1 Excuse me, sir? Your language model is leaking (information) We introduce a cryptographic method to hide an arbitrary secret payload in the response of a Large Language Model (LLM). A secret key is required to extract the payload from the model's response, and without the key it is provably impossible to distinguish between the responses of the original LLM and the LLM that hides a payload. In particular, the quality of generated text is not affected by the payload. Our approach extends a recent result of Christ, Gunn and Zamir (2023) who introduced an undetectable watermarking scheme for LLMs. 1 authors · Jan 18, 2024
- SCReedSolo: A Secure and Robust LSB Image Steganography Framework with Randomized Symmetric Encryption and Reed-Solomon Coding Image steganography is an information-hiding technique that involves the surreptitious concealment of covert informational content within digital images. In this paper, we introduce {rm SCR{small EED}S{small OLO}}, a novel framework for concealing arbitrary binary data within images. Our approach synergistically leverages Random Shuffling, Fernet Symmetric Encryption, and Reed-Solomon Error Correction Codes to encode the secret payload, which is then discretely embedded into the carrier image using LSB (Least Significant Bit) Steganography. The combination of these methods addresses the vulnerability vectors of both security and resilience against bit-level corruption in the resultant stego-images. We show that our framework achieves a data payload of 3 bits per pixel for an RGB image, and mathematically assess the probability of successful transmission for the amalgamated n message bits and k error correction bits. Additionally, we find that {rm SCR{small EED}S{small OLO}} yields good results upon being evaluated with multiple performance metrics, successfully eludes detection by various passive steganalysis tools, and is immune to simple active steganalysis attacks. Our code and data are available at https://github.com/Starscream-11813/SCReedSolo-Steganography. 2 authors · Mar 16