interpretability. We demonstrate GANformer2's strengths and qualities through a careful evaluation over a range of datasets, from multi-object CLEVR scenes to the challenging COCO images, showing it successfully achieves state-of-the-art performance in terms of visual quality, diversity and consistency. Further experiments demonstrate the model's disentanglement and provide a deeper insight into its generative process, as it proceeds step-by-step from a rough initial sketch, to a detailed layout that accounts for objects' depths and dependencies, and up to the final high-resolution depiction of vibrant and intricate real-world scenes. See https://github.com/dorarad/gansformer for model implementation.
Representation Learning for Resource-Constrained Keyphrase Generation
State-of-the-art keyphrase generation methods generally depend on large annotated datasets, limiting their performance in domains with limited annotated data. To overcome this challenge, we design a data-oriented approach that first identifies salient information using retrieval-based corpus-level statistics, and then learns a task-specific intermediate representation based on a pre-trained language model using large-scale unlabeled documents. We introduce salient span recovery and salient span prediction as denoising training objectives that condense the intra-article and inter-article knowledge essential for keyphrase generation. Through experiments on multiple keyphrase generation benchmarks, we show the effectiveness of the proposed approach for facilitating low-resource keyphrase generation and zero-shot domain adaptation. Our method especially benefits the generation of absent keyphrases, approaching the performance of models trained with large training sets.
PosA-VLA: Enhancing Action Generation via Pose-Conditioned Anchor Attention
The Vision-Language-Action (VLA) models have demonstrated remarkable performance on embodied tasks and shown promising potential for real-world applications. However, current VLAs still struggle to produce consistent and precise target-oriented actions, as they often generate redundant or unstable motions along trajectories, limiting their applicability in time-sensitive scenarios.In this work, we attribute these redundant actions to the spatially uniform perception field of existing VLAs, which causes them to be distracted by target-irrelevant objects, especially in complex environments.To address this issue, we propose an efficient PosA-VLA framework that anchors visual attention via pose-conditioned supervision, consistently guiding the model's perception toward task-relevant regions. The pose-conditioned anchor attention mechanism enables the model to better align instruction semantics with actionable visual cues, thereby improving action generation precision and efficiency. Moreover, our framework adopts a lightweight architecture and requires no auxiliary perception modules (e.g., segmentation or grounding networks), ensuring efficient inference. Extensive experiments verify that our method executes embodied tasks with precise and time-efficient behavior across diverse robotic manipulation benchmarks and shows robust generalization in a variety of challenging environments.
Self-Correcting Large Language Models: Generation vs. Multiple Choice
Large language models have recently demonstrated remarkable abilities to self-correct their responses through iterative refinement, often referred to as self-consistency or self-reflection. However, the dynamics of this self-correction mechanism may differ substantially depending on whether the model is tasked with open-ended text generation or with selecting the most appropriate response from multiple predefined options. In this paper, we conduct a systematic investigation of these two paradigms by comparing performance trends and error-correction behaviors across various natural language understanding and reasoning tasks, covering language models of different scales and families. Our experimental results reveal distinct patterns of improvement and failure modes: While open-ended generation often benefits from the flexibility of re-interpretation and compositional refinement, multiple-choice selection can leverage clearer solution boundaries but may be limited by the provided options. This contrast also reflects the dual demands faced by emerging agentic LLM applications: effective agents must not only generate and refine open-ended plans or explanations, but also make reliable discrete choices when operating within constrained action spaces. Our findings, therefore, highlight that the design of self-correction mechanisms should take into account the interaction between task structure and output space, with implications for both knowledge-intensive reasoning and decision-oriented applications of LLMs.
Making Task-Oriented Dialogue Datasets More Natural by Synthetically Generating Indirect User Requests
Indirect User Requests (IURs), such as "It's cold in here" instead of "Could you please increase the temperature?" are common in human-human task-oriented dialogue and require world knowledge and pragmatic reasoning from the listener. While large language models (LLMs) can handle these requests effectively, smaller models deployed on virtual assistants often struggle due to resource constraints. Moreover, existing task-oriented dialogue benchmarks lack sufficient examples of complex discourse phenomena such as indirectness. To address this, we propose a set of linguistic criteria along with an LLM-based pipeline for generating realistic IURs to test natural language understanding (NLU) and dialogue state tracking (DST) models before deployment in a new domain. We also release IndirectRequests, a dataset of IURs based on the Schema Guided Dialog (SGD) corpus, as a comparative testbed for evaluating the performance of smaller models in handling indirect requests.
Improving Generalization in Task-oriented Dialogues with Workflows and Action Plans
Task-oriented dialogue is difficult in part because it involves understanding user intent, collecting information from the user, executing API calls, and generating helpful and fluent responses. However, for complex tasks one must also correctly do all of these things over multiple steps, and in a specific order. While large pre-trained language models can be fine-tuned end-to-end to create multi-step task-oriented dialogue agents that generate fluent text, our experiments confirm that this approach alone cannot reliably perform new multi-step tasks that are unseen during training. To address these limitations, we augment the dialogue contexts given to text2text transformers with known valid workflow names and action plans. Action plans consist of sequences of actions required to accomplish a task, and are encoded as simple sequences of keywords (e.g. verify-identity, pull-up-account, reset-password, etc.). We perform extensive experiments on the Action-Based Conversations Dataset (ABCD) with T5-small, base and large models, and show that such models: a) are able to more readily generalize to unseen workflows by following the provided plan, and b) are able to generalize to executing unseen actions if they are provided in the plan. In contrast, models are unable to fully accomplish new multi-step tasks when they are not provided action plan information, even when given new valid workflow names.
DIALIGHT: Lightweight Multilingual Development and Evaluation of Task-Oriented Dialogue Systems with Large Language Models
We present DIALIGHT, a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems which facilitates systematic evaluations and comparisons between ToD systems using fine-tuning of Pretrained Language Models (PLMs) and those utilising the zero-shot and in-context learning capabilities of Large Language Models (LLMs). In addition to automatic evaluation, this toolkit features (i) a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level, and (ii) a microservice-based backend, improving efficiency and scalability. Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses. However, we also identify significant challenges of LLMs in adherence to task-specific instructions and generating outputs in multiple languages, highlighting areas for future research. We hope this open-sourced toolkit will serve as a valuable resource for researchers aiming to develop and properly evaluate multilingual ToD systems and will lower, currently still high, entry barriers in the field.
Show, Don't Tell: Demonstrations Outperform Descriptions for Schema-Guided Task-Oriented Dialogue
Building universal dialogue systems that operate across multiple domains/APIs and generalize to new ones with minimal overhead is a critical challenge. Recent works have leveraged natural language descriptions of schema elements to enable such systems; however, descriptions only indirectly convey schema semantics. In this work, we propose Show, Don't Tell, which prompts seq2seq models with a labeled example dialogue to show the semantics of schema elements rather than tell the model through descriptions. While requiring similar effort from service developers as generating descriptions, we show that using short examples as schema representations with large language models results in state-of-the-art performance on two popular dialogue state tracking benchmarks designed to measure zero-shot generalization - the Schema-Guided Dialogue dataset and the MultiWOZ leave-one-out benchmark.
How You Prompt Matters! Even Task-Oriented Constraints in Instructions Affect LLM-Generated Text Detection
To combat the misuse of Large Language Models (LLMs), many recent studies have presented LLM-generated-text detectors with promising performance. When users instruct LLMs to generate texts, the instruction can include different constraints depending on the user's need. However, most recent studies do not cover such diverse instruction patterns when creating datasets for LLM detection. In this paper, we reveal that even task-oriented constraints -- constraints that would naturally be included in an instruction and are not related to detection-evasion -- cause existing powerful detectors to have a large variance in detection performance. We focus on student essay writing as a realistic domain and manually create task-oriented constraints based on several factors for essay quality. Our experiments show that the standard deviation (SD) of current detector performance on texts generated by an instruction with such a constraint is significantly larger (up to an SD of 14.4 F1-score) than that by generating texts multiple times or paraphrasing the instruction. We also observe an overall trend where the constraints can make LLM detection more challenging than without them. Finally, our analysis indicates that the high instruction-following ability of LLMs fosters the large impact of such constraints on detection performance.
Prompt reinforcing for long-term planning of large language models
Large language models (LLMs) have achieved remarkable success in a wide range of natural language processing tasks and can be adapted through prompting. However, they remain suboptimal in multi-turn interactions, often relying on incorrect early assumptions and failing to track user goals over time, which makes such tasks particularly challenging. Prior works in dialogue systems have shown that long-term planning is essential for handling interactive tasks. In this work, we propose a prompt optimisation framework inspired by reinforcement learning, which enables such planning to take place by only modifying the task instruction prompt of the LLM-based agent. By generating turn-by-turn feedback and leveraging experience replay for prompt rewriting, our proposed method shows significant improvement in multi-turn tasks such as text-to-SQL and task-oriented dialogue. Moreover, it generalises across different LLM-based agents and can leverage diverse LLMs as meta-prompting agents. This warrants future research in reinforcement learning-inspired parameter-free optimisation methods.
Saying No is An Art: Contextualized Fallback Responses for Unanswerable Dialogue Queries
Despite end-to-end neural systems making significant progress in the last decade for task-oriented as well as chit-chat based dialogue systems, most dialogue systems rely on hybrid approaches which use a combination of rule-based, retrieval and generative approaches for generating a set of ranked responses. Such dialogue systems need to rely on a fallback mechanism to respond to out-of-domain or novel user queries which are not answerable within the scope of the dialog system. While, dialog systems today rely on static and unnatural responses like "I don't know the answer to that question" or "I'm not sure about that", we design a neural approach which generates responses which are contextually aware with the user query as well as say no to the user. Such customized responses provide paraphrasing ability and contextualization as well as improve the interaction with the user and reduce dialogue monotonicity. Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs generating highly relevant, grammatical as well as diverse questions. We perform automatic and manual evaluations to demonstrate the efficacy of the system.
Augmenting Black-box LLMs with Medical Textbooks for Clinical Question Answering
Large-scale language models (LLMs), such as ChatGPT, are capable of generating human-like responses for various downstream tasks, such as task-oriented dialogues and question answering. However, applying LLMs to medical domains remains challenging due to their inability to leverage domain-specific knowledge. In this study, we present the Large-scale Language Models Augmented with Medical Textbooks (LLM-AMT), which integrates authoritative medical textbooks as the cornerstone of its design, enhancing its proficiency in the specialized domain through plug-and-play modules, comprised of a Hybrid Textbook Retriever, supplemented by the Query Augmenter and the LLM Reader. Experimental evaluation on three open-domain medical question-answering tasks reveals a substantial enhancement in both the professionalism and accuracy of the LLM responses when utilizing LLM-AMT, exhibiting an improvement ranging from 11.4% to 13.2%. Despite being 100 times smaller, we found that medical textbooks as the retrieval corpus serves as a more valuable external knowledge source than Wikipedia in the medical domain. Our experiments show that textbook augmentation results in a performance improvement ranging from 9.7% to 12.2% over Wikipedia augmentation.
Enhancing Long-form Text Generation in Mental Health with Task-adaptive Tokenization
We propose task-adaptive tokenization as a way to adapt the generation pipeline to the specifics of a downstream task and enhance long-form generation in mental health. Inspired by insights from cognitive science, our task-adaptive tokenizer samples variable segmentations from multiple outcomes, with sampling probabilities optimized based on task-specific data. We introduce a strategy for building a specialized vocabulary and introduce a vocabulary merging protocol that allows for the integration of task-specific tokens into the pre-trained model's tokenization step. Through extensive experiments on psychological question-answering tasks in both Chinese and English, we find that our task-adaptive tokenization approach brings a significant improvement in generation performance while using up to 60% fewer tokens. Preliminary experiments point to promising results when using our tokenization approach with very large language models.
LEATHER: A Framework for Learning to Generate Human-like Text in Dialogue
Algorithms for text-generation in dialogue can be misguided. For example, in task-oriented settings, reinforcement learning that optimizes only task-success can lead to abysmal lexical diversity. We hypothesize this is due to poor theoretical understanding of the objectives in text-generation and their relation to the learning process (i.e., model training). To this end, we propose a new theoretical framework for learning to generate text in dialogue. Compared to existing theories of learning, our framework allows for analysis of the multi-faceted goals inherent to text-generation. We use our framework to develop theoretical guarantees for learners that adapt to unseen data. As an example, we apply our theory to study data-shift within a cooperative learning algorithm proposed for the GuessWhat?! visual dialogue game. From this insight, we propose a new algorithm, and empirically, we demonstrate our proposal improves both task-success and human-likeness of the generated text. Finally, we show statistics from our theory are empirically predictive of multiple qualities of the generated dialogue, suggesting our theory is useful for model-selection when human evaluations are not available.
End-to-end Task-oriented Dialogue: A Survey of Tasks, Methods, and Future Directions
End-to-end task-oriented dialogue (EToD) can directly generate responses in an end-to-end fashion without modular training, which attracts escalating popularity. The advancement of deep neural networks, especially the successful use of large pre-trained models, has further led to significant progress in EToD research in recent years. In this paper, we present a thorough review and provide a unified perspective to summarize existing approaches as well as recent trends to advance the development of EToD research. The contributions of this paper can be summarized: (1) \textit{First survey}: to our knowledge, we take the first step to present a thorough survey of this research field; (2) \textit{New taxonomy}: we first introduce a unified perspective for EToD, including (i) Modularly EToD and (ii) Fully EToD; (3) \textit{New Frontiers}: we discuss some potential frontier areas as well as the corresponding challenges, hoping to spur breakthrough research in EToD field; (4) \textit{Abundant resources}: we build a public websiteWe collect the related papers, baseline projects, and leaderboards for the community at \url{https://etods.net/.}, where EToD researchers could directly access the recent progress. We hope this work can serve as a thorough reference for the EToD research community.
Description-Driven Task-Oriented Dialog Modeling
Task-oriented dialogue (TOD) systems are required to identify key information from conversations for the completion of given tasks. Such information is conventionally specified in terms of intents and slots contained in task-specific ontology or schemata. Since these schemata are designed by system developers, the naming convention for slots and intents is not uniform across tasks, and may not convey their semantics effectively. This can lead to models memorizing arbitrary patterns in data, resulting in suboptimal performance and generalization. In this paper, we propose that schemata should be modified by replacing names or notations entirely with natural language descriptions. We show that a language description-driven system exhibits better understanding of task specifications, higher performance on state tracking, improved data efficiency, and effective zero-shot transfer to unseen tasks. Following this paradigm, we present a simple yet effective Description-Driven Dialog State Tracking (D3ST) model, which relies purely on schema descriptions and an "index-picking" mechanism. We demonstrate the superiority in quality, data efficiency and robustness of our approach as measured on the MultiWOZ (Budzianowski et al.,2018), SGD (Rastogi et al., 2020), and the recent SGD-X (Lee et al., 2021) benchmarks.
Eliciting Human Preferences with Language Models
Language models (LMs) can be directed to perform target tasks by using labeled examples or natural language prompts. But selecting examples or writing prompts for can be challenging--especially in tasks that involve unusual edge cases, demand precise articulation of nebulous preferences, or require an accurate mental model of LM behavior. We propose to use *LMs themselves* to guide the task specification process. In this paper, we introduce **Generative Active Task Elicitation (GATE)**: a learning framework in which models elicit and infer intended behavior through free-form, language-based interaction with users. We study GATE in three domains: email validation, content recommendation, and moral reasoning. In preregistered experiments, we show that LMs prompted to perform GATE (e.g., by generating open-ended questions or synthesizing informative edge cases) elicit responses that are often more informative than user-written prompts or labels. Users report that interactive task elicitation requires less effort than prompting or example labeling and surfaces novel considerations not initially anticipated by users. Our findings suggest that LM-driven elicitation can be a powerful tool for aligning models to complex human preferences and values.
Teach LLMs to Personalize -- An Approach inspired by Writing Education
Personalized text generation is an emerging research area that has attracted much attention in recent years. Most studies in this direction focus on a particular domain by designing bespoke features or models. In this work, we propose a general approach for personalized text generation using large language models (LLMs). Inspired by the practice of writing education, we develop a multistage and multitask framework to teach LLMs for personalized generation. In writing instruction, the task of writing from sources is often decomposed into multiple steps that involve finding, evaluating, summarizing, synthesizing, and integrating information. Analogously, our approach to personalized text generation consists of multiple stages: retrieval, ranking, summarization, synthesis, and generation. In addition, we introduce a multitask setting that helps the model improve its generation ability further, which is inspired by the observation in education that a student's reading proficiency and writing ability are often correlated. We evaluate our approach on three public datasets, each of which covers a different and representative domain. Our results show significant improvements over a variety of baselines.
TaskGen: A Task-Based, Memory-Infused Agentic Framework using StrictJSON
TaskGen is an open-sourced agentic framework which uses an Agent to solve an arbitrary task by breaking them down into subtasks. Each subtask is mapped to an Equipped Function or another Agent to execute. In order to reduce verbosity (and hence token usage), TaskGen uses StrictJSON that ensures JSON output from the Large Language Model (LLM), along with additional features such as type checking and iterative error correction. Key to the philosophy of TaskGen is the management of information/memory on a need-to-know basis. We empirically evaluate TaskGen on various environments such as 40x40 dynamic maze navigation with changing obstacle locations (100% solve rate), TextWorld escape room solving with dense rewards and detailed goals (96% solve rate), web browsing (69% of actions successful), solving the MATH dataset (71% solve rate over 100 Level-5 problems), Retrieval Augmented Generation on NaturalQuestions dataset (F1 score of 47.03%)
Learning to Transfer Prompts for Text Generation
Pretrained language models (PLMs) have made remarkable progress in text generation tasks via fine-tuning. While, it is challenging to fine-tune PLMs in a data-scarce situation. Therefore, it is non-trivial to develop a general and lightweight model that can adapt to various text generation tasks based on PLMs. To fulfill this purpose, the recent prompt-based learning offers a potential solution. In this paper, we improve this technique and propose a novel prompt-based method (PTG) for text generation in a transferable setting. First, PTG learns a set of source prompts for various source generation tasks and then transfers these prompts as target prompts to perform target generation tasks. To consider both task- and instance-level information, we design an adaptive attention mechanism to derive the target prompts. For each data instance, PTG learns a specific target prompt by attending to highly relevant source prompts. In extensive experiments, PTG yields competitive or better results than fine-tuning methods. We release our source prompts as an open resource, where users can add or reuse them to improve new text generation tasks for future research. Code and data can be available at https://github.com/RUCAIBox/Transfer-Prompts-for-Text-Generation.
Unsupervised Task Graph Generation from Instructional Video Transcripts
This work explores the problem of generating task graphs of real-world activities. Different from prior formulations, we consider a setting where text transcripts of instructional videos performing a real-world activity (e.g., making coffee) are provided and the goal is to identify the key steps relevant to the task as well as the dependency relationship between these key steps. We propose a novel task graph generation approach that combines the reasoning capabilities of instruction-tuned language models along with clustering and ranking components to generate accurate task graphs in a completely unsupervised manner. We show that the proposed approach generates more accurate task graphs compared to a supervised learning approach on tasks from the ProceL and CrossTask datasets.
DOLOMITES: Domain-Specific Long-Form Methodical Tasks
Experts in various fields routinely perform methodical writing tasks to plan, organize, and report their work. From a clinician writing a differential diagnosis for a patient, to a teacher writing a lesson plan for students, these tasks are pervasive, requiring to methodically generate structured long-form output for a given input. We develop a typology of methodical tasks structured in the form of a task objective, procedure, input, and output, and introduce DoLoMiTes, a novel benchmark with specifications for 519 such tasks elicited from hundreds of experts from across 25 fields. Our benchmark further contains specific instantiations of methodical tasks with concrete input and output examples (1,857 in total) which we obtain by collecting expert revisions of up to 10 model-generated examples of each task. We use these examples to evaluate contemporary language models highlighting that automating methodical tasks is a challenging long-form generation problem, as it requires performing complex inferences, while drawing upon the given context as well as domain knowledge.
Benchmarking Large Language Model Capabilities for Conditional Generation
Pre-trained large language models (PLMs) underlie most new developments in natural language processing. They have shifted the field from application-specific model pipelines to a single model that is adapted to a wide range of tasks. Autoregressive PLMs like GPT-3 or PaLM, alongside techniques like few-shot learning, have additionally shifted the output modality to generation instead of classification or regression. Despite their ubiquitous use, the generation quality of language models is rarely evaluated when these models are introduced. Additionally, it is unclear how existing generation tasks--while they can be used to compare systems at a high level--relate to the real world use cases for which people have been adopting them. In this work, we discuss how to adapt existing application-specific generation benchmarks to PLMs and provide an in-depth, empirical study of the limitations and capabilities of PLMs in natural language generation tasks along dimensions such as scale, architecture, input and output language. Our results show that PLMs differ in their applicability to different data regimes and their generalization to multiple languages and inform which PLMs to use for a given generation task setup. We share best practices to be taken into consideration when benchmarking generation capabilities during the development of upcoming PLMs.
TAPO: Task-Referenced Adaptation for Prompt Optimization
Prompt engineering can significantly improve the performance of large language models (LLMs), with automated prompt optimization (APO) gaining significant attention due to the time-consuming and laborious nature of manual prompt design. However, much of the existing work in APO overlooks task-specific characteristics, resulting in prompts that lack domain specificity and are not well-suited for task-specific optimization. In this paper, we introduce TAPO, a multitask-aware prompt optimization framework composed of three key modules. First, a task-aware metric selection module is proposed to enhance task-specific prompt generation capabilities. Second, we present a multi-metrics evaluation module to jointly evaluate prompts from multiple perspectives. Third, an evolution-based optimization framework is introduced for automatic prompt refinement, which improves adaptability across various tasks. Extensive experiments on six datasets demonstrate the effectiveness of our approach, and our code is publicly available.
TaskCraft: Automated Generation of Agentic Tasks
Agentic tasks, which require multi-step problem solving with autonomy, tool use, and adaptive reasoning, are becoming increasingly central to the advancement of NLP and AI. However, existing instruction data lacks tool interaction, and current agentic benchmarks rely on costly human annotation, limiting their scalability. We introduce TaskCraft, an automated workflow for generating difficulty-scalable, multi-tool, and verifiable agentic tasks with execution trajectories. TaskCraft expands atomic tasks using depth-based and width-based extensions to create structurally and hierarchically complex challenges. Empirical results show that these tasks improve prompt optimization in the generation workflow and enhance supervised fine-tuning of agentic foundation models. We present a large-scale synthetic dataset of approximately 36,000 tasks with varying difficulty to support future research on agent tuning and evaluation.
GenSim: Generating Robotic Simulation Tasks via Large Language Models
Collecting large amounts of real-world interaction data to train general robotic policies is often prohibitively expensive, thus motivating the use of simulation data. However, existing methods for data generation have generally focused on scene-level diversity (e.g., object instances and poses) rather than task-level diversity, due to the human effort required to come up with and verify novel tasks. This has made it challenging for policies trained on simulation data to demonstrate significant task-level generalization. In this paper, we propose to automatically generate rich simulation environments and expert demonstrations by exploiting a large language models' (LLM) grounding and coding ability. Our approach, dubbed GenSim, has two modes: goal-directed generation, wherein a target task is given to the LLM and the LLM proposes a task curriculum to solve the target task, and exploratory generation, wherein the LLM bootstraps from previous tasks and iteratively proposes novel tasks that would be helpful in solving more complex tasks. We use GPT4 to expand the existing benchmark by ten times to over 100 tasks, on which we conduct supervised finetuning and evaluate several LLMs including finetuned GPTs and Code Llama on code generation for robotic simulation tasks. Furthermore, we observe that LLMs-generated simulation programs can enhance task-level generalization significantly when used for multitask policy training. We further find that with minimal sim-to-real adaptation, the multitask policies pretrained on GPT4-generated simulation tasks exhibit stronger transfer to unseen long-horizon tasks in the real world and outperform baselines by 25%. See the project website (https://liruiw.github.io/gensim) for code, demos, and videos.
Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges
Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, summarization, translation, paraphrasing, and question answering. For each task, we review their relevant characteristics, sub-tasks, and specific challenges (e.g., missing datasets for multi-document summarization, coherence in story generation, and complex reasoning for question answering). Additionally, we assess current approaches for evaluating text generation systems and ascertain problems with current metrics. Our investigation shows nine prominent challenges common to all tasks and sub-tasks in recent text generation publications: bias, reasoning, hallucinations, misuse, privacy, interpretability, transparency, datasets, and computing. We provide a detailed analysis of these challenges, their potential solutions, and which gaps still require further engagement from the community. This systematic literature review targets two main audiences: early career researchers in natural language processing looking for an overview of the field and promising research directions, as well as experienced researchers seeking a detailed view of tasks, evaluation methodologies, open challenges, and recent mitigation strategies.
FinGen: A Dataset for Argument Generation in Finance
Thinking about the future is one of the important activities that people do in daily life. Futurists also pay a lot of effort into figuring out possible scenarios for the future. We argue that the exploration of this direction is still in an early stage in the NLP research. To this end, we propose three argument generation tasks in the financial application scenario. Our experimental results show these tasks are still big challenges for representative generation models. Based on our empirical results, we further point out several unresolved issues and challenges in this research direction.
Linking Theories and Methods in Cognitive Sciences via Joint Embedding of the Scientific Literature: The Example of Cognitive Control
Traditionally, theory and practice of Cognitive Control are linked via literature reviews by human domain experts. This approach, however, is inadequate to track the ever-growing literature. It may also be biased, and yield redundancies and confusion. Here we present an alternative approach. We performed automated text analyses on a large body of scientific texts to create a joint representation of tasks and constructs. More specifically, 385,705 scientific abstracts were first mapped into an embedding space using a transformers-based language model. Document embeddings were then used to identify a task-construct graph embedding that grounds constructs on tasks and supports nuanced meaning of the constructs by taking advantage of constrained random walks in the graph. This joint task-construct graph embedding, can be queried to generate task batteries targeting specific constructs, may reveal knowledge gaps in the literature, and inspire new tasks and novel hypotheses.
A Network-based End-to-End Trainable Task-oriented Dialogue System
Teaching machines to accomplish tasks by conversing naturally with humans is challenging. Currently, developing task-oriented dialogue systems requires creating multiple components and typically this involves either a large amount of handcrafting, or acquiring costly labelled datasets to solve a statistical learning problem for each component. In this work we introduce a neural network-based text-in, text-out end-to-end trainable goal-oriented dialogue system along with a new way of collecting dialogue data based on a novel pipe-lined Wizard-of-Oz framework. This approach allows us to develop dialogue systems easily and without making too many assumptions about the task at hand. The results show that the model can converse with human subjects naturally whilst helping them to accomplish tasks in a restaurant search domain.
ProgPrompt: Generating Situated Robot Task Plans using Large Language Models
Task planning can require defining myriad domain knowledge about the world in which a robot needs to act. To ameliorate that effort, large language models (LLMs) can be used to score potential next actions during task planning, and even generate action sequences directly, given an instruction in natural language with no additional domain information. However, such methods either require enumerating all possible next steps for scoring, or generate free-form text that may contain actions not possible on a given robot in its current context. We present a programmatic LLM prompt structure that enables plan generation functional across situated environments, robot capabilities, and tasks. Our key insight is to prompt the LLM with program-like specifications of the available actions and objects in an environment, as well as with example programs that can be executed. We make concrete recommendations about prompt structure and generation constraints through ablation experiments, demonstrate state of the art success rates in VirtualHome household tasks, and deploy our method on a physical robot arm for tabletop tasks. Website at progprompt.github.io
Multimedia Generative Script Learning for Task Planning
Goal-oriented generative script learning aims to generate subsequent steps to reach a particular goal, which is an essential task to assist robots or humans in performing stereotypical activities. An important aspect of this process is the ability to capture historical states visually, which provides detailed information that is not covered by text and will guide subsequent steps. Therefore, we propose a new task, Multimedia Generative Script Learning, to generate subsequent steps by tracking historical states in both text and vision modalities, as well as presenting the first benchmark containing 5,652 tasks and 79,089 multimedia steps. This task is challenging in three aspects: the multimedia challenge of capturing the visual states in images, the induction challenge of performing unseen tasks, and the diversity challenge of covering different information in individual steps. We propose to encode visual state changes through a selective multimedia encoder to address the multimedia challenge, transfer knowledge from previously observed tasks using a retrieval-augmented decoder to overcome the induction challenge, and further present distinct information at each step by optimizing a diversity-oriented contrastive learning objective. We define metrics to evaluate both generation and inductive quality. Experiment results demonstrate that our approach significantly outperforms strong baselines.
ZeroPrompt: Scaling Prompt-Based Pretraining to 1,000 Tasks Improves Zero-Shot Generalization
We propose a multitask pretraining approach ZeroPrompt for zero-shot generalization, focusing on task scaling and zero-shot prompting. While previous models are trained on only a few dozen tasks, we scale to 1,000 tasks for the first time using real-world data. This leads to a crucial discovery that task scaling can be an efficient alternative to model scaling; i.e., the model size has little impact on performance with an extremely large number of tasks. Our results show that task scaling can substantially improve training efficiency by 30 times in FLOPs. Moreover, we present a prompting method that incorporates a genetic algorithm to automatically search for the best prompt for unseen tasks, along with a few other improvements. Empirically, ZeroPrompt substantially improves both the efficiency and the performance of zero-shot learning across a variety of academic and production datasets.
Editing Models with Task Arithmetic
Changing how pre-trained models behave -- e.g., improving their performance on a downstream task or mitigating biases learned during pre-training -- is a common practice when developing machine learning systems. In this work, we propose a new paradigm for steering the behavior of neural networks, centered around task vectors. A task vector specifies a direction in the weight space of a pre-trained model, such that movement in that direction improves performance on the task. We build task vectors by subtracting the weights of a pre-trained model from the weights of the same model after fine-tuning on a task. We show that these task vectors can be modified and combined together through arithmetic operations such as negation and addition, and the behavior of the resulting model is steered accordingly. Negating a task vector decreases performance on the target task, with little change in model behavior on control tasks. Moreover, adding task vectors together can improve performance on multiple tasks at once. Finally, when tasks are linked by an analogy relationship of the form ``A is to B as C is to D", combining task vectors from three of the tasks can improve performance on the fourth, even when no data from the fourth task is used for training. Overall, our experiments with several models, modalities and tasks show that task arithmetic is a simple, efficient and effective way of editing models.
The Code2Text Challenge: Text Generation in Source Code Libraries
We propose a new shared task for tactical data-to-text generation in the domain of source code libraries. Specifically, we focus on text generation of function descriptions from example software projects. Data is drawn from existing resources used for studying the related problem of semantic parser induction (Richardson and Kuhn, 2017b; Richardson and Kuhn, 2017a), and spans a wide variety of both natural languages and programming languages. In this paper, we describe these existing resources, which will serve as training and development data for the task, and discuss plans for building new independent test sets.
Learning from Task Descriptions
Typically, machine learning systems solve new tasks by training on thousands of examples. In contrast, humans can solve new tasks by reading some instructions, with perhaps an example or two. To take a step toward closing this gap, we introduce a framework for developing NLP systems that solve new tasks after reading their descriptions, synthesizing prior work in this area. We instantiate this framework with a new English language dataset, ZEST, structured for task-oriented evaluation on unseen tasks. Formulating task descriptions as questions, we ensure each is general enough to apply to many possible inputs, thus comprehensively evaluating a model's ability to solve each task. Moreover, the dataset's structure tests specific types of systematic generalization. We find that the state-of-the-art T5 model achieves a score of 12% on ZEST, leaving a significant challenge for NLP researchers.
If generative AI is the answer, what is the question?
Beginning with text and images, generative AI has expanded to audio, video, computer code, and molecules. Yet, if generative AI is the answer, what is the question? We explore the foundations of generation as a distinct machine learning task with connections to prediction, compression, and decision-making. We survey five major generative model families: autoregressive models, variational autoencoders, normalizing flows, generative adversarial networks, and diffusion models. We then introduce a probabilistic framework that emphasizes the distinction between density estimation and generation. We review a game-theoretic framework with a two-player adversary-learner setup to study generation. We discuss post-training modifications that prepare generative models for deployment. We end by highlighting some important topics in socially responsible generation such as privacy, detection of AI-generated content, and copyright and IP. We adopt a task-first framing of generation, focusing on what generation is as a machine learning problem, rather than only on how models implement it.
Cross-Task Generalization via Natural Language Crowdsourcing Instructions
Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. Despite the success of the conventional supervised learning on individual datasets, such models often struggle with generalization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that learns a new task by understanding the human-readable instructions that define it. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions, and 193k task instances (input-output pairs). The instructions are obtained from crowdsourcing instructions used to create existing NLP datasets and mapped to a unified schema. Using this meta-dataset, we measure cross-task generalization by training models on seen tasks and measuring generalization to the remaining unseen ones. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models benefit from instructions when evaluated in terms of generalization to unseen tasks (19% better for models utilizing instructions). These models, however, are far behind an estimated performance upperbound indicating significant room for more progress in this direction.
A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning
Knowledge-intensive language tasks (KILTs) benefit from retrieving high-quality relevant contexts from large external knowledge corpora. Learning task-specific retrievers that return relevant contexts at an appropriate level of semantic granularity, such as a document retriever, passage retriever, sentence retriever, and entity retriever, may help to achieve better performance on the end-to-end task. But a task-specific retriever usually has poor generalization ability to new domains and tasks, and it may be costly to deploy a variety of specialised retrievers in practice. We propose a unified generative retriever (UGR) that combines task-specific effectiveness with robust performance over different retrieval tasks in KILTs. To achieve this goal, we make two major contributions: (i) To unify different retrieval tasks into a single generative form, we introduce an n-gram-based identifier for relevant contexts at different levels of granularity in KILTs. And (ii) to address different retrieval tasks with a single model, we employ a prompt learning strategy and investigate three methods to design prompt tokens for each task. In this way, the proposed UGR model can not only share common knowledge across tasks for better generalization, but also perform different retrieval tasks effectively by distinguishing task-specific characteristics. We train UGR on a heterogeneous set of retrieval corpora with well-designed prompts in a supervised and multi-task fashion. Experimental results on the KILT benchmark demonstrate the effectiveness of UGR on in-domain datasets, out-of-domain datasets, and unseen tasks.
Generative AI for Synthetic Data Generation: Methods, Challenges and the Future
The recent surge in research focused on generating synthetic data from large language models (LLMs), especially for scenarios with limited data availability, marks a notable shift in Generative Artificial Intelligence (AI). Their ability to perform comparably to real-world data positions this approach as a compelling solution to low-resource challenges. This paper delves into advanced technologies that leverage these gigantic LLMs for the generation of task-specific training data. We outline methodologies, evaluation techniques, and practical applications, discuss the current limitations, and suggest potential pathways for future research.
MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for Natural Language Understanding in Task-Oriented Dialogue
Task-oriented dialogue (TOD) systems have been applied in a range of domains to support human users to achieve specific goals. Systems are typically constructed for a single domain or language and do not generalise well beyond this. Their extension to other languages in particular is restricted by the lack of available training data for many of the world's languages. To support work on Natural Language Understanding (NLU) in TOD across multiple languages and domains simultaneously, we constructed MULTI3NLU++, a multilingual, multi-intent, multi-domain dataset. MULTI3NLU++ extends the English-only NLU++ dataset to include manual translations into a range of high, medium and low resource languages (Spanish, Marathi, Turkish and Amharic), in two domains (banking and hotels). MULTI3NLU++ inherits the multi-intent property of NLU++, where an utterance may be labelled with multiple intents, providing a more realistic representation of a user's goals and aligning with the more complex tasks that commercial systems aim to model. We use MULTI3NLU++ to benchmark state-of-the-art multilingual language models as well as Machine Translation and Question Answering systems for the NLU task of intent detection for TOD systems in the multilingual setting. The results demonstrate the challenging nature of the dataset, particularly in the low-resource language setting.
The Translation Barrier Hypothesis: Multilingual Generation with Large Language Models Suffers from Implicit Translation Failure
Multilingual generation with large language models (LLMs) is often of poor quality for mid- to low-resource languages. Building on insights from interpretability, we demonstrate the existence of an implicit task-solving-->translation pipeline for generation, whereby the model first solves the required task in a largely target-language-agnostic manner, and subsequently translates answer concepts into the intended target language. We hypothesize that the failure of the translation stage is an important culprit for the observed low quality of final outputs, and formalize this as the translation barrier hypothesis. We test this hypothesis for a word translation task across 108 language pairs, using logit lens to observe model processing in intermediate layers. We find that a significant portion of overall failures indeed stems from translation failure, or the model's inability to translate correctly solved intermediate concepts into the target language. This is especially true for low-resource target languages. Our results highlight an important hurdle for end-to-end multilingual generation, and lend guiding insights for future work seeking to improve multilinguality in LLMs.
AutoML-GPT: Automatic Machine Learning with GPT
AI tasks encompass a wide range of domains and fields. While numerous AI models have been designed for specific tasks and applications, they often require considerable human efforts in finding the right model architecture, optimization algorithm, and hyperparameters. Recent advances in large language models (LLMs) like ChatGPT show remarkable capabilities in various aspects of reasoning, comprehension, and interaction. Consequently, we propose developing task-oriented prompts and automatically utilizing LLMs to automate the training pipeline. To implement this concept, we present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyperparameters. AutoML-GPT dynamically takes user requests from the model and data cards and composes the corresponding prompt paragraph. Ultimately, with this prompt paragraph, AutoML-GPT will automatically conduct the experiments from data processing to model architecture, hyperparameter tuning, and predicted training log. By leveraging {\ours}'s robust language capabilities and the available AI models, AutoML-GPT can tackle numerous intricate AI tasks across various tasks and datasets. This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many AI tasks.
Faithfulness in Natural Language Generation: A Systematic Survey of Analysis, Evaluation and Optimization Methods
Natural Language Generation (NLG) has made great progress in recent years due to the development of deep learning techniques such as pre-trained language models. This advancement has resulted in more fluent, coherent and even properties controllable (e.g. stylistic, sentiment, length etc.) generation, naturally leading to development in downstream tasks such as abstractive summarization, dialogue generation, machine translation, and data-to-text generation. However, the faithfulness problem that the generated text usually contains unfaithful or non-factual information has become the biggest challenge, which makes the performance of text generation unsatisfactory for practical applications in many real-world scenarios. Many studies on analysis, evaluation, and optimization methods for faithfulness problems have been proposed for various tasks, but have not been organized, compared and discussed in a combined manner. In this survey, we provide a systematic overview of the research progress on the faithfulness problem of NLG, including problem analysis, evaluation metrics and optimization methods. We organize the evaluation and optimization methods for different tasks into a unified taxonomy to facilitate comparison and learning across tasks. Several research trends are discussed further.
Target-Guided Open-Domain Conversation Planning
Prior studies addressing target-oriented conversational tasks lack a crucial notion that has been intensively studied in the context of goal-oriented artificial intelligence agents, namely, planning. In this study, we propose the task of Target-Guided Open-Domain Conversation Planning (TGCP) task to evaluate whether neural conversational agents have goal-oriented conversation planning abilities. Using the TGCP task, we investigate the conversation planning abilities of existing retrieval models and recent strong generative models. The experimental results reveal the challenges facing current technology.
Semantic IDs for Joint Generative Search and Recommendation
Generative models powered by Large Language Models (LLMs) are emerging as a unified solution for powering both recommendation and search tasks. A key design choice in these models is how to represent items, traditionally through unique identifiers (IDs) and more recently with Semantic IDs composed of discrete codes, obtained from embeddings. While task-specific embedding models can improve performance for individual tasks, they may not generalize well in a joint setting. In this paper, we explore how to construct Semantic IDs that perform well both in search and recommendation when using a unified model. We compare a range of strategies to construct Semantic IDs, looking into task-specific and cross-tasks approaches, and also whether each task should have its own semantic ID tokens in a joint search and recommendation generative model. Our results show that using a bi-encoder model fine-tuned on both search and recommendation tasks to obtain item embeddings, followed by the construction of a unified Semantic ID space provides an effective trade-off, enabling strong performance in both tasks. We hope these findings spark follow-up work on generalisable, semantically grounded ID schemes and inform the next wave of unified generative recommender architectures.
Language Model Decoding as Likelihood-Utility Alignment
A critical component of a successful language generation pipeline is the decoding algorithm. However, the general principles that should guide the choice of decoding algorithm remain unclear. Previous works only compare decoding algorithms in narrow scenarios and their findings do not generalize across tasks. To better structure the discussion, we introduce a taxonomy that groups decoding strategies based on their implicit assumptions about how well the model's likelihood is aligned with the task-specific notion of utility. We argue that this taxonomy allows a broader view of the decoding problem and can lead to generalizable statements because it is grounded on the interplay between the decoding algorithms and the likelihood-utility misalignment. Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide the first empirical evidence supporting the proposed taxonomy, and a set of principles to structure reasoning when choosing a decoding algorithm. Crucially, our analysis is the first one to relate likelihood-based decoding strategies with strategies that rely on external information such as value-guided methods and prompting, and covers the most diverse set of tasks up-to-date.
Base Models Beat Aligned Models at Randomness and Creativity
Alignment has quickly become a default ingredient in LLM development, with techniques such as reinforcement learning from human feedback making models act safely, follow instructions, and perform ever-better on complex tasks. While these techniques are certainly useful, we propose that they should not be universally applied and demonstrate a range of tasks on which base language models consistently outperform their popular aligned forms. Particularly, we study tasks that require unpredictable outputs, such as random number generation, mixed strategy games (rock-paper-scissors and hide-and-seek), and creative writing. In each case, aligned models tend towards narrow behaviors that result in distinct disadvantages, for instance, preferring to generate "7" over other uniformly random numbers, becoming almost fully predictable in some game states, or prioritizing pleasant writing over creative originality. Across models tested, better performance on common benchmarks tends to correlate with worse performance on our tasks, suggesting an effective trade-off in the required capabilities.
NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead Heuristics
The dominant paradigm for neural text generation is left-to-right decoding from autoregressive language models. Constrained or controllable generation under complex lexical constraints, however, requires foresight to plan ahead feasible future paths. Drawing inspiration from the A* search algorithm, we propose NeuroLogic A*esque, a decoding algorithm that incorporates heuristic estimates of future cost. We develop efficient lookahead heuristics that are efficient for large-scale language models, making our method a drop-in replacement for common techniques such as beam search and top-k sampling. To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction. Our approach outperforms competitive baselines on five generation tasks, and achieves new state-of-the-art performance on table-to-text generation, constrained machine translation, and keyword-constrained generation. The improvements are particularly notable on tasks that require complex constraint satisfaction or in few-shot or zero-shot settings. NeuroLogic A*esque illustrates the power of decoding for improving and enabling new capabilities of large-scale language models.
Learning to generate and corr- uh I mean repair language in real-time
In conversation, speakers produce language incrementally, word by word, while continuously monitoring the appropriateness of their own contribution in the dynamically unfolding context of the conversation; and this often leads them to repair their own utterance on the fly. This real-time language processing capacity is furthermore crucial to the development of fluent and natural conversational AI. In this paper, we use a previously learned Dynamic Syntax grammar and the CHILDES corpus to develop, train and evaluate a probabilistic model for incremental generation where input to the model is a purely semantic generation goal concept in Type Theory with Records (TTR). We show that the model's output exactly matches the gold candidate in 78% of cases with a ROUGE-l score of 0.86. We further do a zero-shot evaluation of the ability of the same model to generate self-repairs when the generation goal changes mid-utterance. Automatic evaluation shows that the model can generate self-repairs correctly in 85% of cases. A small human evaluation confirms the naturalness and grammaticality of the generated self-repairs. Overall, these results further highlight the generalisation power of grammar-based models and lay the foundations for more controllable, and naturally interactive conversational AI systems.
SPRIG: Improving Large Language Model Performance by System Prompt Optimization
Large Language Models (LLMs) have shown impressive capabilities in many scenarios, but their performance depends, in part, on the choice of prompt. Past research has focused on optimizing prompts specific to a task. However, much less attention has been given to optimizing the general instructions included in a prompt, known as a system prompt. To address this gap, we propose SPRIG, an edit-based genetic algorithm that iteratively constructs prompts from prespecified components to maximize the model's performance in general scenarios. We evaluate the performance of system prompts on a collection of 47 different types of tasks to ensure generalizability. Our study finds that a single optimized system prompt performs on par with task prompts optimized for each individual task. Moreover, combining system and task-level optimizations leads to further improvement, which showcases their complementary nature. Experiments also reveal that the optimized system prompts generalize effectively across model families, parameter sizes, and languages. This study provides insights into the role of system-level instructions in maximizing LLM potential.
On Meta-Prompting
Certain statistical models are capable of interpreting input strings as instructions, or prompts, and carry out tasks based on them. Many approaches to prompting and pre-training these models involve the automated generation of these prompts. We call these approaches meta-prompting, or prompting to obtain prompts. We propose a theoretical framework based on category theory to generalize and describe them. This framework is flexible enough to account for LLM stochasticity; and allows us to obtain formal results around task agnosticity and equivalence of various meta-prompting approaches. We experiment with meta-prompting in two active areas of model research: creativity and ideation. We find that user preference favors (p < 0.01) the prompts generated under meta-prompting, as well as their corresponding outputs, over a series of hardcoded baseline prompts that include the original task prompt. Using our framework, we argue that meta-prompting is more effective than basic prompting at generating desirable outputs.
Language hooks: a modular framework for augmenting LLM reasoning that decouples tool usage from the model and its prompt
Prompting and fine-tuning have emerged as two competing paradigms for augmenting language models with new capabilities, such as the use of tools. Prompting approaches are quick to set up but rely on providing explicit demonstrations of each tool's usage in the model's prompt, thus coupling tool use to the task at hand and limiting generalisation. Fine-tuning removes the need for task-specific demonstrations of tool usage at runtime; however, this ties new capabilities to a single model, thus making already-heavier setup costs a recurring expense. In this paper, we introduce language hooks, a novel framework for augmenting language models with new capabilities that is decoupled both from the model's task-specific prompt and from the model itself. The language hook algorithm interleaves text generation by the base model with the execution of modular programs that trigger conditionally based on the existing text and the available capabilities. Upon triggering, programs may call external tools, auxiliary language models (e.g. using tool specific prompts), and modify the existing context. We benchmark our method against state-of-the-art baselines, find that it outperforms task-aware approaches, and demonstrate its ability to generalise to novel tasks.
LLM Tree Search
This project aims to investigate a novel sequence generation method inspired by the AlphaGo paradigm, adapting it for use with large language models (LLMs). The proposed approach involves creating search trees of different possible completions and evaluating these completions based on model confidence. By considering various paths in the search tree and scoring them according to the model's confidence in each completion, we can generate diverse and high-quality sequences. This research explores the implementation of this paradigm by using confidence as a proxy for response quality akin to beam search vijayakumar2016diverse. The primary goal of this paper is to outline the paradigm and demonstrate its potential, rather than focusing on achieving perfect results. The paper will outline the reasons why we believe this paradigm has the potential to improve LLMs in the following manners: 1) increase output quality, 2) decrease errors, 3) eliminate or reduce the compound error problems, 4) generate diverse and creative completions, 5) allow for iterative problem-solving, and 6) self-training. We expect this approach to yield a set of diverse and coherent sequences, offering insights into balancing exploration and exploitation in sequence generation. Potential applications include creative text generation tasks, such as storytelling and content creation, as well as other natural language processing domains, like machine translation and automated summarization. The goal is that the model will be far more effective as it will be able to consider many possible variations allowing it to find the ideal completion. This research aims to contribute to the understanding of effective search strategies in sequence generation and their impact on generating high-quality, varied textual outputs.
Analogy Generation by Prompting Large Language Models: A Case Study of InstructGPT
We propose a novel application of prompting Pre-trained Language Models (PLMs) to generate analogies and study how to design effective prompts for two task settings: generating a source concept analogous to a given target concept (aka Analogous Concept Generation or ACG), and generating an explanation of the similarity between a given pair of target concept and source concept (aka Analogous Explanation Generation or AEG). We found that it is feasible to prompt InstructGPT to generate meaningful analogies and the best prompts tend to be precise imperative statements especially with a low temperature setting. We also systematically analyzed the sensitivity of the InstructGPT model to prompt design, temperature, and injected spelling errors, and found that the model is particularly sensitive to certain variations (e.g., questions vs. imperative statements). Further, we conducted human evaluation on 1.4k of the generated analogies and found that the quality of generations varies substantially by model size. The largest InstructGPT model can achieve human-level performance at generating meaningful analogies for a given target while there is still room for improvement on the AEG task.
Generative AI-Based Text Generation Methods Using Pre-Trained GPT-2 Model
This work delved into the realm of automatic text generation, exploring a variety of techniques ranging from traditional deterministic approaches to more modern stochastic methods. Through analysis of greedy search, beam search, top-k sampling, top-p sampling, contrastive searching, and locally typical searching, this work has provided valuable insights into the strengths, weaknesses, and potential applications of each method. Each text-generating method is evaluated using several standard metrics and a comparative study has been made on the performance of the approaches. Finally, some future directions of research in the field of automatic text generation are also identified.
Unlocking Anticipatory Text Generation: A Constrained Approach for Faithful Decoding with Large Language Models
Large Language Models (LLMs) have demonstrated a powerful ability for text generation. However, achieving optimal results with a given prompt or instruction can be challenging, especially for billion-sized models. Additionally, undesired behaviors such as toxicity or hallucinations can manifest. While much larger models (e.g., ChatGPT) may demonstrate strength in mitigating these issues, there is still no guarantee of complete prevention. In this work, we propose formalizing text generation as a future-constrained generation problem to minimize undesirable behaviors and enforce faithfulness to instructions. The estimation of future constraint satisfaction, accomplished using LLMs, guides the text generation process. Our extensive experiments demonstrate the effectiveness of the proposed approach across three distinct text generation tasks: keyword-constrained generation (Lin et al., 2020), toxicity reduction (Gehman et al., 2020), and factual correctness in question-answering (Gao et al., 2023).
Aesthetics is Cheap, Show me the Text: An Empirical Evaluation of State-of-the-Art Generative Models for OCR
Text image is a unique and crucial information medium that integrates visual aesthetics and linguistic semantics in modern e-society. Due to their subtlety and complexity, the generation of text images represents a challenging and evolving frontier in the image generation field. The recent surge of specialized image generators (e.g., Flux-series) and unified generative models (e.g., GPT-4o), which demonstrate exceptional fidelity, raises a natural question: can they master the intricacies of text image generation and editing? Motivated by this, we assess current state-of-the-art generative models' capabilities in terms of text image generation and editing. We incorporate various typical optical character recognition (OCR) tasks into our evaluation and broaden the concept of text-based generation tasks into OCR generative tasks. We select 33 representative tasks and categorize them into five categories: document, handwritten text, scene text, artistic text, and complex \& layout-rich text. For comprehensive evaluation, we examine six models across both closed-source and open-source domains, using tailored, high-quality image inputs and prompts. Through this evaluation, we draw crucial observations and identify the weaknesses of current generative models for OCR tasks. We argue that photorealistic text image generation and editing should be internalized as foundational skills into general-domain generative models, rather than being delegated to specialized solutions, and we hope this empirical analysis can provide valuable insights for the community to achieve this goal. This evaluation is online and will be continuously updated at our GitHub repository.
Self-Explanation Prompting Improves Dialogue Understanding in Large Language Models
Task-oriented dialogue (TOD) systems facilitate users in executing various activities via multi-turn dialogues, but Large Language Models (LLMs) often struggle to comprehend these intricate contexts. In this study, we propose a novel "Self-Explanation" prompting strategy to enhance the comprehension abilities of LLMs in multi-turn dialogues. This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks. Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts, demonstrating its potential as a powerful tool in enhancing LLMs' comprehension in complex dialogue tasks.
Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
