new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

NUDT4MSTAR: A New Dataset and Benchmark Towards SAR Target Recognition in the Wild

Synthetic Aperture Radar (SAR) stands as an indispensable sensor for Earth observation, owing to its unique capability for all-day imaging. Nevertheless, in a data-driven era, the scarcity of large-scale datasets poses a significant bottleneck to advancing SAR automatic target recognition (ATR) technology. This paper introduces NUDT4MSTAR, a large-scale SAR dataset for vehicle target recognition in the wild, including 40 target types and a wide array of imaging conditions across 5 different scenes. NUDT4MSTAR represents a significant leap forward in dataset scale, containing over 190,000 images-tenfold the size of its predecessors. To enhance the utility of this dataset, we meticulously annotate each image with detailed target information and imaging conditions. We also provide data in both processed magnitude images and original complex formats. Then, we construct a comprehensive benchmark consisting of 7 experiments with 15 recognition methods focusing on the stable and effective ATR issues. Besides, we conduct transfer learning experiments utilizing various models trained on NUDT4MSTAR and applied to three other target datasets, thereby demonstrating its substantial potential to the broader field of ground objects ATR. Finally, we discuss this dataset's application value and ATR's significant challenges. To the best of our knowledge, this work marks the first-ever endeavor to create a large-scale dataset benchmark for fine-grained SAR recognition in the wild, featuring an extensive collection of exhaustively annotated vehicle images. We expect that the open source of NUDT4MSTAR will facilitate the development of SAR ATR and attract a wider community of researchers.

  • 11 authors
·
Jan 22

SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity Prediction

Accurate prediction of Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery, facilitating the identification of drugs that can effectively interact with specific targets and regulate their activities. While wet experiments remain the most reliable method, they are time-consuming and resource-intensive, resulting in limited data availability that poses challenges for deep learning approaches. Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue. To overcome this challenge, we present the SSM-DTA framework, which incorporates three simple yet highly effective strategies: (1) A multi-task training approach that combines DTA prediction with masked language modeling (MLM) using paired drug-target data. (2) A semi-supervised training method that leverages large-scale unpaired molecules and proteins to enhance drug and target representations. This approach differs from previous methods that only employed molecules or proteins in pre-training. (3) The integration of a lightweight cross-attention module to improve the interaction between drugs and targets, further enhancing prediction accuracy. Through extensive experiments on benchmark datasets such as BindingDB, DAVIS, and KIBA, we demonstrate the superior performance of our framework. Additionally, we conduct case studies on specific drug-target binding activities, virtual screening experiments, drug feature visualizations, and real-world applications, all of which showcase the significant potential of our work. In conclusion, our proposed SSM-DTA framework addresses the data limitation challenge in DTA prediction and yields promising results, paving the way for more efficient and accurate drug discovery processes. Our code is available at https://github.com/QizhiPei/SSM-DTA{Github}.

  • 9 authors
·
Jun 20, 2022

VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training

Pre-training video transformers on extra large-scale datasets is generally required to achieve premier performance on relatively small datasets. In this paper, we show that video masked autoencoders (VideoMAE) are data-efficient learners for self-supervised video pre-training (SSVP). We are inspired by the recent ImageMAE and propose customized video tube masking with an extremely high ratio. This simple design makes video reconstruction a more challenging self-supervision task, thus encouraging extracting more effective video representations during this pre-training process. We obtain three important findings on SSVP: (1) An extremely high proportion of masking ratio (i.e., 90% to 95%) still yields favorable performance of VideoMAE. The temporally redundant video content enables a higher masking ratio than that of images. (2) VideoMAE achieves impressive results on very small datasets (i.e., around 3k-4k videos) without using any extra data. (3) VideoMAE shows that data quality is more important than data quantity for SSVP. Domain shift between pre-training and target datasets is an important issue. Notably, our VideoMAE with the vanilla ViT can achieve 87.4% on Kinetics-400, 75.4% on Something-Something V2, 91.3% on UCF101, and 62.6% on HMDB51, without using any extra data. Code is available at https://github.com/MCG-NJU/VideoMAE.

MASS: Mathematical Data Selection via Skill Graphs for Pretraining Large Language Models

High-quality data plays a critical role in the pretraining and fine-tuning of large language models (LLMs), even determining their performance ceiling to some degree. Consequently, numerous data selection methods have been proposed to identify subsets of data that can effectively and efficiently enhance model performance. However, most of these methods focus on general data selection and tend to overlook the specific nuances of domain-related data. In this paper, we introduce MASS, a MAthematical data Selection framework using the Skill graph for pretraining LLMs in the mathematical reasoning domain. By taking into account the unique characteristics of mathematics and reasoning, we construct a skill graph that captures the mathematical skills and their interrelations from a reference dataset. This skill graph guides us in assigning quality scores to the target dataset, enabling us to select the top-ranked subset which is further used to pretrain LLMs. Experimental results demonstrate the efficiency and effectiveness of MASS across different model sizes (1B and 7B) and pretraining datasets (web data and synthetic data). Specifically, in terms of efficiency, models trained on subsets selected by MASS can achieve similar performance to models trained on the original datasets, with a significant reduction in the number of trained tokens - ranging from 50\% to 70\% fewer tokens. In terms of effectiveness, when trained on the same amount of tokens, models trained on the data selected by MASS outperform those trained on the original datasets by 3.3\% to 5.9\%. These results underscore the potential of MASS to improve both the efficiency and effectiveness of pretraining LLMs.

  • 7 authors
·
Mar 19

Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation

Contemporary domain adaptation offers a practical solution for achieving cross-domain transfer of semantic segmentation between labeled source data and unlabeled target data. These solutions have gained significant popularity; however, they require the model to be retrained when the test environment changes. This can result in unbearable costs in certain applications due to the time-consuming training process and concerns regarding data privacy. One-shot domain adaptation methods attempt to overcome these challenges by transferring the pre-trained source model to the target domain using only one target data. Despite this, the referring style transfer module still faces issues with computation cost and over-fitting problems. To address this problem, we propose a novel framework called Informative Data Mining (IDM) that enables efficient one-shot domain adaptation for semantic segmentation. Specifically, IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training. We then perform a model adaptation method using these selected samples, which includes patch-wise mixing and prototype-based information maximization to update the model. This approach effectively enhances adaptation and mitigates the overfitting problem. In general, we provide empirical evidence of the effectiveness and efficiency of IDM. Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7\%/55.4\% on the GTA5/SYNTHIA to Cityscapes adaptation tasks, respectively. The code will be released at https://github.com/yxiwang/IDM.

  • 6 authors
·
Sep 25, 2023

Multi-Task Zero-Shot Action Recognition with Prioritised Data Augmentation

Zero-Shot Learning (ZSL) promises to scale visual recognition by bypassing the conventional model training requirement of annotated examples for every category. This is achieved by establishing a mapping connecting low-level features and a semantic description of the label space, referred as visual-semantic mapping, on auxiliary data. Reusing the learned mapping to project target videos into an embedding space thus allows novel-classes to be recognised by nearest neighbour inference. However, existing ZSL methods suffer from auxiliary-target domain shift intrinsically induced by assuming the same mapping for the disjoint auxiliary and target classes. This compromises the generalisation accuracy of ZSL recognition on the target data. In this work, we improve the ability of ZSL to generalise across this domain shift in both model- and data-centric ways by formulating a visual-semantic mapping with better generalisation properties and a dynamic data re-weighting method to prioritise auxiliary data that are relevant to the target classes. Specifically: (1) We introduce a multi-task visual-semantic mapping to improve generalisation by constraining the semantic mapping parameters to lie on a low-dimensional manifold, (2) We explore prioritised data augmentation by expanding the pool of auxiliary data with additional instances weighted by relevance to the target domain. The proposed new model is applied to the challenging zero-shot action recognition problem to demonstrate its advantages over existing ZSL models.

  • 3 authors
·
Nov 26, 2016

TAROT: Targeted Data Selection via Optimal Transport

We propose TAROT, a targeted data selection framework grounded in optimal transport theory. Previous targeted data selection methods primarily rely on influence-based greedy heuristics to enhance domain-specific performance. While effective on limited, unimodal data (i.e., data following a single pattern), these methods struggle as target data complexity increases. Specifically, in multimodal distributions, these heuristics fail to account for multiple inherent patterns, leading to suboptimal data selection. This work identifies two primary factors contributing to this limitation: (i) the disproportionate impact of dominant feature components in high-dimensional influence estimation, and (ii) the restrictive linear additive assumptions inherent in greedy selection strategies. To address these challenges, TAROT incorporates whitened feature distance to mitigate dominant feature bias, providing a more reliable measure of data influence. Building on this, TAROT uses whitened feature distance to quantify and minimize the optimal transport distance between the selected data and target domains. Notably, this minimization also facilitates the estimation of optimal selection ratios. We evaluate TAROT across multiple tasks, including semantic segmentation, motion prediction, and instruction tuning. Results consistently show that TAROT outperforms state-of-the-art methods, highlighting its versatility across various deep learning tasks. Code is available at https://github.com/vita-epfl/TAROT.

  • 4 authors
·
Nov 30, 2024

Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary Data

Few-shot learning is valuable in many real-world applications, but learning a generalizable model without overfitting to the few labeled datapoints is challenging. In this work, we focus on Few-shot Learning with Auxiliary Data (FLAD), a training paradigm that assumes access to auxiliary data during few-shot learning in hopes of improving generalization. Previous works have proposed automated methods for mixing auxiliary and target data, but these methods typically scale linearly (or worse) with the number of auxiliary datasets, limiting their practicality. In this work we relate FLAD to the explore-exploit dilemma that is central to the multi-armed bandit setting and derive algorithms whose computational complexity is independent of the number of auxiliary datasets, allowing us to scale to 100x more auxiliary datasets than prior methods. We propose two algorithms -- EXP3-FLAD and UCB1-FLAD -- and compare them with prior FLAD methods that either explore or exploit, finding that the combination of exploration and exploitation is crucial. Through extensive experimentation we find that our methods outperform all pre-existing FLAD methods by 4% and lead to the first 3 billion parameter language models that outperform the 175 billion parameter GPT-3. Overall, our work suggests that the discovery of better, more efficient mixing strategies for FLAD may provide a viable path towards substantially improving generalization in few-shot learning.

  • 3 authors
·
Feb 1, 2023

Large Scale Transfer Learning for Tabular Data via Language Modeling

Tabular data -- structured, heterogeneous, spreadsheet-style data with rows and columns -- is widely used in practice across many domains. However, while recent foundation models have reduced the need for developing task-specific datasets and predictors in domains such as language modeling and computer vision, this transfer learning paradigm has not had similar impact in the tabular domain. In this work, we seek to narrow this gap and present TabuLa-8B, a language model for tabular prediction. We define a process for extracting a large, high-quality training dataset from the TabLib corpus, proposing methods for tabular data filtering and quality control. Using the resulting dataset, which comprises over 1.6B rows from 3.1M unique tables, we fine-tune a Llama 3-8B large language model (LLM) for tabular data prediction (classification and binned regression) using a novel packing and attention scheme for tabular prediction. Through evaluation across a test suite of 329 datasets, we find that TabuLa-8B has zero-shot accuracy on unseen tables that is over 15 percentage points (pp) higher than random guessing, a feat that is not possible with existing state-of-the-art tabular prediction models (e.g. XGBoost, TabPFN). In the few-shot setting (1-32 shots), without any fine-tuning on the target datasets, TabuLa-8B is 5-15 pp more accurate than XGBoost and TabPFN models that are explicitly trained on equal, or even up to 16x more data. We release our model, code, and data along with the publication of this paper.

  • 3 authors
·
Jun 17, 2024 1

Can Large Language Models Replace Data Scientists in Clinical Research?

Data science plays a critical role in clinical research, but it requires professionals with expertise in coding and medical data analysis. Large language models (LLMs) have shown great potential in supporting medical tasks and performing well in general coding tests. However, these tests do not assess LLMs' ability to handle data science tasks in medicine, nor do they explore their practical utility in clinical research. To address this, we developed a dataset consisting of 293 real-world data science coding tasks, based on 39 published clinical studies, covering 128 tasks in Python and 165 tasks in R. This dataset simulates realistic clinical research scenarios using patient data. Our findings reveal that cutting-edge LLMs struggle to generate perfect solutions, frequently failing to follow input instructions, understand target data, and adhere to standard analysis practices. Consequently, LLMs are not yet ready to fully automate data science tasks. We benchmarked advanced adaptation methods and found two to be particularly effective: chain-of-thought prompting, which provides a step-by-step plan for data analysis, which led to a 60% improvement in code accuracy; and self-reflection, enabling LLMs to iteratively refine their code, yielding a 38% accuracy improvement. Building on these insights, we developed a platform that integrates LLMs into the data science workflow for medical professionals. In a user study with five medical doctors, we found that while LLMs cannot fully automate coding tasks, they significantly streamline the programming process. We found that 80% of their submitted code solutions were incorporated from LLM-generated code, with up to 96% reuse in some cases. Our analysis highlights the potential of LLMs, when integrated into expert workflows, to enhance data science efficiency in clinical research.

  • 5 authors
·
Oct 28, 2024

AMUSE: Adaptive Multi-Segment Encoding for Dataset Watermarking

Curating high quality datasets that play a key role in the emergence of new AI applications requires considerable time, money, and computational resources. So, effective ownership protection of datasets is becoming critical. Recently, to protect the ownership of an image dataset, imperceptible watermarking techniques are used to store ownership information (i.e., watermark) into the individual image samples. Embedding the entire watermark into all samples leads to significant redundancy in the embedded information which damages the watermarked dataset quality and extraction accuracy. In this paper, a multi-segment encoding-decoding method for dataset watermarking (called AMUSE) is proposed to adaptively map the original watermark into a set of shorter sub-messages and vice versa. Our message encoder is an adaptive method that adjusts the length of the sub-messages according to the protection requirements for the target dataset. Existing image watermarking methods are then employed to embed the sub-messages into the original images in the dataset and also to extract them from the watermarked images. Our decoder is then used to reconstruct the original message from the extracted sub-messages. The proposed encoder and decoder are plug-and-play modules that can easily be added to any watermarking method. To this end, extensive experiments are preformed with multiple watermarking solutions which show that applying AMUSE improves the overall message extraction accuracy upto 28% for the same given dataset quality. Furthermore, the image dataset quality is enhanced by a PSNR of approx2 dB on average, while improving the extraction accuracy for one of the tested image watermarking methods.

  • 4 authors
·
Mar 8, 2024

Zero Shot Domain Adaptive Semantic Segmentation by Synthetic Data Generation and Progressive Adaptation

Deep learning-based semantic segmentation models achieve impressive results yet remain limited in handling distribution shifts between training and test data. In this paper, we present SDGPA (Synthetic Data Generation and Progressive Adaptation), a novel method that tackles zero-shot domain adaptive semantic segmentation, in which no target images are available, but only a text description of the target domain's style is provided. To compensate for the lack of target domain training data, we utilize a pretrained off-the-shelf text-to-image diffusion model, which generates training images by transferring source domain images to target style. Directly editing source domain images introduces noise that harms segmentation because the layout of source images cannot be precisely maintained. To address inaccurate layouts in synthetic data, we propose a method that crops the source image, edits small patches individually, and then merges them back together, which helps improve spatial precision. Recognizing the large domain gap, SDGPA constructs an augmented intermediate domain, leveraging easier adaptation subtasks to enable more stable model adaptation to the target domain. Additionally, to mitigate the impact of noise in synthetic data, we design a progressive adaptation strategy, ensuring robust learning throughout the training process. Extensive experiments demonstrate that our method achieves state-of-the-art performance in zero-shot semantic segmentation. The code is available at https://github.com/ROUJINN/SDGPA

  • 3 authors
·
Aug 5

TOP-Training: Target-Oriented Pretraining for Medical Extractive Question Answering

We study extractive question-answering in the medical domain (Medical-EQA). This problem has two main challenges: (i) domain specificity, as most AI models lack necessary domain knowledge, and (ii) extraction-based answering style, which restricts most autoregressive LLMs due to potential hallucinations. To handle those challenges, we propose TOP-Training, a target-oriented pre-training paradigm that stands out among all domain adaptation techniques with two desirable features: (i) TOP-Training moves one step further than popular domain-oriented fine-tuning since it not only moves closer to the target domain, but also familiarizes itself with the target dataset, and (ii) it does not assume the existence of a large set of unlabeled instances from the target domain. Specifically, for a target Medical-EQA dataset, we extract its entities and leverage large language models (LLMs) to generate synthetic texts containing those entities; we then demonstrate that pretraining on this synthetic text data yields better performance on the target Medical-EQA benchmarks. Overall, our contributions are threefold: (i) TOP-Training, a new pretraining technique to effectively adapt LLMs to better solve a target problem, (ii) TOP-Training has a wide application scope because it does not require the target problem to have a large set of unlabeled data, and (iii) our experiments highlight the limitations of autoregressive LLMs, emphasizing TOP-Training as a means to unlock the true potential of bidirectional LLMs.

  • 6 authors
·
Oct 25, 2023

CoNeTTE: An efficient Audio Captioning system leveraging multiple datasets with Task Embedding

Automated Audio Captioning (AAC) involves generating natural language descriptions of audio content, using encoder-decoder architectures. An audio encoder produces audio embeddings fed to a decoder, usually a Transformer decoder, for caption generation. In this work, we describe our model, which novelty, compared to existing models, lies in the use of a ConvNeXt architecture as audio encoder, adapted from the vision domain to audio classification. This model, called CNext-trans, achieved state-of-the-art scores on the AudioCaps (AC) dataset and performed competitively on Clotho (CL), while using four to forty times fewer parameters than existing models. We examine potential biases in the AC dataset due to its origin from AudioSet by investigating unbiased encoder's impact on performance. Using the well-known PANN's CNN14, for instance, as an unbiased encoder, we observed a 1.7% absolute reduction in SPIDEr score (where higher scores indicate better performance). To improve cross-dataset performance, we conducted experiments by combining multiple AAC datasets (AC, CL, MACS, WavCaps) for training. Although this strategy enhanced overall model performance across datasets, it still fell short compared to models trained specifically on a single target dataset, indicating the absence of a one-size-fits-all model. To mitigate performance gaps between datasets, we introduced a Task Embedding (TE) token, allowing the model to identify the source dataset for each input sample. We provide insights into the impact of these TEs on both the form (words) and content (sound event types) of the generated captions. The resulting model, named CoNeTTE, an unbiased CNext-trans model enriched with dataset-specific Task Embeddings, achieved SPIDEr scores of 44.1% and 30.5% on AC and CL, respectively. Code available: https://github.com/Labbeti/conette-audio-captioning.

  • 3 authors
·
Sep 1, 2023

LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL

Schema linking is a critical bottleneck in applying existing Text-to-SQL models to real-world, large-scale, multi-database environments. Through error analysis, we identify two major challenges in schema linking: (1) Database Retrieval: accurately selecting the target database from a large schema pool, while effectively filtering out irrelevant ones; and (2) Schema Item Grounding: precisely identifying the relevant tables and columns within complex and often redundant schemas for SQL generation. Based on these, we introduce LinkAlign, a novel framework tailored for large-scale databases with thousands of fields. LinkAlign comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. Each stage supports both Agent and Pipeline execution modes, enabling balancing efficiency and performance via modular design. To enable more realistic evaluation, we construct AmbiDB, a synthetic dataset designed to reflect the ambiguity of real-world schema linking. Experiments on widely-used Text-to-SQL benchmarks demonstrate that LinkAlign consistently outperforms existing baselines on all schema linking metrics. Notably, it improves the overall Text-to-SQL pipeline and achieves a new state-of-the-art score of 33.09% on the Spider 2.0-Lite benchmark using only open-source LLMs, ranking first on the leaderboard at the time of submission. The codes are available at https://github.com/Satissss/LinkAlign

  • 2 authors
·
Mar 24

MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation

In unsupervised domain adaptation (UDA), a model trained on source data (e.g. synthetic) is adapted to target data (e.g. real-world) without access to target annotation. Most previous UDA methods struggle with classes that have a similar visual appearance on the target domain as no ground truth is available to learn the slight appearance differences. To address this problem, we propose a Masked Image Consistency (MIC) module to enhance UDA by learning spatial context relations of the target domain as additional clues for robust visual recognition. MIC enforces the consistency between predictions of masked target images, where random patches are withheld, and pseudo-labels that are generated based on the complete image by an exponential moving average teacher. To minimize the consistency loss, the network has to learn to infer the predictions of the masked regions from their context. Due to its simple and universal concept, MIC can be integrated into various UDA methods across different visual recognition tasks such as image classification, semantic segmentation, and object detection. MIC significantly improves the state-of-the-art performance across the different recognition tasks for synthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA. For instance, MIC achieves an unprecedented UDA performance of 75.9 mIoU and 92.8% on GTA-to-Cityscapes and VisDA-2017, respectively, which corresponds to an improvement of +2.1 and +3.0 percent points over the previous state of the art. The implementation is available at https://github.com/lhoyer/MIC.

  • 4 authors
·
Dec 2, 2022

DP2Unlearning: An Efficient and Guaranteed Unlearning Framework for LLMs

Large language models (LLMs) have recently revolutionized language processing tasks but have also brought ethical and legal issues. LLMs have a tendency to memorize potentially private or copyrighted information present in the training data, which might then be delivered to end users at inference time. When this happens, a naive solution is to retrain the model from scratch after excluding the undesired data. Although this guarantees that the target data have been forgotten, it is also prohibitively expensive for LLMs. Approximate unlearning offers a more efficient alternative, as it consists of ex post modifications of the trained model itself to prevent undesirable results, but it lacks forgetting guarantees because it relies solely on empirical evidence. In this work, we present DP2Unlearning, a novel LLM unlearning framework that offers formal forgetting guarantees at a significantly lower cost than retraining from scratch on the data to be retained. DP2Unlearning involves training LLMs on textual data protected using {\epsilon}-differential privacy (DP), which later enables efficient unlearning with the guarantees against disclosure associated with the chosen {\epsilon}. Our experiments demonstrate that DP2Unlearning achieves similar model performance post-unlearning, compared to an LLM retraining from scratch on retained data -- the gold standard exact unlearning -- but at approximately half the unlearning cost. In addition, with a reasonable computational cost, it outperforms approximate unlearning methods at both preserving the utility of the model post-unlearning and effectively forgetting the targeted information.

  • 4 authors
·
Apr 18

AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation

Many recent machine learning tasks focus to develop models that can generalize to unseen distributions. Domain generalization (DG) has become one of the key topics in various fields. Several literatures show that DG can be arbitrarily hard without exploiting target domain information. To address this issue, test-time adaptive (TTA) methods are proposed. Existing TTA methods require offline target data or extra sophisticated optimization procedures during the inference stage. In this work, we adopt Non-Parametric Classifier to perform the test-time Adaptation (AdaNPC). In particular, we construct a memory that contains the feature and label pairs from training domains. During inference, given a test instance, AdaNPC first recalls K closed samples from the memory to vote for the prediction, and then the test feature and predicted label are added to the memory. In this way, the sample distribution in the memory can be gradually changed from the training distribution towards the test distribution with very little extra computation cost. We theoretically justify the rationality behind the proposed method. Besides, we test our model on extensive numerical experiments. AdaNPC significantly outperforms competitive baselines on various DG benchmarks. In particular, when the adaptation target is a series of domains, the adaptation accuracy of AdaNPC is 50% higher than advanced TTA methods. The code is available at https://github.com/yfzhang114/AdaNPC.

  • 8 authors
·
Apr 25, 2023

Building a Winning Team: Selecting Source Model Ensembles using a Submodular Transferability Estimation Approach

Estimating the transferability of publicly available pretrained models to a target task has assumed an important place for transfer learning tasks in recent years. Existing efforts propose metrics that allow a user to choose one model from a pool of pre-trained models without having to fine-tune each model individually and identify one explicitly. With the growth in the number of available pre-trained models and the popularity of model ensembles, it also becomes essential to study the transferability of multiple-source models for a given target task. The few existing efforts study transferability in such multi-source ensemble settings using just the outputs of the classification layer and neglect possible domain or task mismatch. Moreover, they overlook the most important factor while selecting the source models, viz., the cohesiveness factor between them, which can impact the performance and confidence in the prediction of the ensemble. To address these gaps, we propose a novel Optimal tranSport-based suBmOdular tRaNsferability metric (OSBORN) to estimate the transferability of an ensemble of models to a downstream task. OSBORN collectively accounts for image domain difference, task difference, and cohesiveness of models in the ensemble to provide reliable estimates of transferability. We gauge the performance of OSBORN on both image classification and semantic segmentation tasks. Our setup includes 28 source datasets, 11 target datasets, 5 model architectures, and 2 pre-training methods. We benchmark our method against current state-of-the-art metrics MS-LEEP and E-LEEP, and outperform them consistently using the proposed approach.

  • 6 authors
·
Sep 5, 2023

Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection

Recently, vision-language models (e.g. CLIP) have demonstrated remarkable performance in zero-shot anomaly detection (ZSAD). By leveraging auxiliary data during training, these models can directly perform cross-category anomaly detection on target datasets, such as detecting defects on industrial product surfaces or identifying tumors in organ tissues. Existing approaches typically construct text prompts through either manual design or the optimization of learnable prompt vectors. However, these methods face several challenges: 1) handcrafted prompts require extensive expert knowledge and trial-and-error; 2) single-form learnable prompts struggle to capture complex anomaly semantics; and 3) an unconstrained prompt space limits generalization to unseen categories. To address these issues, we propose Bayesian Prompt Flow Learning (Bayes-PFL), which models the prompt space as a learnable probability distribution from a Bayesian perspective. Specifically, a prompt flow module is designed to learn both image-specific and image-agnostic distributions, which are jointly utilized to regularize the text prompt space and improve the model's generalization on unseen categories. These learned distributions are then sampled to generate diverse text prompts, effectively covering the prompt space. Additionally, a residual cross-model attention (RCA) module is introduced to better align dynamic text embeddings with fine-grained image features. Extensive experiments on 15 industrial and medical datasets demonstrate our method's superior performance. The code is available at https://github.com/xiaozhen228/Bayes-PFL.

  • 8 authors
·
Mar 13

Domain-adaptive Video Deblurring via Test-time Blurring

Dynamic scene video deblurring aims to remove undesirable blurry artifacts captured during the exposure process. Although previous video deblurring methods have achieved impressive results, they suffer from significant performance drops due to the domain gap between training and testing videos, especially for those captured in real-world scenarios. To address this issue, we propose a domain adaptation scheme based on a blurring model to achieve test-time fine-tuning for deblurring models in unseen domains. Since blurred and sharp pairs are unavailable for fine-tuning during inference, our scheme can generate domain-adaptive training pairs to calibrate a deblurring model for the target domain. First, a Relative Sharpness Detection Module is proposed to identify relatively sharp regions from the blurry input images and regard them as pseudo-sharp images. Next, we utilize a blurring model to produce blurred images based on the pseudo-sharp images extracted during testing. To synthesize blurred images in compliance with the target data distribution, we propose a Domain-adaptive Blur Condition Generation Module to create domain-specific blur conditions for the blurring model. Finally, the generated pseudo-sharp and blurred pairs are used to fine-tune a deblurring model for better performance. Extensive experimental results demonstrate that our approach can significantly improve state-of-the-art video deblurring methods, providing performance gains of up to 7.54dB on various real-world video deblurring datasets. The source code is available at https://github.com/Jin-Ting-He/DADeblur.

  • 7 authors
·
Jul 12, 2024

Everything to the Synthetic: Diffusion-driven Test-time Adaptation via Synthetic-Domain Alignment

Test-time adaptation (TTA) aims to enhance the performance of source-domain pretrained models when tested on unknown shifted target domains. Traditional TTA methods primarily adapt model weights based on target data streams, making model performance sensitive to the amount and order of target data. Recently, diffusion-driven TTA methods have demonstrated strong performance by using an unconditional diffusion model, which is also trained on the source domain to transform target data into synthetic data as a source domain projection. This allows the source model to make predictions without weight adaptation. In this paper, we argue that the domains of the source model and the synthetic data in diffusion-driven TTA methods are not aligned. To adapt the source model to the synthetic domain of the unconditional diffusion model, we introduce a Synthetic-Domain Alignment (SDA) framework to fine-tune the source model with synthetic data. Specifically, we first employ a conditional diffusion model to generate labeled samples, creating a synthetic dataset. Subsequently, we use the aforementioned unconditional diffusion model to add noise to and denoise each sample before fine-tuning. This process mitigates the potential domain gap between the conditional and unconditional models. Extensive experiments across various models and benchmarks demonstrate that SDA achieves superior domain alignment and consistently outperforms existing diffusion-driven TTA methods. Our code is available at https://github.com/SHI-Labs/Diffusion-Driven-Test-Time-Adaptation-via-Synthetic-Domain-Alignment.

  • 8 authors
·
Jun 6, 2024

Decorate the Newcomers: Visual Domain Prompt for Continual Test Time Adaptation

Continual Test-Time Adaptation (CTTA) aims to adapt the source model to continually changing unlabeled target domains without access to the source data. Existing methods mainly focus on model-based adaptation in a self-training manner, such as predicting pseudo labels for new domain datasets. Since pseudo labels are noisy and unreliable, these methods suffer from catastrophic forgetting and error accumulation when dealing with dynamic data distributions. Motivated by the prompt learning in NLP, in this paper, we propose to learn an image-level visual domain prompt for target domains while having the source model parameters frozen. During testing, the changing target datasets can be adapted to the source model by reformulating the input data with the learned visual prompts. Specifically, we devise two types of prompts, i.e., domains-specific prompts and domains-agnostic prompts, to extract current domain knowledge and maintain the domain-shared knowledge in the continual adaptation. Furthermore, we design a homeostasis-based prompt adaptation strategy to suppress domain-sensitive parameters in domain-invariant prompts to learn domain-shared knowledge more effectively. This transition from the model-dependent paradigm to the model-free one enables us to bypass the catastrophic forgetting and error accumulation problems. Experiments show that our proposed method achieves significant performance gains over state-of-the-art methods on four widely-used benchmarks, including CIFAR-10C, CIFAR-100C, ImageNet-C, and VLCS datasets.

  • 7 authors
·
Dec 8, 2022

Test-time Batch Statistics Calibration for Covariate Shift

Deep neural networks have a clear degradation when applying to the unseen environment due to the covariate shift. Conventional approaches like domain adaptation requires the pre-collected target data for iterative training, which is impractical in real-world applications. In this paper, we propose to adapt the deep models to the novel environment during inference. An previous solution is test time normalization, which substitutes the source statistics in BN layers with the target batch statistics. However, we show that test time normalization may potentially deteriorate the discriminative structures due to the mismatch between target batch statistics and source parameters. To this end, we present a general formulation alpha-BN to calibrate the batch statistics by mixing up the source and target statistics for both alleviating the domain shift and preserving the discriminative structures. Based on alpha-BN, we further present a novel loss function to form a unified test time adaptation framework Core, which performs the pairwise class correlation online optimization. Extensive experiments show that our approaches achieve the state-of-the-art performance on total twelve datasets from three topics, including model robustness to corruptions, domain generalization on image classification and semantic segmentation. Particularly, our alpha-BN improves 28.4\% to 43.9\% on GTA5 rightarrow Cityscapes without any training, even outperforms the latest source-free domain adaptation method.

  • 3 authors
·
Oct 6, 2021

Name Tagging Under Domain Shift via Metric Learning for Life Sciences

Name tagging is a key component of Information Extraction (IE), particularly in scientific domains such as biomedicine and chemistry, where large language models (LLMs), e.g., ChatGPT, fall short. We investigate the applicability of transfer learning for enhancing a name tagging model trained in the biomedical domain (the source domain) to be used in the chemical domain (the target domain). A common practice for training such a model in a few-shot learning setting is to pretrain the model on the labeled source data, and then, to finetune it on a hand-full of labeled target examples. In our experiments we observed that such a model is prone to mis-labeling the source entities, which can often appear in the text, as the target entities. To alleviate this problem, we propose a model to transfer the knowledge from the source domain to the target domain, however, at the same time, to project the source entities and target entities into separate regions of the feature space. This diminishes the risk of mis-labeling the source entities as the target entities. Our model consists of two stages: 1) entity grouping in the source domain, which incorporates knowledge from annotated events to establish relations between entities, and 2) entity discrimination in the target domain, which relies on pseudo labeling and contrastive learning to enhance discrimination between the entities in the two domains. We carry out our extensive experiments across three source and three target datasets, and demonstrate that our method outperforms the baselines, in some scenarios by 5\% absolute value.

  • 4 authors
·
Jan 18, 2024

Alice Benchmarks: Connecting Real World Re-Identification with the Synthetic

For object re-identification (re-ID), learning from synthetic data has become a promising strategy to cheaply acquire large-scale annotated datasets and effective models, with few privacy concerns. Many interesting research problems arise from this strategy, e.g., how to reduce the domain gap between synthetic source and real-world target. To facilitate developing more new approaches in learning from synthetic data, we introduce the Alice benchmarks, large-scale datasets providing benchmarks as well as evaluation protocols to the research community. Within the Alice benchmarks, two object re-ID tasks are offered: person and vehicle re-ID. We collected and annotated two challenging real-world target datasets: AlicePerson and AliceVehicle, captured under various illuminations, image resolutions, etc. As an important feature of our real target, the clusterability of its training set is not manually guaranteed to make it closer to a real domain adaptation test scenario. Correspondingly, we reuse existing PersonX and VehicleX as synthetic source domains. The primary goal is to train models from synthetic data that can work effectively in the real world. In this paper, we detail the settings of Alice benchmarks, provide an analysis of existing commonly-used domain adaptation methods, and discuss some interesting future directions. An online server has been set up for the community to evaluate methods conveniently and fairly. Datasets and the online server details are available at https://sites.google.com/view/alice-benchmarks.

  • 5 authors
·
Oct 6, 2023

Augmented Conditioning Is Enough For Effective Training Image Generation

Image generation abilities of text-to-image diffusion models have significantly advanced, yielding highly photo-realistic images from descriptive text and increasing the viability of leveraging synthetic images to train computer vision models. To serve as effective training data, generated images must be highly realistic while also sufficiently diverse within the support of the target data distribution. Yet, state-of-the-art conditional image generation models have been primarily optimized for creative applications, prioritizing image realism and prompt adherence over conditional diversity. In this paper, we investigate how to improve the diversity of generated images with the goal of increasing their effectiveness to train downstream image classification models, without fine-tuning the image generation model. We find that conditioning the generation process on an augmented real image and text prompt produces generations that serve as effective synthetic datasets for downstream training. Conditioning on real training images contextualizes the generation process to produce images that are in-domain with the real image distribution, while data augmentations introduce visual diversity that improves the performance of the downstream classifier. We validate augmentation-conditioning on a total of five established long-tail and few-shot image classification benchmarks and show that leveraging augmentations to condition the generation process results in consistent improvements over the state-of-the-art on the long-tailed benchmark and remarkable gains in extreme few-shot regimes of the remaining four benchmarks. These results constitute an important step towards effectively leveraging synthetic data for downstream training.

  • 3 authors
·
Feb 6

ConDA: Contrastive Domain Adaptation for AI-generated Text Detection

Large language models (LLMs) are increasingly being used for generating text in a variety of use cases, including journalistic news articles. Given the potential malicious nature in which these LLMs can be used to generate disinformation at scale, it is important to build effective detectors for such AI-generated text. Given the surge in development of new LLMs, acquiring labeled training data for supervised detectors is a bottleneck. However, there might be plenty of unlabeled text data available, without information on which generator it came from. In this work we tackle this data problem, in detecting AI-generated news text, and frame the problem as an unsupervised domain adaptation task. Here the domains are the different text generators, i.e. LLMs, and we assume we have access to only the labeled source data and unlabeled target data. We develop a Contrastive Domain Adaptation framework, called ConDA, that blends standard domain adaptation techniques with the representation power of contrastive learning to learn domain invariant representations that are effective for the final unsupervised detection task. Our experiments demonstrate the effectiveness of our framework, resulting in average performance gains of 31.7% from the best performing baselines, and within 0.8% margin of a fully supervised detector. All our code and data is available at https://github.com/AmritaBh/ConDA-gen-text-detection.

  • 4 authors
·
Sep 7, 2023

One scalar is all you need -- absolute depth estimation using monocular self-supervision

Self-supervised monocular depth estimators can be trained or fine-tuned on new scenes using only images and no ground-truth depth data, achieving good accuracy. However, these estimators suffer from the inherent ambiguity of the depth scale, significantly limiting their applicability. In this work, we present a method for transferring the depth-scale from existing source datasets collected with ground-truth depths to depth estimators that are trained using self-supervision on a newly collected target dataset consisting of images only, solving a significant limiting factor. We show that self-supervision based on projective geometry results in predicted depths that are linearly correlated with their ground-truth depths. Moreover, the linearity of this relationship also holds when jointly training on images from two different (real or synthetic) source and target domains. We utilize this observed property and model the relationship between the ground-truth and the predicted up-to-scale depths of images from the source domain using a single global scalar. Then, we scale the predicted up-to-scale depths of images from the target domain using the estimated global scaling factor, performing depth-scale transfer between the two domains. This suggested method was evaluated on the target KITTI and DDAD datasets, while using other real or synthetic source datasets, that have a larger field-of-view, other image style or structural content. Our approach achieves competitive accuracy on KITTI, even without using the specially tailored vKITTI or vKITTI2 datasets, and higher accuracy on DDAD, when using both real or synthetic source datasets.

  • 5 authors
·
Mar 14, 2023

AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection

Zero-shot anomaly detection (ZSAD) requires detection models trained using auxiliary data to detect anomalies without any training sample in a target dataset. It is a crucial task when training data is not accessible due to various concerns, eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly. Recently large pre-trained vision-language models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition ability in various vision tasks, including anomaly detection. However, their ZSAD performance is weak since the VLMs focus more on modeling the class semantics of the foreground objects rather than the abnormality/normality in the images. In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate ZSAD across different domains. The key insight of AnomalyCLIP is to learn object-agnostic text prompts that capture generic normality and abnormality in an image regardless of its foreground objects. This allows our model to focus on the abnormal image regions rather than the object semantics, enabling generalized normality and abnormality recognition on diverse types of objects. Large-scale experiments on 17 real-world anomaly detection datasets show that AnomalyCLIP achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics from various defect inspection and medical imaging domains. Code will be made available at https://github.com/zqhang/AnomalyCLIP.

  • 5 authors
·
Oct 29, 2023

What is the Added Value of UDA in the VFM Era?

Unsupervised Domain Adaptation (UDA) can improve a perception model's generalization to an unlabeled target domain starting from a labeled source domain. UDA using Vision Foundation Models (VFMs) with synthetic source data can achieve generalization performance comparable to fully-supervised learning with real target data. However, because VFMs have strong generalization from their pre-training, more straightforward, source-only fine-tuning can also perform well on the target. As data scenarios used in academic research are not necessarily representative for real-world applications, it is currently unclear (a) how UDA behaves with more representative and diverse data and (b) if source-only fine-tuning of VFMs can perform equally well in these scenarios. Our research aims to close these gaps and, similar to previous studies, we focus on semantic segmentation as a representative perception task. We assess UDA for synth-to-real and real-to-real use cases with different source and target data combinations. We also investigate the effect of using a small amount of labeled target data in UDA. We clarify that while these scenarios are more realistic, they are not necessarily more challenging. Our results show that, when using stronger synthetic source data, UDA's improvement over source-only fine-tuning of VFMs reduces from +8 mIoU to +2 mIoU, and when using more diverse real source data, UDA has no added value. However, UDA generalization is always higher in all synthetic data scenarios than source-only fine-tuning and, when including only 1/16 of Cityscapes labels, synthetic UDA obtains the same state-of-the-art segmentation quality of 85 mIoU as a fully-supervised model using all labels. Considering the mixed results, we discuss how UDA can best support robust autonomous driving at scale.

  • 3 authors
·
Apr 25

Who's Harry Potter? Approximate Unlearning in LLMs

Large language models (LLMs) are trained on massive internet corpora that often contain copyrighted content. This poses legal and ethical challenges for the developers and users of these models, as well as the original authors and publishers. In this paper, we propose a novel technique for unlearning a subset of the training data from a LLM, without having to retrain it from scratch. We evaluate our technique on the task of unlearning the Harry Potter books from the Llama2-7b model (a generative language model recently open-sourced by Meta). While the model took over 184K GPU-hours to pretrain, we show that in about 1 GPU hour of finetuning, we effectively erase the model's ability to generate or recall Harry Potter-related content, while its performance on common benchmarks (such as Winogrande, Hellaswag, arc, boolq and piqa) remains almost unaffected. We make our fine-tuned model publicly available on HuggingFace for community evaluation. To the best of our knowledge, this is the first paper to present an effective technique for unlearning in generative language models. Our technique consists of three main components: First, we use a reinforced model that is further trained on the target data to identify the tokens that are most related to the unlearning target, by comparing its logits with those of a baseline model. Second, we replace idiosyncratic expressions in the target data with generic counterparts, and leverage the model's own predictions to generate alternative labels for every token. These labels aim to approximate the next-token predictions of a model that has not been trained on the target data. Third, we finetune the model on these alternative labels, which effectively erases the original text from the model's memory whenever it is prompted with its context.

  • 2 authors
·
Oct 3, 2023 4

Fast and Accurate Transferability Measurement by Evaluating Intra-class Feature Variance

Given a set of pre-trained models, how can we quickly and accurately find the most useful pre-trained model for a downstream task? Transferability measurement is to quantify how transferable is a pre-trained model learned on a source task to a target task. It is used for quickly ranking pre-trained models for a given task and thus becomes a crucial step for transfer learning. Existing methods measure transferability as the discrimination ability of a source model for a target data before transfer learning, which cannot accurately estimate the fine-tuning performance. Some of them restrict the application of transferability measurement in selecting the best supervised pre-trained models that have classifiers. It is important to have a general method for measuring transferability that can be applied in a variety of situations, such as selecting the best self-supervised pre-trained models that do not have classifiers, and selecting the best transferring layer for a target task. In this work, we propose TMI (TRANSFERABILITY MEASUREMENT WITH INTRA-CLASS FEATURE VARIANCE), a fast and accurate algorithm to measure transferability. We view transferability as the generalization of a pre-trained model on a target task by measuring intra-class feature variance. Intra-class variance evaluates the adaptability of the model to a new task, which measures how transferable the model is. Compared to previous studies that estimate how discriminative the models are, intra-class variance is more accurate than those as it does not require an optimal feature extractor and classifier. Extensive experiments on real-world datasets show that TMI outperforms competitors for selecting the top-5 best models, and exhibits consistently better correlation in 13 out of 17 cases.

  • 2 authors
·
Aug 11, 2023

Towards General Purpose Medical AI: Continual Learning Medical Foundation Model

Inevitable domain and task discrepancies in real-world scenarios can impair the generalization performance of the pre-trained deep models for medical data. Therefore, we audaciously propose that we should build a general-purpose medical AI system that can be seamlessly adapted to downstream domains/tasks. Since the domain/task adaption procedures usually involve additional labeling work for the target data, designing a data-efficient adaption algorithm is desired to save the cost of transferring the learned knowledge. Our recent work found that vision-language models (VLMs) are efficient learners with extraordinary cross-domain ability. Therefore, in this work, we further explore the possibility of leveraging pre-trained VLMs as medical foundation models for building general-purpose medical AI, where we thoroughly investigate three machine-learning paradigms, i.e., domain/task-specialized learning, joint learning, and continual learning, for training the VLMs and evaluate their generalization performance on cross-domain and cross-task test sets. To alleviate the catastrophic forgetting during sequential training, we employ rehearsal learning and receive a sharp boost in terms of generalization capability. In a nutshell, our empirical evidence suggests that continual learning may be a practical and efficient learning paradigm for the medical foundation model. And we hope researchers can use our empirical evidence as basement to further explore the path toward medical foundation model.

  • 8 authors
·
Mar 12, 2023

In Search of the Successful Interpolation: On the Role of Sharpness in CLIP Generalization

Zero-shot models like CLIP are often fine-tuned on a target dataset to improve its accuracy further, but this can compromise out-of-distribution (OOD) robustness. Robust Fine-Tuning (RFT )~wortsman2021robust, which interpolates between the zero-shot and fine-tuned models, has been proposed to address this issue. However, understanding when RFT actually improves OOD error remains limited. In this work, we empirically investigate the robustness of RFT in CLIP models, with a focus on the sharpness of the CLIP model during interpolation. First, we demonstrate that while sharpness may not serve as a reliable indicator for predicting the generalization of modern architectures like CLIP on OOD data, this challenges the conventional belief in the generalization benefits of flat minima in foundation models. However, by examining the role of the straggler layer phenomenon, we show that, unlike overall sharpness, the layer-wise sharpness of straggler layers can reliably capture the generalization performance of interpolated CLIP models on OOD data. Our extensive experiments reveal that layer-wise sharpness correlates with generalization in OOD accuracy for RFT. Furthermore, we demonstrate that by inducing sparsity in the straggler layers, we can mitigate the failure mode phenomenon in RFT. To the best of our knowledge, this is the first work to study the role of sharpness in the success of interpolation in the weight space of CLIP foundation models. Our code is available at https://github.com/alirezaabdollahpour/CLIP_Mode_Connectivity.

  • 1 authors
·
Oct 21, 2024

Few-shot Fine-tuning is All You Need for Source-free Domain Adaptation

Recently, source-free unsupervised domain adaptation (SFUDA) has emerged as a more practical and feasible approach compared to unsupervised domain adaptation (UDA) which assumes that labeled source data are always accessible. However, significant limitations associated with SFUDA approaches are often overlooked, which limits their practicality in real-world applications. These limitations include a lack of principled ways to determine optimal hyperparameters and performance degradation when the unlabeled target data fail to meet certain requirements such as a closed-set and identical label distribution to the source data. All these limitations stem from the fact that SFUDA entirely relies on unlabeled target data. We empirically demonstrate the limitations of existing SFUDA methods in real-world scenarios including out-of-distribution and label distribution shifts in target data, and verify that none of these methods can be safely applied to real-world settings. Based on our experimental results, we claim that fine-tuning a source pretrained model with a few labeled data (e.g., 1- or 3-shot) is a practical and reliable solution to circumvent the limitations of SFUDA. Contrary to common belief, we find that carefully fine-tuned models do not suffer from overfitting even when trained with only a few labeled data, and also show little change in performance due to sampling bias. Our experimental results on various domain adaptation benchmarks demonstrate that the few-shot fine-tuning approach performs comparatively under the standard SFUDA settings, and outperforms comparison methods under realistic scenarios. Our code is available at https://github.com/daintlab/fewshot-SFDA .

  • 5 authors
·
Apr 3, 2023

PANDA: Prompt Transfer Meets Knowledge Distillation for Efficient Model Adaptation

Prompt-tuning, which freezes pretrained language models (PLMs) and only fine-tunes few parameters of additional soft prompt, shows competitive performance against full-parameter fine-tuning (i.e.model-tuning) when the PLM has billions of parameters, but still performs poorly in the case of smaller PLMs. Hence, prompt transfer (PoT), which initializes the target prompt with the trained prompt of similar source tasks, is recently proposed to improve over prompt-tuning. However, such a vanilla PoT approach usually achieves sub-optimal performance, as (i) the PoT is sensitive to the similarity of source-target pair and (ii) directly fine-tuning the prompt initialized with source prompt on target task might lead to catastrophic forgetting of source knowledge. In response to these problems, we propose a new metric to accurately predict the prompt transferability (regarding (i)), and a novel PoT approach (namely PANDA) that leverages the knowledge distillation technique to transfer the "knowledge" from the source prompt to the target prompt in a subtle manner and alleviate the catastrophic forgetting effectively (regarding (ii)). Furthermore, to achieve adaptive prompt transfer for each source-target pair, we use our metric to control the knowledge transfer in our PANDA approach. Extensive and systematic experiments on 189 combinations of 21 source and 9 target datasets across 5 scales of PLMs demonstrate that: 1) our proposed metric works well to predict the prompt transferability; 2) our PANDA consistently outperforms the vanilla PoT approach by 2.3% average score (up to 24.1%) among all tasks and model sizes; 3) with our PANDA approach, prompt-tuning can achieve competitive and even better performance than model-tuning in various PLM scales scenarios. Code and models will be released upon acceptance.

  • 5 authors
·
Aug 22, 2022

Learning Generalisable Omni-Scale Representations for Person Re-Identification

An effective person re-identification (re-ID) model should learn feature representations that are both discriminative, for distinguishing similar-looking people, and generalisable, for deployment across datasets without any adaptation. In this paper, we develop novel CNN architectures to address both challenges. First, we present a re-ID CNN termed omni-scale network (OSNet) to learn features that not only capture different spatial scales but also encapsulate a synergistic combination of multiple scales, namely omni-scale features. The basic building block consists of multiple convolutional streams, each detecting features at a certain scale. For omni-scale feature learning, a unified aggregation gate is introduced to dynamically fuse multi-scale features with channel-wise weights. OSNet is lightweight as its building blocks comprise factorised convolutions. Second, to improve generalisable feature learning, we introduce instance normalisation (IN) layers into OSNet to cope with cross-dataset discrepancies. Further, to determine the optimal placements of these IN layers in the architecture, we formulate an efficient differentiable architecture search algorithm. Extensive experiments show that, in the conventional same-dataset setting, OSNet achieves state-of-the-art performance, despite being much smaller than existing re-ID models. In the more challenging yet practical cross-dataset setting, OSNet beats most recent unsupervised domain adaptation methods without using any target data. Our code and models are released at https://github.com/KaiyangZhou/deep-person-reid.

  • 4 authors
·
Oct 15, 2019

3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features

We present 3DiffTection, a state-of-the-art method for 3D object detection from single images, leveraging features from a 3D-aware diffusion model. Annotating large-scale image data for 3D detection is resource-intensive and time-consuming. Recently, pretrained large image diffusion models have become prominent as effective feature extractors for 2D perception tasks. However, these features are initially trained on paired text and image data, which are not optimized for 3D tasks, and often exhibit a domain gap when applied to the target data. Our approach bridges these gaps through two specialized tuning strategies: geometric and semantic. For geometric tuning, we fine-tune a diffusion model to perform novel view synthesis conditioned on a single image, by introducing a novel epipolar warp operator. This task meets two essential criteria: the necessity for 3D awareness and reliance solely on posed image data, which are readily available (e.g., from videos) and does not require manual annotation. For semantic refinement, we further train the model on target data with detection supervision. Both tuning phases employ ControlNet to preserve the integrity of the original feature capabilities. In the final step, we harness these enhanced capabilities to conduct a test-time prediction ensemble across multiple virtual viewpoints. Through our methodology, we obtain 3D-aware features that are tailored for 3D detection and excel in identifying cross-view point correspondences. Consequently, our model emerges as a powerful 3D detector, substantially surpassing previous benchmarks, e.g., Cube-RCNN, a precedent in single-view 3D detection by 9.43\% in AP3D on the Omni3D-ARkitscene dataset. Furthermore, 3DiffTection showcases robust data efficiency and generalization to cross-domain data.

  • 4 authors
·
Nov 7, 2023

UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning

Transductive few-shot learning has recently triggered wide attention in computer vision. Yet, current methods introduce key hyper-parameters, which control the prediction statistics of the test batches, such as the level of class balance, affecting performances significantly. Such hyper-parameters are empirically grid-searched over validation data, and their configurations may vary substantially with the target dataset and pre-training model, making such empirical searches both sub-optimal and computationally intractable. In this work, we advocate and introduce the unrolling paradigm, also referred to as "learning to optimize", in the context of few-shot learning, thereby learning efficiently and effectively a set of optimized hyper-parameters. Specifically, we unroll a generalization of the ubiquitous Expectation-Maximization (EM) optimizer into a neural network architecture, mapping each of its iterates to a layer and learning a set of key hyper-parameters over validation data. Our unrolling approach covers various statistical feature distributions and pre-training paradigms, including recent foundational vision-language models and standard vision-only classifiers. We report comprehensive experiments, which cover a breadth of fine-grained downstream image classification tasks, showing significant gains brought by the proposed unrolled EM algorithm over iterative variants. The achieved improvements reach up to 10% and 7.5% on vision-only and vision-language benchmarks, respectively.

  • 6 authors
·
Dec 21, 2024

Source-free Domain Adaptive Human Pose Estimation

Human Pose Estimation (HPE) is widely used in various fields, including motion analysis, healthcare, and virtual reality. However, the great expenses of labeled real-world datasets present a significant challenge for HPE. To overcome this, one approach is to train HPE models on synthetic datasets and then perform domain adaptation (DA) on real-world data. Unfortunately, existing DA methods for HPE neglect data privacy and security by using both source and target data in the adaptation process. To this end, we propose a new task, named source-free domain adaptive HPE, which aims to address the challenges of cross-domain learning of HPE without access to source data during the adaptation process. We further propose a novel framework that consists of three models: source model, intermediate model, and target model, which explores the task from both source-protect and target-relevant perspectives. The source-protect module preserves source information more effectively while resisting noise, and the target-relevant module reduces the sparsity of spatial representations by building a novel spatial probability space, and pose-specific contrastive learning and information maximization are proposed on the basis of this space. Comprehensive experiments on several domain adaptive HPE benchmarks show that the proposed method outperforms existing approaches by a considerable margin. The codes are available at https://github.com/davidpengucf/SFDAHPE.

  • 3 authors
·
Aug 6, 2023

Contrastive Model Adaptation for Cross-Condition Robustness in Semantic Segmentation

Standard unsupervised domain adaptation methods adapt models from a source to a target domain using labeled source data and unlabeled target data jointly. In model adaptation, on the other hand, access to the labeled source data is prohibited, i.e., only the source-trained model and unlabeled target data are available. We investigate normal-to-adverse condition model adaptation for semantic segmentation, whereby image-level correspondences are available in the target domain. The target set consists of unlabeled pairs of adverse- and normal-condition street images taken at GPS-matched locations. Our method -- CMA -- leverages such image pairs to learn condition-invariant features via contrastive learning. In particular, CMA encourages features in the embedding space to be grouped according to their condition-invariant semantic content and not according to the condition under which respective inputs are captured. To obtain accurate cross-domain semantic correspondences, we warp the normal image to the viewpoint of the adverse image and leverage warp-confidence scores to create robust, aggregated features. With this approach, we achieve state-of-the-art semantic segmentation performance for model adaptation on several normal-to-adverse adaptation benchmarks, such as ACDC and Dark Zurich. We also evaluate CMA on a newly procured adverse-condition generalization benchmark and report favorable results compared to standard unsupervised domain adaptation methods, despite the comparative handicap of CMA due to source data inaccessibility. Code is available at https://github.com/brdav/cma.

  • 4 authors
·
Mar 9, 2023

Diffusion Classifiers Understand Compositionality, but Conditions Apply

Understanding visual scenes is fundamental to human intelligence. While discriminative models have significantly advanced computer vision, they often struggle with compositional understanding. In contrast, recent generative text-to-image diffusion models excel at synthesizing complex scenes, suggesting inherent compositional capabilities. Building on this, zero-shot diffusion classifiers have been proposed to repurpose diffusion models for discriminative tasks. While prior work offered promising results in discriminative compositional scenarios, these results remain preliminary due to a small number of benchmarks and a relatively shallow analysis of conditions under which the models succeed. To address this, we present a comprehensive study of the discriminative capabilities of diffusion classifiers on a wide range of compositional tasks. Specifically, our study covers three diffusion models (SD 1.5, 2.0, and, for the first time, 3-m) spanning 10 datasets and over 30 tasks. Further, we shed light on the role that target dataset domains play in respective performance; to isolate the domain effects, we introduce a new diagnostic benchmark Self-Bench comprised of images created by diffusion models themselves. Finally, we explore the importance of timestep weighting and uncover a relationship between domain gap and timestep sensitivity, particularly for SD3-m. To sum up, diffusion classifiers understand compositionality, but conditions apply! Code and dataset are available at https://github.com/eugene6923/Diffusion-Classifiers-Compositionality.

  • 4 authors
·
May 23 3

Few Shots Are All You Need: A Progressive Few Shot Learning Approach for Low Resource Handwritten Text Recognition

Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. The main difficulty comes from the very few annotated data and the limited linguistic information (e.g. dictionaries and language models). Thus, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human labor annotation process, requiring only few images of each alphabet symbol. The method consists in detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from any alphabet, even though different from the target domain. A second training step is then applied to diminish the gap between the source and target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the non-annotated data. The evaluation on different manuscript datasets show that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in this repository: https://github.com/dali92002/HTRbyMatching

  • 4 authors
·
Jul 21, 2021

ViLAaD: Enhancing "Attracting and Dispersing'' Source-Free Domain Adaptation with Vision-and-Language Model

Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to a target dataset from a different domain without access to the source data. Conventional SFDA methods are limited by the information encoded in the pre-trained source model and the unlabeled target data. Recently, approaches leveraging auxiliary resources have emerged, yet remain in their early stages, offering ample opportunities for research. In this work, we propose a novel method that incorporates auxiliary information by extending an existing SFDA framework using Vision-and-Language (ViL) models. Specifically, we build upon Attracting and Dispersing (AaD), a widely adopted SFDA technique, and generalize its core principle to naturally integrate ViL models as a powerful initialization for target adaptation. Our approach, called ViL-enhanced AaD (ViLAaD), preserves the simplicity and flexibility of the AaD framework, while leveraging ViL models to significantly boost adaptation performance. We validate our method through experiments using various ViL models, demonstrating that ViLAaD consistently outperforms both AaD and zero-shot classification by ViL models, especially when both the source model and ViL model provide strong initializations. Moreover, the flexibility of ViLAaD allows it to be seamlessly incorporated into an alternating optimization framework with ViL prompt tuning and extended with additional objectives for target model adaptation. Extensive experiments on four SFDA benchmarks show that this enhanced version, ViLAaD++, achieves state-of-the-art performance across multiple SFDA scenarios, including Closed-set SFDA, Partial-set SFDA, and Open-set SFDA.

  • 3 authors
·
Mar 30

Diffusion-Based Neural Network Weights Generation

Transfer learning has gained significant attention in recent deep learning research due to its ability to accelerate convergence and enhance performance on new tasks. However, its success is often contingent on the similarity between source and target data, and training on numerous datasets can be costly, leading to blind selection of pretrained models with limited insight into their effectiveness. To address these challenges, we introduce D2NWG, a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning, conditioned on the target dataset. Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation, learning the weight distributions of models pretrained on various datasets. This allows for automatic generation of weights that generalize well across both seen and unseen tasks, outperforming state-of-the-art meta-learning methods and pretrained models. Moreover, our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques that rely on task-specific model collections or access to original training data. By modeling the parameter distribution of LLMs, D2NWG enables task-specific parameter generation without requiring additional fine-tuning or large collections of model variants. Extensive experiments show that our method consistently enhances the performance of diverse base models, regardless of their size or complexity, positioning it as a robust solution for scalable transfer learning.

  • 7 authors
·
Feb 28, 2024

Meta-RTL: Reinforcement-Based Meta-Transfer Learning for Low-Resource Commonsense Reasoning

Meta learning has been widely used to exploit rich-resource source tasks to improve the performance of low-resource target tasks. Unfortunately, most existing meta learning approaches treat different source tasks equally, ignoring the relatedness of source tasks to the target task in knowledge transfer. To mitigate this issue, we propose a reinforcement-based multi-source meta-transfer learning framework (Meta-RTL) for low-resource commonsense reasoning. In this framework, we present a reinforcement-based approach to dynamically estimating source task weights that measure the contribution of the corresponding tasks to the target task in the meta-transfer learning. The differences between the general loss of the meta model and task-specific losses of source-specific temporal meta models on sampled target data are fed into the policy network of the reinforcement learning module as rewards. The policy network is built upon LSTMs that capture long-term dependencies on source task weight estimation across meta learning iterations. We evaluate the proposed Meta-RTL using both BERT and ALBERT as the backbone of the meta model on three commonsense reasoning benchmark datasets. Experimental results demonstrate that Meta-RTL substantially outperforms strong baselines and previous task selection strategies and achieves larger improvements on extremely low-resource settings.

  • 5 authors
·
Sep 27, 2024

Improving Continuous Sign Language Recognition with Cross-Lingual Signs

This work dedicates to continuous sign language recognition (CSLR), which is a weakly supervised task dealing with the recognition of continuous signs from videos, without any prior knowledge about the temporal boundaries between consecutive signs. Data scarcity heavily impedes the progress of CSLR. Existing approaches typically train CSLR models on a monolingual corpus, which is orders of magnitude smaller than that of speech recognition. In this work, we explore the feasibility of utilizing multilingual sign language corpora to facilitate monolingual CSLR. Our work is built upon the observation of cross-lingual signs, which originate from different sign languages but have similar visual signals (e.g., hand shape and motion). The underlying idea of our approach is to identify the cross-lingual signs in one sign language and properly leverage them as auxiliary training data to improve the recognition capability of another. To achieve the goal, we first build two sign language dictionaries containing isolated signs that appear in two datasets. Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model. At last, we train a CSLR model on the combination of the target data with original labels and the auxiliary data with mapped labels. Experimentally, our approach achieves state-of-the-art performance on two widely-used CSLR datasets: Phoenix-2014 and Phoenix-2014T.

  • 2 authors
·
Aug 21, 2023

Progressive Fourier Neural Representation for Sequential Video Compilation

Neural Implicit Representation (NIR) has recently gained significant attention due to its remarkable ability to encode complex and high-dimensional data into representation space and easily reconstruct it through a trainable mapping function. However, NIR methods assume a one-to-one mapping between the target data and representation models regardless of data relevancy or similarity. This results in poor generalization over multiple complex data and limits their efficiency and scalability. Motivated by continual learning, this work investigates how to accumulate and transfer neural implicit representations for multiple complex video data over sequential encoding sessions. To overcome the limitation of NIR, we propose a novel method, Progressive Fourier Neural Representation (PFNR), that aims to find an adaptive and compact sub-module in Fourier space to encode videos in each training session. This sparsified neural encoding allows the neural network to hold free weights, enabling an improved adaptation for future videos. In addition, when learning a representation for a new video, PFNR transfers the representation of previous videos with frozen weights. This design allows the model to continuously accumulate high-quality neural representations for multiple videos while ensuring lossless decoding that perfectly preserves the learned representations for previous videos. We validate our PFNR method on the UVG8/17 and DAVIS50 video sequence benchmarks and achieve impressive performance gains over strong continual learning baselines. The PFNR code is available at https://github.com/ihaeyong/PFNR.git.

  • 5 authors
·
Jun 20, 2023

Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation

Self-training has greatly facilitated domain adaptive semantic segmentation, which iteratively generates pseudo labels on unlabeled target data and retrains the network. However, realistic segmentation datasets are highly imbalanced, pseudo labels are typically biased to the majority classes and basically noisy, leading to an error-prone and suboptimal model. In this paper, we propose a simple region-based active learning approach for semantic segmentation under a domain shift, aiming to automatically query a small partition of image regions to be labeled while maximizing segmentation performance. Our algorithm, Region Impurity and Prediction Uncertainty (RIPU), introduces a new acquisition strategy characterizing the spatial adjacency of image regions along with the prediction confidence. We show that the proposed region-based selection strategy makes more efficient use of a limited budget than image-based or point-based counterparts. Further, we enforce local prediction consistency between a pixel and its nearest neighbors on a source image. Alongside, we develop a negative learning loss to make the features more discriminative. Extensive experiments demonstrate that our method only requires very few annotations to almost reach the supervised performance and substantially outperforms state-of-the-art methods. The code is available at https://github.com/BIT-DA/RIPU.

  • 5 authors
·
Nov 25, 2021

One-Shot Generative Domain Adaptation

This work aims at transferring a Generative Adversarial Network (GAN) pre-trained on one image domain to a new domain referring to as few as just one target image. The main challenge is that, under limited supervision, it is extremely difficult to synthesize photo-realistic and highly diverse images, while acquiring representative characters of the target. Different from existing approaches that adopt the vanilla fine-tuning strategy, we import two lightweight modules to the generator and the discriminator respectively. Concretely, we introduce an attribute adaptor into the generator yet freeze its original parameters, through which it can reuse the prior knowledge to the most extent and hence maintain the synthesis quality and diversity. We then equip the well-learned discriminator backbone with an attribute classifier to ensure that the generator captures the appropriate characters from the reference. Furthermore, considering the poor diversity of the training data (i.e., as few as only one image), we propose to also constrain the diversity of the generative domain in the training process, alleviating the optimization difficulty. Our approach brings appealing results under various settings, substantially surpassing state-of-the-art alternatives, especially in terms of synthesis diversity. Noticeably, our method works well even with large domain gaps, and robustly converges within a few minutes for each experiment.

  • 7 authors
·
Nov 18, 2021

Not All Prompts Are Made Equal: Prompt-based Pruning of Text-to-Image Diffusion Models

Text-to-image (T2I) diffusion models have demonstrated impressive image generation capabilities. Still, their computational intensity prohibits resource-constrained organizations from deploying T2I models after fine-tuning them on their internal target data. While pruning techniques offer a potential solution to reduce the computational burden of T2I models, static pruning methods use the same pruned model for all input prompts, overlooking the varying capacity requirements of different prompts. Dynamic pruning addresses this issue by utilizing a separate sub-network for each prompt, but it prevents batch parallelism on GPUs. To overcome these limitations, we introduce Adaptive Prompt-Tailored Pruning (APTP), a novel prompt-based pruning method designed for T2I diffusion models. Central to our approach is a prompt router model, which learns to determine the required capacity for an input text prompt and routes it to an architecture code, given a total desired compute budget for prompts. Each architecture code represents a specialized model tailored to the prompts assigned to it, and the number of codes is a hyperparameter. We train the prompt router and architecture codes using contrastive learning, ensuring that similar prompts are mapped to nearby codes. Further, we employ optimal transport to prevent the codes from collapsing into a single one. We demonstrate APTP's effectiveness by pruning Stable Diffusion (SD) V2.1 using CC3M and COCO as target datasets. APTP outperforms the single-model pruning baselines in terms of FID, CLIP, and CMMD scores. Our analysis of the clusters learned by APTP reveals they are semantically meaningful. We also show that APTP can automatically discover previously empirically found challenging prompts for SD, e.g., prompts for generating text images, assigning them to higher capacity codes.

  • 4 authors
·
Jun 17, 2024 1

UNFUSED: UNsupervised Finetuning Using SElf supervised Distillation

In this paper, we introduce UnFuSeD, a novel approach to leverage self-supervised learning and reduce the need for large amounts of labeled data for audio classification. Unlike prior works, which directly fine-tune a self-supervised pre-trained encoder on a target dataset, we use the encoder to generate pseudo-labels for unsupervised fine-tuning before the actual fine-tuning step. We first train an encoder using a novel self-supervised learning algorithm (SSL) on an unlabeled audio dataset. Then, we use that encoder to generate pseudo-labels on our target task dataset via clustering the extracted representations. These pseudo-labels are then used to guide self-distillation on a randomly initialized model, which we call unsupervised fine-tuning. Finally, the resultant encoder is then fine-tuned on our target task dataset. Through UnFuSeD, we propose the first system that moves away from generic SSL paradigms in literature, which pre-train and fine-tune the same encoder, and present a novel self-distillation-based system to leverage SSL pre-training for low-resource audio classification. In practice, UnFuSeD achieves state-of-the-art results on the LAPE Benchmark, significantly outperforming all our baselines. Additionally, UnFuSeD allows us to achieve this at a 40% reduction in the number of parameters over the previous state-of-the-art system. We make all our codes publicly available.

  • 4 authors
·
Mar 9, 2023

Transductive Multi-view Zero-Shot Learning

Most existing zero-shot learning approaches exploit transfer learning via an intermediate-level semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and is applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.

  • 4 authors
·
Jan 19, 2015