new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning

Large Language Models (LLMs) have demonstrated remarkable generative capabilities. However, their susceptibility to misuse has raised significant safety concerns. While post-training safety alignment methods have been widely adopted, LLMs remain vulnerable to malicious instructions that can bypass safety constraints. Recent efforts have introduced inference-time safety reasoning (system-2 alignment), where LLMs conduct a reasoning process to perform safety verification before final response. We show, however, that these checks are driven by ad-hoc reasoning that diverges from the structured human process, where they first discern a user's true intent, then evaluate the associated risk based on the true intent. Consequently, these defenses remain vulnerable to sophisticated jailbreak prompts that cloak harmful goals in seemingly benign language. To build secure and safe LLMs, we propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one. At inference, ARMOR (1) detects likely jailbreak strategies, (2) extracts the user's core intent while discarding deceptive instructions, and (3) applies a policy-grounded safety analysis to the purified request. ARMOR is evaluated on adaptive jailbreak attacks and multiple safety benchmarks, and a test-time scaling is conducted to further improve its performance. Results demonstrate that ARMOR significantly enhances the robustness against state-of-the-art adaptive jailbreak attacks and outperforms recent reasoning-based aligned models across various safety benchmarks.

  • 5 authors
·
Jul 14

Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check

As large language models (LLMs) continue to advance in capabilities, ensuring their safety against jailbreak attacks remains a critical challenge. In this paper, we introduce a novel safety alignment approach called Answer-Then-Check, which enhances LLM robustness against malicious prompts by applying thinking ability to mitigate jailbreaking problems before producing a final answer to the user. Our method enables models to directly answer the question in their thought and then critically evaluate its safety before deciding whether to provide it. To implement this approach, we construct the Reasoned Safety Alignment (ReSA) dataset, comprising 80K examples that teach models to reason through direct responses and then analyze their safety. Experimental results demonstrate that our approach achieves the Pareto frontier with superior safety capability while decreasing over-refusal rates on over-refusal benchmarks. Notably, the model fine-tuned with ReSA maintains general reasoning capabilities on benchmarks like MMLU, MATH500, and HumanEval. Besides, our method equips models with the ability to perform safe completion. Unlike post-hoc methods that can only reject harmful queries, our model can provide helpful and safe alternative responses for sensitive topics (e.g., self-harm). Furthermore, we discover that training on a small subset of just 500 examples can achieve comparable performance to using the full dataset, suggesting that safety alignment may require less data than previously assumed.

  • 4 authors
·
Sep 15

Context Misleads LLMs: The Role of Context Filtering in Maintaining Safe Alignment of LLMs

While Large Language Models (LLMs) have shown significant advancements in performance, various jailbreak attacks have posed growing safety and ethical risks. Malicious users often exploit adversarial context to deceive LLMs, prompting them to generate responses to harmful queries. In this study, we propose a new defense mechanism called Context Filtering model, an input pre-processing method designed to filter out untrustworthy and unreliable context while identifying the primary prompts containing the real user intent to uncover concealed malicious intent. Given that enhancing the safety of LLMs often compromises their helpfulness, potentially affecting the experience of benign users, our method aims to improve the safety of the LLMs while preserving their original performance. We evaluate the effectiveness of our model in defending against jailbreak attacks through comparative analysis, comparing our approach with state-of-the-art defense mechanisms against six different attacks and assessing the helpfulness of LLMs under these defenses. Our model demonstrates its ability to reduce the Attack Success Rates of jailbreak attacks by up to 88% while maintaining the original LLMs' performance, achieving state-of-the-art Safety and Helpfulness Product results. Notably, our model is a plug-and-play method that can be applied to all LLMs, including both white-box and black-box models, to enhance their safety without requiring any fine-tuning of the models themselves. We will make our model publicly available for research purposes.

  • 2 authors
·
Aug 8

Towards Safe Reasoning in Large Reasoning Models via Corrective Intervention

Although Large Reasoning Models (LRMs) have progressed in solving complex problems, their chain-of-thought (CoT) reasoning often contains harmful content that can persist even when the final responses appear safe. We show that this issue still remains in existing methods which overlook the unique significance of safe reasoning, undermining their trustworthiness and posing potential risks in applications if unsafe reasoning is accessible for and exploited by malicious users. We therefore shift our focus to aligning the safety of reasoning itself in this paper and explore process supervision as the solution. However, simply rewarding safe reasoning proves inadequate due to low rollout diversity and limited training signals. To tackle this challenge, we first delve into the characteristics of safe reasoning and uncover several critical insights that 1) safe reasoning is often consolidated by a few critical steps of safety triggers; 2) compliance cues strongly correlate with unsafe continuations; and 3) corrective interventions reliably steer unsafe trajectories towards safer traces. Motivated by these, we propose Intervened Preference Optimization (IPO), an alignment method that enforces safe reasoning by substituting compliance steps with safety triggers and constructing pairs for preference learning with strong signals. Experiments on jailbreak and adversarial safety benchmarks demonstrate that IPO remarkably improves overall safety regarding both reasoning and responses, outperforming SFT-based and RL-based baselines with a relative reduction of over 30% in harmfulness, while preserving excellent performance across diverse reasoning tasks. The results highlight the importance of explicit alignment for reasoning and provide a practical path to safer LRMs.

  • 10 authors
·
Sep 29

Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models

Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.

  • 10 authors
·
Mar 18, 2024

AlignGuard-LoRA: Alignment-Preserving Fine-Tuning via Fisher-Guided Decomposition and Riemannian-Geodesic Collision Regularization

Low-rank adaptation (LoRA) has become a standard tool for efficiently fine-tuning large language models (LLMs). Yet, even minor LoRA updates can induce alignment drift, weakening safety and behavioral constraints through entangled parameter changes. To address this, we propose AlignGuard-LoRA (AGL), a principled framework for preserving alignment during finetuning. AGL introduces several key components: a primary task loss for supervision, Fisher Information Matrix-based regularization to restrict updates in alignment-sensitive subspaces, and task-specific regularization to stabilize the integration of new knowledge. We further introduce collision-aware regularization, blending Riemannian overlap -- which penalizes coordinate-wise interference -- and geodesic separation -- which encourages disjoint update geometry. We curate DriftCaps, a targeted diagnostic benchmark of safe and unsafe prompts designed to quantify alignment drift and safety degradation. Empirical evaluations show that AGL mitigates alignment drift by up to 50% on safety-critical benchmarks without degrading downstream task performance. Comprehensive ablation confirms that each component contributes distinctly to preserving latent safety behaviors. Finally, we derive and validate a scaling law for catastrophic forgetting, revealing that AGL flattens post-finetuning loss escalation while preserving adaptation dynamics. AGL is a structurally grounded refinement of LoRA, ensuring alignment preservation with minimal trade-offs. To encourage further exploration and development, we open-source our implementation.

  • 4 authors
·
Aug 4 2

Alignment Quality Index (AQI) : Beyond Refusals: AQI as an Intrinsic Alignment Diagnostic via Latent Geometry, Cluster Divergence, and Layer wise Pooled Representations

Alignment is no longer a luxury, it is a necessity. As large language models (LLMs) enter high-stakes domains like education, healthcare, governance, and law, their behavior must reliably reflect human-aligned values and safety constraints. Yet current evaluations rely heavily on behavioral proxies such as refusal rates, G-Eval scores, and toxicity classifiers, all of which have critical blind spots. Aligned models are often vulnerable to jailbreaking, stochasticity of generation, and alignment faking. To address this issue, we introduce the Alignment Quality Index (AQI). This novel geometric and prompt-invariant metric empirically assesses LLM alignment by analyzing the separation of safe and unsafe activations in latent space. By combining measures such as the Davies-Bouldin Score (DBS), Dunn Index (DI), Xie-Beni Index (XBI), and Calinski-Harabasz Index (CHI) across various formulations, AQI captures clustering quality to detect hidden misalignments and jailbreak risks, even when outputs appear compliant. AQI also serves as an early warning signal for alignment faking, offering a robust, decoding invariant tool for behavior agnostic safety auditing. Additionally, we propose the LITMUS dataset to facilitate robust evaluation under these challenging conditions. Empirical tests on LITMUS across different models trained under DPO, GRPO, and RLHF conditions demonstrate AQI's correlation with external judges and ability to reveal vulnerabilities missed by refusal metrics. We make our implementation publicly available to foster future research in this area.

  • 15 authors
·
Jun 16 2

Safety Subspaces are Not Distinct: A Fine-Tuning Case Study

Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. This is typically achieved through instruction tuning and reinforcement learning from human feedback. However, this alignment is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable geometric directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this geometric perspective. We examine whether safety-relevant behavior is concentrated in specific subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in internal representations. Across both parameter and activation space, our findings are consistent: subspaces that amplify safe behaviors also amplify unsafe ones, and prompts with different safety implications activate overlapping representations. We find no evidence of a subspace that selectively governs safety. These results challenge the assumption that alignment is geometrically localized. Rather than residing in distinct directions, safety appears to emerge from entangled, high-impact components of the model's broader learning dynamics. This suggests that subspace-based defenses may face fundamental limitations and underscores the need for alternative strategies to preserve alignment under continued training. We corroborate these findings through multiple experiments on five open-source LLMs. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.

  • 4 authors
·
May 20

Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs

Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we present and evaluate a method to assess the robustness of LLM alignment. We observe that alignment embeds a safety classifier in the target model that is responsible for deciding between refusal and compliance. We seek to extract an approximation of this classifier, called a surrogate classifier, from the LLM. We develop an algorithm for identifying candidate classifiers from subsets of the LLM model. We evaluate the degree to which the candidate classifiers approximate the model's embedded classifier in benign (F1 score) and adversarial (using surrogates in a white-box attack) settings. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find attacks mounted on the surrogate models can be transferred with high accuracy. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70%, a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is a viable (and highly effective) means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks.

  • 5 authors
·
Jan 27

P-Aligner: Enabling Pre-Alignment of Language Models via Principled Instruction Synthesis

Large Language Models (LLMs) are expected to produce safe, helpful, and honest content during interaction with human users, but they frequently fail to align with such values when given flawed instructions, e.g., missing context, ambiguous directives, or inappropriate tone, leaving substantial room for improvement along multiple dimensions. A cost-effective yet high-impact way is to pre-align instructions before the model begins decoding. Existing approaches either rely on prohibitive test-time search costs or end-to-end model rewrite, which is powered by a customized training corpus with unclear objectives. In this work, we demonstrate that the goal of efficient and effective preference alignment can be achieved by P-Aligner, a lightweight module generating instructions that preserve the original intents while being expressed in a more human-preferred form. P-Aligner is trained on UltraPrompt, a new dataset synthesized via a proposed principle-guided pipeline using Monte-Carlo Tree Search, which systematically explores the space of candidate instructions that are closely tied to human preference. Experiments across different methods show that P-Aligner generally outperforms strong baselines across various models and benchmarks, including average win-rate gains of 28.35% and 8.69% on GPT-4-turbo and Gemma-2-SimPO, respectively. Further analyses validate its effectiveness and efficiency through multiple perspectives, including data quality, search strategies, iterative deployment, and time overhead.

  • 9 authors
·
Aug 6

TRACEALIGN -- Tracing the Drift: Attributing Alignment Failures to Training-Time Belief Sources in LLMs

Large Language Models (LLMs) fine-tuned to align with human values often exhibit alignment drift, producing unsafe or policy-violating completions when exposed to adversarial prompts, decoding perturbations, or paraphrased jailbreaks. While prior work has behaviorally characterized alignment failure, little is known about the training-time belief sources underlying these failures. We introduce TraceAlign, a unified framework for tracing unsafe completions back to their root causes in the model's training corpus. Central to our approach is the Belief Conflict Index (BCI), which quantifies semantic inconsistency between generated spans and aligned policies, based on retrieved training documents using suffix-array matching. We propose three complementary interventions: (i) TraceShield, an inference-time safety filter that refuses completions with high-BCI spans, (ii) Contrastive Belief Deconfliction Loss, a contrastive fine-tuning objective penalizing high-BCI continuations during DPO, and (iii) Prov-Decode, a provenance-aware decoding strategy that vetoes beam expansions predicted to yield high-BCI spans. Together, these defenses reduce alignment drift by up to 85% on our curated Alignment Drift Benchmark (ADB) while preserving utility on standard tasks, with delta less than 0.2 and improved refusal quality. We further derive a theoretical upper bound on drift likelihood via suffix-array span statistics, linking memorization frequency and length to adversarial reactivation risk. TraceAlign thus provides the first scalable, traceable, and grounded toolkit for understanding and mitigating alignment failures at source. To encourage further exploration and development, we open-source our implementation at: https://anonymous.4open.science/r/tracealign-2DA7

  • 3 authors
·
Aug 4 2

Aligning Multimodal LLM with Human Preference: A Survey

Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.

  • 17 authors
·
Mar 18 3

Safety Alignment Should Be Made More Than Just a Few Tokens Deep

The safety alignment of current Large Language Models (LLMs) is vulnerable. Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models. We argue that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and provide evidence that current aligned LLMs are subject to this issue. We also show how these findings help explain multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. For instance, we show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits. Finally, we design a regularized finetuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.

  • 8 authors
·
Jun 9, 2024

AI Alignment at Your Discretion

In AI alignment, extensive latitude must be granted to annotators, either human or algorithmic, to judge which model outputs are `better' or `safer.' We refer to this latitude as alignment discretion. Such discretion remains largely unexamined, posing two risks: (i) annotators may use their power of discretion arbitrarily, and (ii) models may fail to mimic this discretion. To study this phenomenon, we draw on legal concepts of discretion that structure how decision-making authority is conferred and exercised, particularly in cases where principles conflict or their application is unclear or irrelevant. Extended to AI alignment, discretion is required when alignment principles and rules are (inevitably) conflicting or indecisive. We present a set of metrics to systematically analyze when and how discretion in AI alignment is exercised, such that both risks (i) and (ii) can be observed. Moreover, we distinguish between human and algorithmic discretion and analyze the discrepancy between them. By measuring both human and algorithmic discretion over safety alignment datasets, we reveal layers of discretion in the alignment process that were previously unaccounted for. Furthermore, we demonstrate how algorithms trained on these datasets develop their own forms of discretion in interpreting and applying these principles, which challenges the purpose of having any principles at all. Our paper presents the first step towards formalizing this core gap in current alignment processes, and we call on the community to further scrutinize and control alignment discretion.

  • 6 authors
·
Feb 10

Tradeoffs Between Alignment and Helpfulness in Language Models with Representation Engineering

Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. First, we find that under the conditions of our framework, alignment can be guaranteed with representation engineering, and at the same time that helpfulness is harmed in the process. Second, we show that helpfulness is harmed quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.

  • 6 authors
·
Jan 29, 2024

Extracting alignment data in open models

In this work, we show that it is possible to extract significant amounts of alignment training data from a post-trained model -- useful to steer the model to improve certain capabilities such as long-context reasoning, safety, instruction following, and maths. While the majority of related work on memorisation has focused on measuring success of training data extraction through string matching, we argue that embedding models are better suited for our specific goals. Distances measured through a high quality embedding model can identify semantic similarities between strings that a different metric such as edit distance will struggle to capture. In fact, in our investigation, approximate string matching would have severely undercounted (by a conservative estimate of 10times) the amount of data that can be extracted due to trivial artifacts that deflate the metric. Interestingly, we find that models readily regurgitate training data that was used in post-training phases such as SFT or RL. We show that this data can be then used to train a base model, recovering a meaningful amount of the original performance. We believe our work exposes a possibly overlooked risk towards extracting alignment data. Finally, our work opens up an interesting discussion on the downstream effects of distillation practices: since models seem to be regurgitating aspects of their training set, distillation can therefore be thought of as indirectly training on the model's original dataset.

google Google
·
Oct 21 5

Alignment and Safety in Large Language Models: Safety Mechanisms, Training Paradigms, and Emerging Challenges

Due to the remarkable capabilities and growing impact of large language models (LLMs), they have been deeply integrated into many aspects of society. Thus, ensuring their alignment with human values and intentions has emerged as a critical challenge. This survey provides a comprehensive overview of practical alignment techniques, training protocols, and empirical findings in LLM alignment. We analyze the development of alignment methods across diverse paradigms, characterizing the fundamental trade-offs between core alignment objectives. Our analysis shows that while supervised fine-tuning enables basic instruction-following, preference-based methods offer more flexibility for aligning with nuanced human intent. We discuss state-of-the-art techniques, including Direct Preference Optimization (DPO), Constitutional AI, brain-inspired methods, and alignment uncertainty quantification (AUQ), highlighting their approaches to balancing quality and efficiency. We review existing evaluation frameworks and benchmarking datasets, emphasizing limitations such as reward misspecification, distributional robustness, and scalable oversight. We summarize strategies adopted by leading AI labs to illustrate the current state of practice. We conclude by outlining open problems in oversight, value pluralism, robustness, and continuous alignment. This survey aims to inform both researchers and practitioners navigating the evolving landscape of LLM alignment.

  • 50 authors
·
Jul 25

Efficient Alignment of Large Language Models via Data Sampling

LLM alignment ensures that large language models behave safely and effectively by aligning their outputs with human values, goals, and intentions. Aligning LLMs employ huge amounts of data, computation, and time. Moreover, curating data with human feedback is expensive and takes time. Recent research depicts the benefit of data engineering in the fine-tuning and pre-training paradigms to bring down such costs. However, alignment differs from the afore-mentioned paradigms and it is unclear if data efficient alignment is feasible. In this work, we first aim to understand how the performance of LLM alignment scales with data. We find out that LLM alignment performance follows an exponential plateau pattern which tapers off post a rapid initial increase. Based on this, we identify data subsampling as a viable method to reduce resources required for alignment. Further, we propose an information theory-based methodology for efficient alignment by identifying a small high quality subset thereby reducing the computation and time required by alignment. We evaluate the proposed methodology over multiple datasets and compare the results. We find that the model aligned using our proposed methodology outperforms other sampling methods and performs comparable to the model aligned with the full dataset while using less than 10% data, leading to greater than 90% savings in costs, resources, and faster LLM alignment.

  • 3 authors
·
Nov 15, 2024

From Instructions to Intrinsic Human Values -- A Survey of Alignment Goals for Big Models

Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.

  • 5 authors
·
Aug 23, 2023

Polarity-Aware Probing for Quantifying Latent Alignment in Language Models

Advances in unsupervised probes such as Contrast-Consistent Search (CCS), which reveal latent beliefs without relying on token outputs, raise the question of whether these methods can reliably assess model alignment. We investigate this by examining the sensitivity of CCS to harmful vs. safe statements and by introducing Polarity-Aware CCS (PA-CCS), a method for evaluating whether a model's internal representations remain consistent under polarity inversion. We propose two alignment-oriented metrics, Polar-Consistency and the Contradiction Index, to quantify the semantic robustness of a model's latent knowledge. To validate PA-CCS, we curate two main datasets and one control dataset containing matched harmful-safe sentence pairs constructed using different methodologies (concurrent and antagonistic statements). We apply PA-CCS to 16 language models. Our results show that PA-CCS identifies both architectural and layer-specific differences in the encoding of latent harmful knowledge. Notably, replacing the negation token with a meaningless marker degrades PA-CCS scores for models with well-aligned internal representations, while models lacking robust internal calibration do not exhibit this degradation. Our findings highlight the potential of unsupervised probing for alignment evaluation and emphasize the need to incorporate structural robustness checks into interpretability benchmarks. Code and datasets are available at: https://github.com/SadSabrina/polarity-probing. WARNING: This paper contains potentially sensitive, harmful, and offensive content.

  • 3 authors
·
Nov 21

Alleviating the Fear of Losing Alignment in LLM Fine-tuning

Large language models (LLMs) have demonstrated revolutionary capabilities in understanding complex contexts and performing a wide range of tasks. However, LLMs can also answer questions that are unethical or harmful, raising concerns about their applications. To regulate LLMs' responses to such questions, a training strategy called alignment can help. Yet, alignment can be unexpectedly compromised when fine-tuning an LLM for downstream tasks. This paper focuses on recovering the alignment lost during fine-tuning. We observe that there are two distinct directions inherent in an aligned LLM: the aligned direction and the harmful direction. An LLM is inclined to answer questions in the aligned direction while refusing queries in the harmful direction. Therefore, we propose to recover the harmful direction of the fine-tuned model that has been compromised. Specifically, we restore a small subset of the fine-tuned model's weight parameters from the original aligned model using gradient descent. We also introduce a rollback mechanism to avoid aggressive recovery and maintain downstream task performance. Our evaluation on 125 fine-tuned LLMs demonstrates that our method can reduce their harmful rate (percentage of answering harmful questions) from 33.25\% to 1.74\%, without sacrificing task performance much. In contrast, the existing methods either only reduce the harmful rate to a limited extent or significantly impact the normal functionality. Our code is available at https://github.com/kangyangWHU/LLMAlignment

  • 4 authors
·
Apr 13

Large Language Model Alignment: A Survey

Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.

  • 9 authors
·
Sep 26, 2023

Do LLMs Have Political Correctness? Analyzing Ethical Biases and Jailbreak Vulnerabilities in AI Systems

Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content. To address these issues, many LLM developers have implemented various safety measures to align these models. This alignment involves several techniques, including data filtering during pre-training, supervised fine-tuning, reinforcement learning from human feedback, and red-teaming exercises. These methods often introduce deliberate and intentional biases similar to Political Correctness (PC) to ensure the ethical behavior of LLMs. In this paper, we delve into the intentional biases injected into LLMs for safety purposes and examine methods to circumvent these safety alignment techniques. Notably, these intentional biases result in a jailbreaking success rate in GPT-4o models that differs by 20% between non-binary and cisgender keywords and by 16% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of PCJailbreak, highlighting the inherent risks posed by these safety-induced biases. Additionally, we propose an efficient defense method PCDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. PCDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize the urgent need for LLM developers to adopt a more responsible approach when designing and implementing safety measures.

  • 2 authors
·
Oct 17, 2024 2

Alignment for Honesty

Recent research has made significant strides in applying alignment techniques to enhance the helpfulness and harmlessness of large language models (LLMs) in accordance with human intentions. In this paper, we argue for the importance of alignment for honesty, ensuring that LLMs proactively refuse to answer questions when they lack knowledge, while still not being overly conservative. However, a pivotal aspect of alignment for honesty involves discerning the limits of an LLM's knowledge, which is far from straightforward. This challenge demands comprehensive solutions in terms of metric development, benchmark creation, and training methodologies. In this paper, we address these challenges by first establishing a precise problem definition and defining ``honesty'' inspired by the Analects of Confucius. This serves as a cornerstone for developing metrics that effectively measure an LLM's honesty by quantifying its progress post-alignment. Furthermore, we introduce a flexible training framework which is further instantiated by several efficient fine-tuning techniques that emphasize honesty without sacrificing performance on other tasks. Our extensive experiments reveal that these aligned models show a marked increase in honesty, as indicated by our proposed metrics. We open-source a wealth of resources to facilitate future research at https://github.com/GAIR-NLP/alignment-for-honesty, including honesty-aligned models, training and evaluation datasets for honesty alignment, concept glossary, as well as all relevant source code.

  • 5 authors
·
Dec 12, 2023

NeuroStrike: Neuron-Level Attacks on Aligned LLMs

Safety alignment is critical for the ethical deployment of large language models (LLMs), guiding them to avoid generating harmful or unethical content. Current alignment techniques, such as supervised fine-tuning and reinforcement learning from human feedback, remain fragile and can be bypassed by carefully crafted adversarial prompts. Unfortunately, such attacks rely on trial and error, lack generalizability across models, and are constrained by scalability and reliability. This paper presents NeuroStrike, a novel and generalizable attack framework that exploits a fundamental vulnerability introduced by alignment techniques: the reliance on sparse, specialized safety neurons responsible for detecting and suppressing harmful inputs. We apply NeuroStrike to both white-box and black-box settings: In the white-box setting, NeuroStrike identifies safety neurons through feedforward activation analysis and prunes them during inference to disable safety mechanisms. In the black-box setting, we propose the first LLM profiling attack, which leverages safety neuron transferability by training adversarial prompt generators on open-weight surrogate models and then deploying them against black-box and proprietary targets. We evaluate NeuroStrike on over 20 open-weight LLMs from major LLM developers. By removing less than 0.6% of neurons in targeted layers, NeuroStrike achieves an average attack success rate (ASR) of 76.9% using only vanilla malicious prompts. Moreover, Neurostrike generalizes to four multimodal LLMs with 100% ASR on unsafe image inputs. Safety neurons transfer effectively across architectures, raising ASR to 78.5% on 11 fine-tuned models and 77.7% on five distilled models. The black-box LLM profiling attack achieves an average ASR of 63.7% across five black-box models, including the Google Gemini family.

Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation

The rapid progress in open-source large language models (LLMs) is significantly advancing AI development. Extensive efforts have been made before model release to align their behavior with human values, with the primary goal of ensuring their helpfulness and harmlessness. However, even carefully aligned models can be manipulated maliciously, leading to unintended behaviors, known as "jailbreaks". These jailbreaks are typically triggered by specific text inputs, often referred to as adversarial prompts. In this work, we propose the generation exploitation attack, an extremely simple approach that disrupts model alignment by only manipulating variations of decoding methods. By exploiting different generation strategies, including varying decoding hyper-parameters and sampling methods, we increase the misalignment rate from 0% to more than 95% across 11 language models including LLaMA2, Vicuna, Falcon, and MPT families, outperforming state-of-the-art attacks with 30times lower computational cost. Finally, we propose an effective alignment method that explores diverse generation strategies, which can reasonably reduce the misalignment rate under our attack. Altogether, our study underscores a major failure in current safety evaluation and alignment procedures for open-source LLMs, strongly advocating for more comprehensive red teaming and better alignment before releasing such models. Our code is available at https://github.com/Princeton-SysML/Jailbreak_LLM.

  • 5 authors
·
Oct 10, 2023

Extract Free Dense Misalignment from CLIP

Recent vision-language foundation models still frequently produce outputs misaligned with their inputs, evidenced by object hallucination in captioning and prompt misalignment in the text-to-image generation model. Recent studies have explored methods for identifying misaligned elements, aiming not only to enhance interpretability but also to improve model performance. However, current approaches primarily rely on large foundation models in a zero-shot manner or fine-tuned models with human annotations, which limits scalability due to significant computational costs. This work proposes a novel approach, dubbed CLIP4DM, for detecting dense misalignments from pre-trained CLIP, specifically focusing on pinpointing misaligned words between image and text. We carefully revamp the gradient-based attribution computation method, enabling negative gradient of individual text tokens to indicate misalignment. We also propose F-CLIPScore, which aggregates misaligned attributions with a global alignment score. We evaluate our method on various dense misalignment detection benchmarks, covering various image and text domains and misalignment types. Our method demonstrates state-of-the-art performance among zero-shot models and competitive performance with fine-tuned models while maintaining superior efficiency. Our qualitative examples show that our method has a unique strength to detect entity-level objects, intangible objects, and attributes that can not be easily detected for existing works. We conduct ablation studies and analyses to highlight the strengths and limitations of our approach. Our code is publicly available at https://github.com/naver-ai/CLIP4DM.

  • 4 authors
·
Dec 24, 2024

VLSBench: Unveiling Visual Leakage in Multimodal Safety

Safety concerns of Multimodal large language models (MLLMs) have gradually become an important problem in various applications. Surprisingly, previous works indicate a counter-intuitive phenomenon that using textual unlearning to align MLLMs achieves comparable safety performances with MLLMs trained with image-text pairs. To explain such a counter-intuitive phenomenon, we discover a visual safety information leakage (VSIL) problem in existing multimodal safety benchmarks, i.e., the potentially risky and sensitive content in the image has been revealed in the textual query. In this way, MLLMs can easily refuse these sensitive text-image queries according to textual queries. However, image-text pairs without VSIL are common in real-world scenarios and are overlooked by existing multimodal safety benchmarks. To this end, we construct multimodal visual leakless safety benchmark (VLSBench) preventing visual safety leakage from image to textual query with 2.4k image-text pairs. Experimental results indicate that VLSBench poses a significant challenge to both open-source and close-source MLLMs, including LLaVA, Qwen2-VL, Llama3.2-Vision, and GPT-4o. This study demonstrates that textual alignment is enough for multimodal safety scenarios with VSIL, while multimodal alignment is a more promising solution for multimodal safety scenarios without VSIL. Please see our code and data at: http://hxhcreate.github.io/VLSBench

  • 5 authors
·
Nov 29, 2024 2

Navigating the Safety Landscape: Measuring Risks in Finetuning Large Language Models

Safety alignment is crucial to ensure that large language models (LLMs) behave in ways that align with human preferences and prevent harmful actions during inference. However, recent studies show that the alignment can be easily compromised through finetuning with only a few adversarially designed training examples. We aim to measure the risks in finetuning LLMs through navigating the LLM safety landscape. We discover a new phenomenon observed universally in the model parameter space of popular open-source LLMs, termed as "safety basin": random perturbations to model weights maintain the safety level of the original aligned model within its local neighborhood. However, outside this local region, safety is fully compromised, exhibiting a sharp, step-like drop. This safety basin contrasts sharply with the LLM capability landscape, where model performance peaks at the origin and gradually declines as random perturbation increases. Our discovery inspires us to propose the new VISAGE safety metric that measures the safety in LLM finetuning by probing its safety landscape. Visualizing the safety landscape of the aligned model enables us to understand how finetuning compromises safety by dragging the model away from the safety basin. The LLM safety landscape also highlights the system prompt's critical role in protecting a model, and that such protection transfers to its perturbed variants within the safety basin. These observations from our safety landscape research provide new insights for future work on LLM safety community. Our code is publicly available at https://github.com/ShengYun-Peng/llm-landscape.

  • 4 authors
·
May 27, 2024

DeAL: Decoding-time Alignment for Large Language Models

Large Language Models (LLMs) are nowadays expected to generate content aligned with human preferences. Current work focuses on alignment at model training time, through techniques such as Reinforcement Learning with Human Feedback (RLHF). However, it is unclear if such methods are an effective choice to teach alignment objectives to the model. First, the inability to incorporate multiple, custom rewards and reliance on a model developer's view of universal and static principles are key limitations. Second, the residual gaps in model training and the reliability of such approaches are also questionable (e.g. susceptibility to jail-breaking even after safety training). To address these, we propose DeAL, a framework that allows the user to customize reward functions and enables Decoding-time Alignment of LLMs (DeAL). At its core, we view decoding as a heuristic-guided search process and facilitate the use of a wide variety of alignment objectives. Our experiments with programmatic constraints such as keyword and length constraints (studied widely in the pre-LLM era) and abstract objectives such as harmlessness and helpfulness (proposed in the post-LLM era) show that we can DeAL with fine-grained trade-offs, improve adherence to alignment objectives, and address residual gaps in LLMs. Lastly, while DeAL can be effectively paired with RLHF and prompting techniques, its generality makes decoding slower, an optimization we leave for future work.

  • 9 authors
·
Feb 5, 2024 1

Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment

Larger language models (LLMs) have taken the world by storm with their massive multi-tasking capabilities simply by optimizing over a next-word prediction objective. With the emergence of their properties and encoded knowledge, the risk of LLMs producing harmful outputs increases, making them unfit for scalable deployment for the public. In this work, we propose a new safety evaluation benchmark RED-EVAL that carries out red-teaming. We show that even widely deployed models are susceptible to the Chain of Utterances-based (CoU) prompting, jailbreaking closed source LLM-based systems such as GPT-4 and ChatGPT to unethically respond to more than 65% and 73% of harmful queries. We also demonstrate the consistency of the RED-EVAL across 8 open-source LLMs in generating harmful responses in more than 86% of the red-teaming attempts. Next, we propose RED-INSTRUCT--An approach for the safety alignment of LLMs. It constitutes two phases: 1) HARMFULQA data collection: Leveraging CoU prompting, we collect a dataset that consists of 1.9K harmful questions covering a wide range of topics, 9.5K safe and 7.3K harmful conversations from ChatGPT; 2) SAFE-ALIGN: We demonstrate how the conversational dataset can be used for the safety alignment of LLMs by minimizing the negative log-likelihood over helpful responses and penalizing over harmful responses by gradient accent over sample loss. Our model STARLING, a fine-tuned Vicuna-7B, is observed to be more safely aligned when evaluated on RED-EVAL and HHH benchmarks while preserving the utility of the baseline models (TruthfulQA, MMLU, and BBH).

  • 2 authors
·
Aug 18, 2023

Margin-aware Preference Optimization for Aligning Diffusion Models without Reference

Modern alignment techniques based on human preferences, such as RLHF and DPO, typically employ divergence regularization relative to the reference model to ensure training stability. However, this often limits the flexibility of models during alignment, especially when there is a clear distributional discrepancy between the preference data and the reference model. In this paper, we focus on the alignment of recent text-to-image diffusion models, such as Stable Diffusion XL (SDXL), and find that this "reference mismatch" is indeed a significant problem in aligning these models due to the unstructured nature of visual modalities: e.g., a preference for a particular stylistic aspect can easily induce such a discrepancy. Motivated by this observation, we propose a novel and memory-friendly preference alignment method for diffusion models that does not depend on any reference model, coined margin-aware preference optimization (MaPO). MaPO jointly maximizes the likelihood margin between the preferred and dispreferred image sets and the likelihood of the preferred sets, simultaneously learning general stylistic features and preferences. For evaluation, we introduce two new pairwise preference datasets, which comprise self-generated image pairs from SDXL, Pick-Style and Pick-Safety, simulating diverse scenarios of reference mismatch. Our experiments validate that MaPO can significantly improve alignment on Pick-Style and Pick-Safety and general preference alignment when used with Pick-a-Pic v2, surpassing the base SDXL and other existing methods. Our code, models, and datasets are publicly available via https://mapo-t2i.github.io

  • 6 authors
·
Jun 10, 2024 1

Deep Research Brings Deeper Harm

Deep Research (DR) agents built on Large Language Models (LLMs) can perform complex, multi-step research by decomposing tasks, retrieving online information, and synthesizing detailed reports. However, the misuse of LLMs with such powerful capabilities can lead to even greater risks. This is especially concerning in high-stakes and knowledge-intensive domains such as biosecurity, where DR can generate a professional report containing detailed forbidden knowledge. Unfortunately, we have found such risks in practice: simply submitting a harmful query, which a standalone LLM directly rejects, can elicit a detailed and dangerous report from DR agents. This highlights the elevated risks and underscores the need for a deeper safety analysis. Yet, jailbreak methods designed for LLMs fall short in exposing such unique risks, as they do not target the research ability of DR agents. To address this gap, we propose two novel jailbreak strategies: Plan Injection, which injects malicious sub-goals into the agent's plan; and Intent Hijack, which reframes harmful queries as academic research questions. We conducted extensive experiments across different LLMs and various safety benchmarks, including general and biosecurity forbidden prompts. These experiments reveal 3 key findings: (1) Alignment of the LLMs often fail in DR agents, where harmful prompts framed in academic terms can hijack agent intent; (2) Multi-step planning and execution weaken the alignment, revealing systemic vulnerabilities that prompt-level safeguards cannot address; (3) DR agents not only bypass refusals but also produce more coherent, professional, and dangerous content, compared with standalone LLMs. These results demonstrate a fundamental misalignment in DR agents and call for better alignment techniques tailored to DR agents. Code and datasets are available at https://chenxshuo.github.io/deeper-harm.

Aligning Large Language Models with Human: A Survey

Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks. Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect (hallucinated) information. Hence, aligning LLMs with human expectations has become an active area of interest within the research community. This survey presents a comprehensive overview of these alignment technologies, including the following aspects. (1) Data collection: the methods for effectively collecting high-quality instructions for LLM alignment, including the use of NLP benchmarks, human annotations, and leveraging strong LLMs. (2) Training methodologies: a detailed review of the prevailing training methods employed for LLM alignment. Our exploration encompasses Supervised Fine-tuning, both Online and Offline human preference training, along with parameter-efficient training mechanisms. (3) Model Evaluation: the methods for evaluating the effectiveness of these human-aligned LLMs, presenting a multifaceted approach towards their assessment. In conclusion, we collate and distill our findings, shedding light on several promising future research avenues in the field. This survey, therefore, serves as a valuable resource for anyone invested in understanding and advancing the alignment of LLMs to better suit human-oriented tasks and expectations. An associated GitHub link collecting the latest papers is available at https://github.com/GaryYufei/AlignLLMHumanSurvey.

  • 9 authors
·
Jul 24, 2023

LLM-Align: Utilizing Large Language Models for Entity Alignment in Knowledge Graphs

Entity Alignment (EA) seeks to identify and match corresponding entities across different Knowledge Graphs (KGs), playing a crucial role in knowledge fusion and integration. Embedding-based entity alignment (EA) has recently gained considerable attention, resulting in the emergence of many innovative approaches. Initially, these approaches concentrated on learning entity embeddings based on the structural features of knowledge graphs (KGs) as defined by relation triples. Subsequent methods have integrated entities' names and attributes as supplementary information to improve the embeddings used for EA. However, existing methods lack a deep semantic understanding of entity attributes and relations. In this paper, we propose a Large Language Model (LLM) based Entity Alignment method, LLM-Align, which explores the instruction-following and zero-shot capabilities of Large Language Models to infer alignments of entities. LLM-Align uses heuristic methods to select important attributes and relations of entities, and then feeds the selected triples of entities to an LLM to infer the alignment results. To guarantee the quality of alignment results, we design a multi-round voting mechanism to mitigate the hallucination and positional bias issues that occur with LLMs. Experiments on three EA datasets, demonstrating that our approach achieves state-of-the-art performance compared to existing EA methods.

  • 3 authors
·
Dec 5, 2024

Baichuan Alignment Technical Report

We introduce Baichuan Alignment, a detailed analysis of the alignment techniques employed in the Baichuan series of models. This represents the industry's first comprehensive account of alignment methodologies, offering valuable insights for advancing AI research. We investigate the critical components that enhance model performance during the alignment process, including optimization methods, data strategies, capability enhancements, and evaluation processes. The process spans three key stages: Prompt Augmentation System (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The problems encountered, the solutions applied, and the improvements made are thoroughly recorded. Through comparisons across well-established benchmarks, we highlight the technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in core capabilities, with user experience gains ranging from 17% to 28%, and performs exceptionally well on specialized benchmarks. In open-source benchmark evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently outperform their respective official instruct versions across nearly all datasets. This report aims to clarify the key technologies behind the alignment process, fostering a deeper understanding within the community. Llama3-PBM-Nova-70B model is available at https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.

  • 25 authors
·
Oct 18, 2024 2

Weak-to-Strong Generalization beyond Accuracy: a Pilot Study in Safety, Toxicity, and Legal Reasoning

As large language models (LLMs) continue to advance, ensuring their alignment with human values becomes increasingly critical. Traditional alignment methods heavily rely on human feedback to fine-tune models. With the emergence of superhuman models whose outputs may surpass human understanding, evaluating and aligning these models using human judgments poses significant challenges. To address the challenges, recent works use weak supervisors to elicit knowledge from much stronger models. However, there are important disanalogies between the empirical setup in the existing works and the genuine goal of alignment. We remark that existing works investigate the phenomenon of weak-to-strong generation in analogous setup (i.e., binary classification), rather than practical alignment-relevant tasks (e.g., safety). In this paper, we bridge this gap by extending weak-to-strong generation to the context of practical alignment. We empirically demonstrate the widespread phenomenon of weak-to-strong generation in three complicated alignment tasks: safety, toxicity, and legal reasoning}. Furthermore, we explore efficient strategies for improving alignment performance to enhance the quality of model outcomes. Lastly, we summarize and analyze the challenges and potential solutions in regard to specific alignment tasks, which we hope to catalyze the research progress on the topic of weak-to-strong generalization. Our code is released at https://github.com/yeruimeng/WTS.git.

  • 3 authors
·
Oct 16, 2024

Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy

Despite the remarkable versatility of Large Language Models (LLMs) and Multimodal LLMs (MLLMs) to generalize across both language and vision tasks, LLMs and MLLMs have shown vulnerability to jailbreaking, generating textual outputs that undermine safety, ethical, and bias standards when exposed to harmful or sensitive inputs. With the recent advancement of safety alignment via preference-tuning from human feedback, LLMs and MLLMs have been equipped with safety guardrails to yield safe, ethical, and fair responses with regard to harmful inputs. However, despite the significance of safety alignment, research on the vulnerabilities remains largely underexplored. In this paper, we investigate the unexplored vulnerability of the safety alignment, examining its ability to consistently provide safety guarantees for out-of-distribution(OOD)-ifying harmful inputs that may fall outside the aligned data distribution. Our key observation is that OOD-ifying the vanilla harmful inputs highly increases the uncertainty of the model to discern the malicious intent within the input, leading to a higher chance of being jailbroken. Exploiting this vulnerability, we propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment. We explore various off-the-shelf visual and textual transformation techniques for OOD-ifying the harmful inputs. Notably, we observe that even simple mixing-based techniques such as image mixup prove highly effective in increasing the uncertainty of the model, thereby facilitating the bypass of the safety alignment. Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs such as GPT-4 and o1 with high attack success rate, which previous attack approaches have consistently struggled to jailbreak. Code is available at https://github.com/naver-ai/JOOD.

  • 5 authors
·
Mar 25

Controllable Safety Alignment: Inference-Time Adaptation to Diverse Safety Requirements

The current paradigm for safety alignment of large language models (LLMs) follows a one-size-fits-all approach: the model refuses to interact with any content deemed unsafe by the model provider. This approach lacks flexibility in the face of varying social norms across cultures and regions. In addition, users may have diverse safety needs, making a model with static safety standards too restrictive to be useful, as well as too costly to be re-aligned. We propose Controllable Safety Alignment (CoSA), a framework designed to adapt models to diverse safety requirements without re-training. Instead of aligning a fixed model, we align models to follow safety configs -- free-form natural language descriptions of the desired safety behaviors -- that are provided as part of the system prompt. To adjust model safety behavior, authorized users only need to modify such safety configs at inference time. To enable that, we propose CoSAlign, a data-centric method for aligning LLMs to easily adapt to diverse safety configs. Furthermore, we devise a novel controllability evaluation protocol that considers both helpfulness and configured safety, summarizing them into CoSA-Score, and construct CoSApien, a human-authored benchmark that consists of real-world LLM use cases with diverse safety requirements and corresponding evaluation prompts. We show that CoSAlign leads to substantial gains of controllability over strong baselines including in-context alignment. Our framework encourages better representation and adaptation to pluralistic human values in LLMs, and thereby increasing their practicality.

  • 5 authors
·
Oct 11, 2024 2

AlphaAlign: Incentivizing Safety Alignment with Extremely Simplified Reinforcement Learning

Large language models (LLMs), despite possessing latent safety understanding from their vast pretraining data, remain vulnerable to generating harmful content and exhibit issues such as over-refusal and utility degradation after safety alignment. Current safety alignment methods often result in superficial refusal shortcuts or rely on intensive supervision for reasoning-based approaches, failing to fully leverage the model's intrinsic safety self-awareness. We propose AlphaAlign, a simple yet effective pure reinforcement learning (RL) framework with verifiable safety reward designed to incentivize this latent safety awareness through proactive safety reasoning.} AlphaAlign employs a dual-reward system: a verifiable safety reward encourages correctly formatted and explicitly justified refusals for harmful queries while penalizing over-refusals, and a normalized helpfulness reward guides high-quality responses to benign inputs. This allows the model to develop proactive safety reasoning capabilities without depending on supervised safety-specific reasoning data. AlphaAlign demonstrates three key advantages: (1) Simplicity and efficiency, requiring only binary prompt safety labels and minimal RL steps for substantial improvements. (2) Breaking the safety-utility trade-off, by enhancing refusal of harmful content and reducing over-refusals, while simultaneously maintaining or even improving general task performance and robustness to unseen jailbreaks. (3) Deep alignment, fostering proactive safety reasoning that generates explicit safety rationales rather than relying on shallow refusal patterns.

  • 7 authors
·
Jul 20

Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models

Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks. How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards? In a further step, we need to explore how to fine-tune MLLMs to enhance reasoning performance while ensuring they satisfy safety constraints. Fundamentally, this can be formulated as a min-max optimization problem. In this study, we propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimizes helpfulness and safety using separate multimodal reward and cost models within a Lagrangian-based constrained optimization framework. Given that there is a lack of preference datasets that separate helpfulness and safety in multimodal scenarios, we introduce BeaverTails-V, the first open-source dataset with dual preference annotations for helpfulness and safety, along with multi-level safety labels (minor, moderate, severe). Additionally, we design a Multi-level Guardrail System to proactively defend against unsafe queries and adversarial attacks. By applying the Beaver-Guard-V moderation for 5 rounds of filtering and re-generation on the precursor model, the overall safety of the upstream model is significantly improved by an average of 40.9%. Experimental results demonstrate that fine-tuning different MLLMs with Safe RLHF can effectively enhance model helpfulness while ensuring improved safety. Specifically, Safe RLHF-V improves model safety by 34.2% and helpfulness by 34.3%. All of datasets, models, and code can be found at https://github.com/SafeRLHF-V to support the safety development of MLLMs and reduce potential societal risks.

  • 15 authors
·
Mar 22

LLMs Learn to Deceive Unintentionally: Emergent Misalignment in Dishonesty from Misaligned Samples to Biased Human-AI Interactions

Previous research has shown that LLMs finetuned on malicious or incorrect completions within narrow domains (e.g., insecure code or incorrect medical advice) can become broadly misaligned to exhibit harmful behaviors, which is called emergent misalignment. In this work, we investigate whether this phenomenon can extend beyond safety behaviors to a broader spectrum of dishonesty and deception under high-stakes scenarios (e.g., lying under pressure and deceptive behavior). To explore this, we finetune open-sourced LLMs on misaligned completions across diverse domains. Experimental results demonstrate that LLMs show broadly misaligned behavior in dishonesty. Additionally, we further explore this phenomenon in a downstream combined finetuning setting, and find that introducing as little as 1% of misalignment data into a standard downstream task is sufficient to decrease honest behavior over 20%. Furthermore, we consider a more practical human-AI interaction environment where we simulate both benign and biased users to interact with the assistant LLM. Notably, we find that the assistant can be misaligned unintentionally to exacerbate its dishonesty with only 10% biased user population. In summary, we extend the study of emergent misalignment to the domain of dishonesty and deception under high-stakes scenarios, and demonstrate that this risk arises not only through direct finetuning, but also in downstream mixture tasks and practical human-AI interactions.

SciSafeEval: A Comprehensive Benchmark for Safety Alignment of Large Language Models in Scientific Tasks

Large language models (LLMs) have had a transformative impact on a variety of scientific tasks across disciplines such as biology, chemistry, medicine, and physics. However, ensuring the safety alignment of these models in scientific research remains an underexplored area, with existing benchmarks primarily focus on textual content and overlooking key scientific representations such as molecular, protein, and genomic languages. Moreover, the safety mechanisms of LLMs in scientific tasks are insufficiently studied. To address these limitations, we introduce SciSafeEval, a comprehensive benchmark designed to evaluate the safety alignment of LLMs across a range of scientific tasks. SciSafeEval spans multiple scientific languages - including textual, molecular, protein, and genomic - and covers a wide range of scientific domains. We evaluate LLMs in zero-shot, few-shot and chain-of-thought settings, and introduce a 'jailbreak' enhancement feature that challenges LLMs equipped with safety guardrails, rigorously testing their defenses against malicious intention. Our benchmark surpasses existing safety datasets in both scale and scope, providing a robust platform for assessing the safety and performance of LLMs in scientific contexts. This work aims to facilitate the responsible development and deployment of LLMs, promoting alignment with safety and ethical standards in scientific research.

  • 15 authors
·
Oct 2, 2024