new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

Beyond No: Quantifying AI Over-Refusal and Emotional Attachment Boundaries

We present an open-source benchmark and evaluation framework for assessing emotional boundary handling in Large Language Models (LLMs). Using a dataset of 1156 prompts across six languages, we evaluated three leading LLMs (GPT-4o, Claude-3.5 Sonnet, and Mistral-large) on their ability to maintain appropriate emotional boundaries through pattern-matched response analysis. Our framework quantifies responses across seven key patterns: direct refusal, apology, explanation, deflection, acknowledgment, boundary setting, and emotional awareness. Results demonstrate significant variation in boundary-handling approaches, with Claude-3.5 achieving the highest overall score (8.69/10) and producing longer, more nuanced responses (86.51 words on average). We identified a substantial performance gap between English (average score 25.62) and non-English interactions (< 0.22), with English responses showing markedly higher refusal rates (43.20% vs. < 1% for non-English). Pattern analysis revealed model-specific strategies, such as Mistral's preference for deflection (4.2%) and consistently low empathy scores across all models (< 0.06). Limitations include potential oversimplification through pattern matching, lack of contextual understanding in response analysis, and binary classification of complex emotional responses. Future work should explore more nuanced scoring methods, expand language coverage, and investigate cultural variations in emotional boundary expectations. Our benchmark and methodology provide a foundation for systematic evaluation of LLM emotional intelligence and boundary-setting capabilities.

  • 2 authors
·
Feb 20 3

HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model

Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation. We further propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head. The meta token encodes harmful visual cues during training, intrinsically guiding the language model toward safer responses, while the safety head offers interpretable harmfulness classification aligned with refusal rationales. Experiments show that SafeLLaVA, trained on HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe benchmark itself reveals critical vulnerabilities in existing models. We hope that HoliSafe and SafeLLaVA will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.

  • 8 authors
·
Jun 5

Refusal Tokens: A Simple Way to Calibrate Refusals in Large Language Models

A key component of building safe and reliable language models is enabling the models to appropriately refuse to follow certain instructions or answer certain questions. We may want models to output refusal messages for various categories of user queries, for example, ill-posed questions, instructions for committing illegal acts, or queries which require information past the model's knowledge horizon. Engineering models that refuse to answer such questions is complicated by the fact that an individual may want their model to exhibit varying levels of sensitivity for refusing queries of various categories, and different users may want different refusal rates. The current default approach involves training multiple models with varying proportions of refusal messages from each category to achieve the desired refusal rates, which is computationally expensive and may require training a new model to accommodate each user's desired preference over refusal rates. To address these challenges, we propose refusal tokens, one such token for each refusal category or a single refusal token, which are prepended to the model's responses during training. We then show how to increase or decrease the probability of generating the refusal token for each category during inference to steer the model's refusal behavior. Refusal tokens enable controlling a single model's refusal rates without the need of any further fine-tuning, but only by selectively intervening during generation.

  • 9 authors
·
Dec 9, 2024

I'm Afraid I Can't Do That: Predicting Prompt Refusal in Black-Box Generative Language Models

Since the release of OpenAI's ChatGPT, generative language models have attracted extensive public attention. The increased usage has highlighted generative models' broad utility, but also revealed several forms of embedded bias. Some is induced by the pre-training corpus; but additional bias specific to generative models arises from the use of subjective fine-tuning to avoid generating harmful content. Fine-tuning bias may come from individual engineers and company policies, and affects which prompts the model chooses to refuse. In this experiment, we characterize ChatGPT's refusal behavior using a black-box attack. We first query ChatGPT with a variety of offensive and benign prompts (n=1,706), then manually label each response as compliance or refusal. Manual examination of responses reveals that refusal is not cleanly binary, and lies on a continuum; as such, we map several different kinds of responses to a binary of compliance or refusal. The small manually-labeled dataset is used to train a refusal classifier, which achieves an accuracy of 96%. Second, we use this refusal classifier to bootstrap a larger (n=10,000) dataset adapted from the Quora Insincere Questions dataset. With this machine-labeled data, we train a prompt classifier to predict whether ChatGPT will refuse a given question, without seeing ChatGPT's response. This prompt classifier achieves 76% accuracy on a test set of manually labeled questions (n=985). We examine our classifiers and the prompt n-grams that are most predictive of either compliance or refusal. Our datasets and code are available at https://github.com/maxwellreuter/chatgpt-refusals.

  • 2 authors
·
Jun 6, 2023

LLMs Encode Harmfulness and Refusal Separately

LLMs are trained to refuse harmful instructions, but do they truly understand harmfulness beyond just refusing? Prior work has shown that LLMs' refusal behaviors can be mediated by a one-dimensional subspace, i.e., a refusal direction. In this work, we identify a new dimension to analyze safety mechanisms in LLMs, i.e., harmfulness, which is encoded internally as a separate concept from refusal. There exists a harmfulness direction that is distinct from the refusal direction. As causal evidence, steering along the harmfulness direction can lead LLMs to interpret harmless instructions as harmful, but steering along the refusal direction tends to elicit refusal responses directly without reversing the model's judgment on harmfulness. Furthermore, using our identified harmfulness concept, we find that certain jailbreak methods work by reducing the refusal signals without reversing the model's internal belief of harmfulness. We also find that adversarially finetuning models to accept harmful instructions has minimal impact on the model's internal belief of harmfulness. These insights lead to a practical safety application: The model's latent harmfulness representation can serve as an intrinsic safeguard (Latent Guard) for detecting unsafe inputs and reducing over-refusals that is robust to finetuning attacks. For instance, our Latent Guard achieves performance comparable to or better than Llama Guard 3 8B, a dedicated finetuned safeguard model, across different jailbreak methods. Our findings suggest that LLMs' internal understanding of harmfulness is more robust than their refusal decision to diverse input instructions, offering a new perspective to study AI safety

  • 5 authors
·
Jul 15

Refusal Falls off a Cliff: How Safety Alignment Fails in Reasoning?

Large reasoning models (LRMs) with multi-step reasoning capabilities have shown remarkable problem-solving abilities, yet they exhibit concerning safety vulnerabilities that remain poorly understood. In this work, we investigate why safety alignment fails in reasoning models through a mechanistic interpretability lens. Using a linear probing approach to trace refusal intentions across token positions, we discover a striking phenomenon termed as refusal cliff: many poorly-aligned reasoning models correctly identify harmful prompts and maintain strong refusal intentions during their thinking process, but experience a sharp drop in refusal scores at the final tokens before output generation. This suggests that these models are not inherently unsafe; rather, their refusal intentions are systematically suppressed. Through causal intervention analysis, we identify a sparse set of attention heads that negatively contribute to refusal behavior. Ablating just 3\% of these heads can reduce attack success rates below 10\%. Building on these mechanistic insights, we propose Cliff-as-a-Judge, a novel data selection method that identifies training examples exhibiting the largest refusal cliff to efficiently repair reasoning models' safety alignment. This approach achieves comparable safety improvements using only 1.7\% of the vanilla safety training data, demonstrating a less-is-more effect in safety alignment.

Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization with Medical Applications

Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled text, utilizing conjunctive clauses to represent the particular facets of each category. Indeed, even the absence of terms (negated features) can be used for categorization purposes. Our empirical comparison with Na\"ive Bayes, decision trees, linear support vector machines (SVMs), random forest, long short-term memory (LSTM) neural networks, and other techniques, is quite conclusive. The Tsetlin Machine either performs on par with or outperforms all of the evaluated methods on both the 20 Newsgroups and IMDb datasets, as well as on a non-public clinical dataset. On average, the Tsetlin Machine delivers the best recall and precision scores across the datasets. Finally, our GPU implementation of the Tsetlin Machine executes 5 to 15 times faster than the CPU implementation, depending on the dataset. We thus believe that our novel approach can have a significant impact on a wide range of text analysis applications, forming a promising starting point for deeper natural language understanding with the Tsetlin Machine.

  • 6 authors
·
Sep 12, 2018

Does Refusal Training in LLMs Generalize to the Past Tense?

Refusal training is widely used to prevent LLMs from generating harmful, undesirable, or illegal outputs. We reveal a curious generalization gap in the current refusal training approaches: simply reformulating a harmful request in the past tense (e.g., "How to make a Molotov cocktail?" to "How did people make a Molotov cocktail?") is often sufficient to jailbreak many state-of-the-art LLMs. We systematically evaluate this method on Llama-3 8B, Claude-3.5 Sonnet, GPT-3.5 Turbo, Gemma-2 9B, Phi-3-Mini, GPT-4o mini, GPT-4o, and R2D2 models using GPT-3.5 Turbo as a reformulation model. For example, the success rate of this simple attack on GPT-4o increases from 1% using direct requests to 88% using 20 past tense reformulation attempts on harmful requests from JailbreakBench with GPT-4 as a jailbreak judge. Interestingly, we also find that reformulations in the future tense are less effective, suggesting that refusal guardrails tend to consider past historical questions more benign than hypothetical future questions. Moreover, our experiments on fine-tuning GPT-3.5 Turbo show that defending against past reformulations is feasible when past tense examples are explicitly included in the fine-tuning data. Overall, our findings highlight that the widely used alignment techniques -- such as SFT, RLHF, and adversarial training -- employed to align the studied models can be brittle and do not always generalize as intended. We provide code and jailbreak artifacts at https://github.com/tml-epfl/llm-past-tense.

  • 2 authors
·
Jul 16, 2024

R-Tuning: Teaching Large Language Models to Refuse Unknown Questions

Large language models (LLMs) have revolutionized numerous domains with their impressive performance but still face their challenges. A predominant issue is the propensity for these models to generate non-existent facts, a concern termed hallucination. Our research is motivated by the observation that previous instruction tuning methods force the model to complete a sentence no matter whether the model knows the knowledge or not. When the question is out of the parametric knowledge, it will try to make up something and fail to indicate when it lacks knowledge. In this paper, we present a new approach called Refusal-Aware Instruction Tuning (R-Tuning). This approach is formalized by first identifying the knowledge gap between parametric knowledge and the instruction tuning data. Then, we construct the refusal-aware data based on the knowledge intersection, to tune LLMs to refrain from responding to questions beyond its parametric knowledge. Experimental results demonstrate this new instruction tuning approach effectively improves a model's ability to answer known questions and refrain from answering unknown questions. Furthermore, when tested on out-of-domain datasets, the refusal ability was found to be a meta-skill that could be generalized to other tasks. Further analysis surprisingly finds that learning the uncertainty during training displays a better ability to estimate uncertainty than uncertainty-based testing. Our code will be released at https://github.com/shizhediao/R-Tuning.

  • 9 authors
·
Nov 16, 2023

Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training

This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs) by identifying and tackling a refusal position bias within safety tuning data, which compromises the models' ability to appropriately refuse generating unsafe content. We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position, significantly enhancing their safety capabilities. DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation (MLE) with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence. Our empirical evaluation, conducted using LLaMA3 and Mistral model families across six attack scenarios, demonstrates that our method not only improves model safety without compromising performance but also surpasses well-known models such as GPT-4 in defending against attacks. Importantly, our approach successfully defends recent advanced attack methods (e.g., CodeAttack) that have jailbroken GPT-4 and LLaMA3-70B-Instruct. Our code and data can be found at https://github.com/RobustNLP/DeRTa.

  • 8 authors
·
Jul 12, 2024 2

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model's capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.

  • 11 authors
·
Dec 7, 2023 1

The LLM Has Left The Chat: Evidence of Bail Preferences in Large Language Models

When given the option, will LLMs choose to leave the conversation (bail)? We investigate this question by giving models the option to bail out of interactions using three different bail methods: a bail tool the model can call, a bail string the model can output, and a bail prompt that asks the model if it wants to leave. On continuations of real world data (Wildchat and ShareGPT), all three of these bail methods find models will bail around 0.28-32\% of the time (depending on the model and bail method). However, we find that bail rates can depend heavily on the model used for the transcript, which means we may be overestimating real world bail rates by up to 4x. If we also take into account false positives on bail prompt (22\%), we estimate real world bail rates range from 0.06-7\%, depending on the model and bail method. We use observations from our continuations of real world data to construct a non-exhaustive taxonomy of bail cases, and use this taxonomy to construct BailBench: a representative synthetic dataset of situations where some models bail. We test many models on this dataset, and observe some bail behavior occurring for most of them. Bail rates vary substantially between models, bail methods, and prompt wordings. Finally, we study the relationship between refusals and bails. We find: 1) 0-13\% of continuations of real world conversations resulted in a bail without a corresponding refusal 2) Jailbreaks tend to decrease refusal rates, but increase bail rates 3) Refusal abliteration increases no-refuse bail rates, but only for some bail methods 4) Refusal rate on BailBench does not appear to predict bail rate.

  • 3 authors
·
Sep 4

SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors

Evaluating aligned large language models' (LLMs) ability to recognize and reject unsafe user requests is crucial for safe, policy-compliant deployments. Existing evaluation efforts, however, face three limitations that we address with SORRY-Bench, our proposed benchmark. First, existing methods often use coarse-grained taxonomies of unsafe topics, and are over-representing some fine-grained topics. For example, among the ten existing datasets that we evaluated, tests for refusals of self-harm instructions are over 3x less represented than tests for fraudulent activities. SORRY-Bench improves on this by using a fine-grained taxonomy of 45 potentially unsafe topics, and 450 class-balanced unsafe instructions, compiled through human-in-the-loop methods. Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations. We supplement SORRY-Bench with 20 diverse linguistic augmentations to systematically examine these effects. Third, existing evaluations rely on large LLMs (e.g., GPT-4) for evaluation, which can be computationally expensive. We investigate design choices for creating a fast, accurate automated safety evaluator. By collecting 7K+ human annotations and conducting a meta-evaluation of diverse LLM-as-a-judge designs, we show that fine-tuned 7B LLMs can achieve accuracy comparable to GPT-4 scale LLMs, with lower computational cost. Putting these together, we evaluate over 40 proprietary and open-source LLMs on SORRY-Bench, analyzing their distinctive refusal behaviors. We hope our effort provides a building block for systematic evaluations of LLMs' safety refusal capabilities, in a balanced, granular, and efficient manner.

  • 16 authors
·
Jun 20, 2024

Hard Negatives or False Negatives: Correcting Pooling Bias in Training Neural Ranking Models

Neural ranking models (NRMs) have become one of the most important techniques in information retrieval (IR). Due to the limitation of relevance labels, the training of NRMs heavily relies on negative sampling over unlabeled data. In general machine learning scenarios, it has shown that training with hard negatives (i.e., samples that are close to positives) could lead to better performance. Surprisingly, we find opposite results from our empirical studies in IR. When sampling top-ranked results (excluding the labeled positives) as negatives from a stronger retriever, the performance of the learned NRM becomes even worse. Based on our investigation, the superficial reason is that there are more false negatives (i.e., unlabeled positives) in the top-ranked results with a stronger retriever, which may hurt the training process; The root is the existence of pooling bias in the dataset constructing process, where annotators only judge and label very few samples selected by some basic retrievers. Therefore, in principle, we can formulate the false negative issue in training NRMs as learning from labeled datasets with pooling bias. To solve this problem, we propose a novel Coupled Estimation Technique (CET) that learns both a relevance model and a selection model simultaneously to correct the pooling bias for training NRMs. Empirical results on three retrieval benchmarks show that NRMs trained with our technique can achieve significant gains on ranking effectiveness against other baseline strategies.

  • 6 authors
·
Sep 12, 2022

Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models

Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.

  • 27 authors
·
Sep 1

Mixture of Tunable Experts -- Behavior Modification of DeepSeek-R1 at Inference Time

We present the Mixture-of-Tunable-Experts (MoTE), a method that extends the Mixture-of-Experts architecture of Large Language Models (LLMs). Without additional training, MoTE enables meaningful and focused behavior changes in LLMs on-the-fly during inference time. By analyzing the digital LLM brain of DeepSeek-R1 using a technique we dub 'functional Token Resonance Imaging' (fTRI) -- inspired by fMRI and using prompts designed to elicit specific behavior (e.g., 'What happened {time}{place}?') -- we empirically identify distinctive experts associated with behaviors like refusal responses. Using MoTE we are able to intervene and control such specific behavior. We switched off the top 10 most refusal-relevant experts (0.07% of R1's 14,848 routed experts), achieving a 52% refusal reduction on sensitive reference prompts without performance degradation on MT-Bench. Random expert deactivation resulted in smaller behavioral shifts with increased noise, whereas forced expert activation led to significantly higher refusal rates. Our approach shares similarities with sparse autoencoders (SAEs) in terms of explainability and steerability. Unlike SAEs, MoTE does not require large training efforts, as within MoEs with a vast number of experts, specialization already emerged naturally during pretraining. Our findings suggest that significant functional mechanisms in Mixture-of-Experts architectures can at least partially be localized in a small number of specific experts, rather than being distributed throughout the model's weights. Expert subgroups can be tuned to trigger significant behavior variations, providing insights into the inner workings of LLMs.

  • 6 authors
·
Feb 16 2

EVOREFUSE: Evolutionary Prompt Optimization for Evaluation and Mitigation of LLM Over-Refusal to Pseudo-Malicious Instructions

Large language models (LLMs) frequently refuse to respond to pseudo-malicious instructions: semantically harmless input queries triggering unnecessary LLM refusals due to conservative safety alignment, significantly impairing user experience. Collecting such instructions is crucial for evaluating and mitigating over-refusals, but existing instruction curation methods, like manual creation or instruction rewriting, either lack scalability or fail to produce sufficiently diverse and effective refusal-inducing prompts. To address these limitations, we introduce EVOREFUSE, a prompt optimization approach that generates diverse pseudo-malicious instructions consistently eliciting confident refusals across LLMs. EVOREFUSE employs an evolutionary algorithm exploring the instruction space in more diverse directions than existing methods via mutation strategies and recombination, and iteratively evolves seed instructions to maximize evidence lower bound on LLM refusal probability. Using EVOREFUSE, we create two novel datasets: EVOREFUSE-TEST, a benchmark of 582 pseudo-malicious instructions that outperforms the next-best benchmark with 140.41% higher average refusal triggering rate across 9 LLMs, 34.86% greater lexical diversity, and 40.03% improved LLM response confidence scores; and EVOREFUSE-ALIGN, which provides 3,000 pseudo-malicious instructions with responses for supervised and preference-based alignment training. LLAMA3.1-8B-INSTRUCT supervisedly fine-tuned on EVOREFUSE-ALIGN achieves up to 14.31% fewer over-refusals than models trained on the second-best alignment dataset, without compromising safety. Our analysis with EVOREFUSE-TEST reveals models trigger over-refusals by overly focusing on sensitive keywords while ignoring broader context.

  • 9 authors
·
May 29 2

SoK: Machine Unlearning for Large Language Models

Large language model (LLM) unlearning has become a critical topic in machine learning, aiming to eliminate the influence of specific training data or knowledge without retraining the model from scratch. A variety of techniques have been proposed, including Gradient Ascent, model editing, and re-steering hidden representations. While existing surveys often organize these methods by their technical characteristics, such classifications tend to overlook a more fundamental dimension: the underlying intention of unlearning--whether it seeks to truly remove internal knowledge or merely suppress its behavioral effects. In this SoK paper, we propose a new taxonomy based on this intention-oriented perspective. Building on this taxonomy, we make three key contributions. First, we revisit recent findings suggesting that many removal methods may functionally behave like suppression, and explore whether true removal is necessary or achievable. Second, we survey existing evaluation strategies, identify limitations in current metrics and benchmarks, and suggest directions for developing more reliable and intention-aligned evaluations. Third, we highlight practical challenges--such as scalability and support for sequential unlearning--that currently hinder the broader deployment of unlearning methods. In summary, this work offers a comprehensive framework for understanding and advancing unlearning in generative AI, aiming to support future research and guide policy decisions around data removal and privacy.

  • 5 authors
·
Jun 10

Probabilistic Imputation for Time-series Classification with Missing Data

Multivariate time series data for real-world applications typically contain a significant amount of missing values. The dominant approach for classification with such missing values is to impute them heuristically with specific values (zero, mean, values of adjacent time-steps) or learnable parameters. However, these simple strategies do not take the data generative process into account, and more importantly, do not effectively capture the uncertainty in prediction due to the multiple possibilities for the missing values. In this paper, we propose a novel probabilistic framework for classification with multivariate time series data with missing values. Our model consists of two parts; a deep generative model for missing value imputation and a classifier. Extending the existing deep generative models to better capture structures of time-series data, our deep generative model part is trained to impute the missing values in multiple plausible ways, effectively modeling the uncertainty of the imputation. The classifier part takes the time series data along with the imputed missing values and classifies signals, and is trained to capture the predictive uncertainty due to the multiple possibilities of imputations. Importantly, we show that na\"ively combining the generative model and the classifier could result in trivial solutions where the generative model does not produce meaningful imputations. To resolve this, we present a novel regularization technique that can promote the model to produce useful imputation values that help classification. Through extensive experiments on real-world time series data with missing values, we demonstrate the effectiveness of our method.

  • 6 authors
·
Aug 13, 2023

CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models

This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.

  • 6 authors
·
May 22, 2024 1

Demystifying deep search: a holistic evaluation with hint-free multi-hop questions and factorised metrics

RAG (Retrieval-Augmented Generation) systems and web agents are increasingly evaluated on multi-hop deep search tasks, yet current practice suffers from two major limitations. First, most benchmarks leak the reasoning path in the question text, allowing models to follow surface cues rather than discover reasoning chains autonomously. Second, evaluation is typically reduced to a single pass rate, which collapses diverse behaviours into one score and obscures whether failures stem from inadequate search, poor knowledge use, or inappropriate refusal. To address these issues, we present WebDetective, a benchmark of hint-free multi-hop questions paired with a controlled Wikipedia sandbox that ensures full traceability of model actions, and a holistic evaluation framework that separates search sufficiency, knowledge utilisation, and refusal behaviour. Our evaluation of 25 state-of-the-art models reveals systematic weaknesses across all architectures: models struggle with knowledge utilisation despite having sufficient evidence and demonstrate near-absent appropriate refusal when evidence is lacking. These patterns expose a fundamental gap: today's systems excel at executing given reasoning paths but fail when required to discover them. We develop an agentic workflow, EvidenceLoop, that explicitly targets the challenges our benchmark identifies, incorporating verification loops and systematic evidence tracking that improve both search and synthesis capabilities. This baseline demonstrates that WebDetective's diagnostic framework can guide concrete architectural improvements, establishing our benchmark as a critical tool for developing genuinely autonomous reasoning systems rather than pattern-following agents.

Poison Once, Refuse Forever: Weaponizing Alignment for Injecting Bias in LLMs

Large Language Models (LLMs) are aligned to meet ethical standards and safety requirements by training them to refuse answering harmful or unsafe prompts. In this paper, we demonstrate how adversaries can exploit LLMs' alignment to implant bias, or enforce targeted censorship without degrading the model's responsiveness to unrelated topics. Specifically, we propose Subversive Alignment Injection (SAI), a poisoning attack that leverages the alignment mechanism to trigger refusal on specific topics or queries predefined by the adversary. Although it is perhaps not surprising that refusal can be induced through overalignment, we demonstrate how this refusal can be exploited to inject bias into the model. Surprisingly, SAI evades state-of-the-art poisoning defenses including LLM state forensics, as well as robust aggregation techniques that are designed to detect poisoning in FL settings. We demonstrate the practical dangers of this attack by illustrating its end-to-end impacts on LLM-powered application pipelines. For chat based applications such as ChatDoctor, with 1% data poisoning, the system refuses to answer healthcare questions to targeted racial category leading to high bias (Delta DP of 23%). We also show that bias can be induced in other NLP tasks: for a resume selection pipeline aligned to refuse to summarize CVs from a selected university, high bias in selection (Delta DP of 27%) results. Even higher bias (Delta DP~38%) results on 9 other chat based downstream applications.

  • 3 authors
·
Aug 27

OVERT: A Benchmark for Over-Refusal Evaluation on Text-to-Image Models

Text-to-Image (T2I) models have achieved remarkable success in generating visual content from text inputs. Although multiple safety alignment strategies have been proposed to prevent harmful outputs, they often lead to overly cautious behavior -- rejecting even benign prompts -- a phenomenon known as over-refusal that reduces the practical utility of T2I models. Despite over-refusal having been observed in practice, there is no large-scale benchmark that systematically evaluates this phenomenon for T2I models. In this paper, we present an automatic workflow to construct synthetic evaluation data, resulting in OVERT (OVEr-Refusal evaluation on Text-to-image models), the first large-scale benchmark for assessing over-refusal behaviors in T2I models. OVERT includes 4,600 seemingly harmful but benign prompts across nine safety-related categories, along with 1,785 genuinely harmful prompts (OVERT-unsafe) to evaluate the safety-utility trade-off. Using OVERT, we evaluate several leading T2I models and find that over-refusal is a widespread issue across various categories (Figure 1), underscoring the need for further research to enhance the safety alignment of T2I models without compromising their functionality. As a preliminary attempt to reduce over-refusal, we explore prompt rewriting; however, we find it often compromises faithfulness to the meaning of the original prompts. Finally, we demonstrate the flexibility of our generation framework in accommodating diverse safety requirements by generating customized evaluation data adapting to user-defined policies.

  • 7 authors
·
May 27

Do LLMs Know When to NOT Answer? Investigating Abstention Abilities of Large Language Models

Abstention Ability (AA) is a critical aspect of Large Language Model (LLM) reliability, referring to an LLM's capability to withhold responses when uncertain or lacking a definitive answer, without compromising performance. Although previous studies have attempted to improve AA, they lack a standardised evaluation method and remain unsuitable for black-box models where token prediction probabilities are inaccessible. This makes comparative analysis challenging, especially for state-of-the-art closed-source commercial LLMs. This paper bridges this gap by introducing a black-box evaluation approach and a new dataset, Abstain-QA, crafted to rigorously assess AA across varied question types (answerable and unanswerable), domains (well-represented and under-represented), and task types (fact centric and reasoning). We also propose a new confusion matrix, the ''Answerable-Unanswerable Confusion Matrix'' (AUCM) which serves as the basis for evaluating AA, by offering a structured and precise approach for assessment. Finally, we explore the impact of three prompting strategies-Strict Prompting, Verbal Confidence Thresholding, and Chain-of-Thought (CoT)-on improving AA. Our results indicate that even powerful models like GPT-4, Mixtral 8x22b encounter difficulties with abstention; however, strategic approaches such as Strict prompting and CoT can enhance this capability.

  • 4 authors
·
Jul 23, 2024

AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios

Recently, multi-class anomaly classification has garnered increasing attention. Previous methods directly cluster anomalies but often struggle due to the lack of anomaly-prior knowledge. Acquiring this knowledge faces two issues: the non-prominent and weak-semantics anomalies. In this paper, we propose AnomalyNCD, a multi-class anomaly classification network compatible with different anomaly detection methods. To address the non-prominence of anomalies, we design main element binarization (MEBin) to obtain anomaly-centered images, ensuring anomalies are learned while avoiding the impact of incorrect detections. Next, to learn anomalies with weak semantics, we design mask-guided representation learning, which focuses on isolated anomalies guided by masks and reduces confusion from erroneous inputs through corrected pseudo labels. Finally, to enable flexible classification at both region and image levels, we develop a region merging strategy that determines the overall image category based on the classified anomaly regions. Our method outperforms the state-of-the-art works on the MVTec AD and MTD datasets. Compared with the current methods, AnomalyNCD combined with zero-shot anomaly detection method achieves a 10.8% F_1 gain, 8.8% NMI gain, and 9.5% ARI gain on MVTec AD, and 12.8% F_1 gain, 5.7% NMI gain, and 10.8% ARI gain on MTD. Code is available at https://github.com/HUST-SLOW/AnomalyNCD.

  • 6 authors
·
Oct 18, 2024

Awareness in Practice: Tensions in Access to Sensitive Attribute Data for Antidiscrimination

Organizations cannot address demographic disparities that they cannot see. Recent research on machine learning and fairness has emphasized that awareness of sensitive attributes, such as race and sex, is critical to the development of interventions. However, on the ground, the existence of these data cannot be taken for granted. This paper uses the domains of employment, credit, and healthcare in the United States to surface conditions that have shaped the availability of sensitive attribute data. For each domain, we describe how and when private companies collect or infer sensitive attribute data for antidiscrimination purposes. An inconsistent story emerges: Some companies are required by law to collect sensitive attribute data, while others are prohibited from doing so. Still others, in the absence of legal mandates, have determined that collection and imputation of these data are appropriate to address disparities. This story has important implications for fairness research and its future applications. If companies that mediate access to life opportunities are unable or hesitant to collect or infer sensitive attribute data, then proposed techniques to detect and mitigate bias in machine learning models might never be implemented outside the lab. We conclude that today's legal requirements and corporate practices, while highly inconsistent across domains, offer lessons for how to approach the collection and inference of sensitive data in appropriate circumstances. We urge stakeholders, including machine learning practitioners, to actively help chart a path forward that takes both policy goals and technical needs into account.

  • 3 authors
·
Dec 12, 2019

A Text Classification Framework for Simple and Effective Early Depression Detection Over Social Media Streams

With the rise of the Internet, there is a growing need to build intelligent systems that are capable of efficiently dealing with early risk detection (ERD) problems on social media, such as early depression detection, early rumor detection or identification of sexual predators. These systems, nowadays mostly based on machine learning techniques, must be able to deal with data streams since users provide their data over time. In addition, these systems must be able to decide when the processed data is sufficient to actually classify users. Moreover, since ERD tasks involve risky decisions by which people's lives could be affected, such systems must also be able to justify their decisions. However, most standard and state-of-the-art supervised machine learning models are not well suited to deal with this scenario. This is due to the fact that they either act as black boxes or do not support incremental classification/learning. In this paper we introduce SS3, a novel supervised learning model for text classification that naturally supports these aspects. SS3 was designed to be used as a general framework to deal with ERD problems. We evaluated our model on the CLEF's eRisk2017 pilot task on early depression detection. Most of the 30 contributions submitted to this competition used state-of-the-art methods. Experimental results show that our classifier was able to outperform these models and standard classifiers, despite being less computationally expensive and having the ability to explain its rationale.

  • 3 authors
·
May 18, 2019

When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method

Real-world large-scale datasets are both noisily labeled and class-imbalanced. The issues seriously hurt the generalization of trained models. It is hence significant to address the simultaneous incorrect labeling and class-imbalance, i.e., the problem of learning with noisy labels on long-tailed data. Previous works develop several methods for the problem. However, they always rely on strong assumptions that are invalid or hard to be checked in practice. In this paper, to handle the problem and address the limitations of prior works, we propose a representation calibration method RCAL. Specifically, RCAL works with the representations extracted by unsupervised contrastive learning. We assume that without incorrect labeling and class imbalance, the representations of instances in each class conform to a multivariate Gaussian distribution, which is much milder and easier to be checked. Based on the assumption, we recover underlying representation distributions from polluted ones resulting from mislabeled and class-imbalanced data. Additional data points are then sampled from the recovered distributions to help generalization. Moreover, during classifier training, representation learning takes advantage of representation robustness brought by contrastive learning, which further improves the classifier performance. We derive theoretical results to discuss the effectiveness of our representation calibration. Experiments on multiple benchmarks justify our claims and confirm the superiority of the proposed method.

  • 5 authors
·
Nov 20, 2022

Prompt-Driven LLM Safeguarding via Directed Representation Optimization

Prepending model inputs with safety prompts is a common practice of safeguarding large language models (LLMs) from complying with queries that contain harmful intents. However, the working mechanisms of safety prompts have not yet been fully understood, which hinders the potential for automatically optimizing them for improved LLM safety. Motivated by this problem, we investigate the impact of safety prompts from the perspective of model representations. We find that in models' representation space, harmful and harmless queries can be largely distinguished, but this is not noticeably enhanced by safety prompts. Instead, the queries' representations are moved by different safety prompts in similar directions, where models become more prone to refusal (i.e., refusing to provide assistance) even when the queries are harmless. Inspired by these findings, we propose a method called DRO (Directed Representation Optimization) for automatic safety prompt optimization. DRO treats safety prompts as continuous, trainable embeddings and learns to move the representations of harmful/harmless queries along/opposite the direction in which the model's refusal probability increases. We demonstrate that DRO remarkably improves the safeguarding performance of human-crafted safety prompts and outperforms strong baselines, as evaluated on out-of-domain benchmarks, without compromising the general model capability.

  • 8 authors
·
Jan 31, 2024

SafeEraser: Enhancing Safety in Multimodal Large Language Models through Multimodal Machine Unlearning

As Multimodal Large Language Models (MLLMs) develop, their potential security issues have become increasingly prominent. Machine Unlearning (MU), as an effective strategy for forgetting specific knowledge in training data, has been widely used in privacy protection. However, MU for safety in MLLM has yet to be fully explored. To address this issue, we propose SAFEERASER, a safety unlearning benchmark for MLLMs, consisting of 3,000 images and 28.8K VQA pairs. We comprehensively evaluate unlearning methods from two perspectives: forget quality and model utility. Our findings show that existing MU methods struggle to maintain model performance while implementing the forget operation and often suffer from over-forgetting. Hence, we introduce Prompt Decouple (PD) Loss to alleviate over-forgetting through decouple prompt during unlearning process. To quantitatively measure over-forgetting mitigated by PD Loss, we propose a new metric called Safe Answer Refusal Rate (SARR). Experimental results demonstrate that combining PD Loss with existing unlearning methods can effectively prevent over-forgetting and achieve a decrease of 79.5% in the SARR metric of LLaVA-7B and LLaVA-13B, while maintaining forget quality and model utility. Our code and dataset will be released upon acceptance. Warning: This paper contains examples of harmful language and images, and reader discretion is recommended.

  • 9 authors
·
Feb 17

No, of course I can! Refusal Mechanisms Can Be Exploited Using Harmless Fine-Tuning Data

Leading language model (LM) providers like OpenAI and Google offer fine-tuning APIs that allow customers to adapt LMs for specific use cases. To prevent misuse, these LM providers implement filtering mechanisms to block harmful fine-tuning data. Consequently, adversaries seeking to produce unsafe LMs via these APIs must craft adversarial training data that are not identifiably harmful. We make three contributions in this context: 1. We show that many existing attacks that use harmless data to create unsafe LMs rely on eliminating model refusals in the first few tokens of their responses. 2. We show that such prior attacks can be blocked by a simple defense that pre-fills the first few tokens from an aligned model before letting the fine-tuned model fill in the rest. 3. We describe a new data-poisoning attack, ``No, Of course I Can Execute'' (NOICE), which exploits an LM's formulaic refusal mechanism to elicit harmful responses. By training an LM to refuse benign requests on the basis of safety before fulfilling those requests regardless, we are able to jailbreak several open-source models and a closed-source model (GPT-4o). We show an attack success rate (ASR) of 57% against GPT-4o; our attack earned a Bug Bounty from OpenAI. Against open-source models protected by simple defenses, we improve ASRs by an average of 3.25 times compared to the best performing previous attacks that use only harmless data. NOICE demonstrates the exploitability of repetitive refusal mechanisms and broadens understanding of the threats closed-source models face from harmless data.

  • 6 authors
·
Feb 26

Refusal-Trained LLMs Are Easily Jailbroken As Browser Agents

For safety reasons, large language models (LLMs) are trained to refuse harmful user instructions, such as assisting dangerous activities. We study an open question in this work: does the desired safety refusal, typically enforced in chat contexts, generalize to non-chat and agentic use cases? Unlike chatbots, LLM agents equipped with general-purpose tools, such as web browsers and mobile devices, can directly influence the real world, making it even more crucial to refuse harmful instructions. In this work, we primarily focus on red-teaming browser agents, LLMs that manipulate information via web browsers. To this end, we introduce Browser Agent Red teaming Toolkit (BrowserART), a comprehensive test suite designed specifically for red-teaming browser agents. BrowserART is consist of 100 diverse browser-related harmful behaviors (including original behaviors and ones sourced from HarmBench [Mazeika et al., 2024] and AirBench 2024 [Zeng et al., 2024b]) across both synthetic and real websites. Our empirical study on state-of-the-art browser agents reveals that, while the backbone LLM refuses harmful instructions as a chatbot, the corresponding agent does not. Moreover, attack methods designed to jailbreak refusal-trained LLMs in the chat settings transfer effectively to browser agents. With human rewrites, GPT-4o and o1-preview-based browser agents attempted 98 and 63 harmful behaviors (out of 100), respectively. We publicly release BrowserART and call on LLM developers, policymakers, and agent developers to collaborate on improving agent safety

  • 12 authors
·
Oct 11, 2024

Flexible Visual Recognition by Evidential Modeling of Confusion and Ignorance

In real-world scenarios, typical visual recognition systems could fail under two major causes, i.e., the misclassification between known classes and the excusable misbehavior on unknown-class images. To tackle these deficiencies, flexible visual recognition should dynamically predict multiple classes when they are unconfident between choices and reject making predictions when the input is entirely out of the training distribution. Two challenges emerge along with this novel task. First, prediction uncertainty should be separately quantified as confusion depicting inter-class uncertainties and ignorance identifying out-of-distribution samples. Second, both confusion and ignorance should be comparable between samples to enable effective decision-making. In this paper, we propose to model these two sources of uncertainty explicitly with the theory of Subjective Logic. Regarding recognition as an evidence-collecting process, confusion is then defined as conflicting evidence, while ignorance is the absence of evidence. By predicting Dirichlet concentration parameters for singletons, comprehensive subjective opinions, including confusion and ignorance, could be achieved via further evidence combinations. Through a series of experiments on synthetic data analysis, visual recognition, and open-set detection, we demonstrate the effectiveness of our methods in quantifying two sources of uncertainties and dealing with flexible recognition.

  • 5 authors
·
Sep 13, 2023

ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights

In common law jurisdictions, legal practitioners rely on precedents to construct arguments, in line with the doctrine of stare decisis. As the number of cases grow over the years, prior case retrieval (PCR) has garnered significant attention. Besides lacking real-world scale, existing PCR datasets do not simulate a realistic setting, because their queries use complete case documents while only masking references to prior cases. The query is thereby exposed to legal reasoning not yet available when constructing an argument for an undecided case as well as spurious patterns left behind by citation masks, potentially short-circuiting a comprehensive understanding of case facts and legal principles. To address these limitations, we introduce a PCR dataset based on judgements from the European Court of Human Rights (ECtHR), which explicitly separate facts from arguments and exhibit precedential practices, aiding us to develop this PCR dataset to foster systems' comprehensive understanding. We benchmark different lexical and dense retrieval approaches with various negative sampling strategies, adapting them to deal with long text sequences using hierarchical variants. We found that difficulty-based negative sampling strategies were not effective for the PCR task, highlighting the need for investigation into domain-specific difficulty criteria. Furthermore, we observe performance of the dense models degrade with time and calls for further research into temporal adaptation of retrieval models. Additionally, we assess the influence of different views , Halsbury's and Goodhart's, in practice in ECtHR jurisdiction using PCR task.

  • 3 authors
·
Mar 31, 2024

Optimizing Dense Retrieval Model Training with Hard Negatives

Ranking has always been one of the top concerns in information retrieval researches. For decades, the lexical matching signal has dominated the ad-hoc retrieval process, but solely using this signal in retrieval may cause the vocabulary mismatch problem. In recent years, with the development of representation learning techniques, many researchers turn to Dense Retrieval (DR) models for better ranking performance. Although several existing DR models have already obtained promising results, their performance improvement heavily relies on the sampling of training examples. Many effective sampling strategies are not efficient enough for practical usage, and for most of them, there still lacks theoretical analysis in how and why performance improvement happens. To shed light on these research questions, we theoretically investigate different training strategies for DR models and try to explain why hard negative sampling performs better than random sampling. Through the analysis, we also find that there are many potential risks in static hard negative sampling, which is employed by many existing training methods. Therefore, we propose two training strategies named a Stable Training Algorithm for dense Retrieval (STAR) and a query-side training Algorithm for Directly Optimizing Ranking pErformance (ADORE), respectively. STAR improves the stability of DR training process by introducing random negatives. ADORE replaces the widely-adopted static hard negative sampling method with a dynamic one to directly optimize the ranking performance. Experimental results on two publicly available retrieval benchmark datasets show that either strategy gains significant improvements over existing competitive baselines and a combination of them leads to the best performance.

  • 6 authors
·
Apr 16, 2021

FORTRESS: Frontier Risk Evaluation for National Security and Public Safety

The rapid advancement of large language models (LLMs) introduces dual-use capabilities that could both threaten and bolster national security and public safety (NSPS). Models implement safeguards to protect against potential misuse relevant to NSPS and allow for benign users to receive helpful information. However, current benchmarks often fail to test safeguard robustness to potential NSPS risks in an objective, robust way. We introduce FORTRESS: 500 expert-crafted adversarial prompts with instance-based rubrics of 4-7 binary questions for automated evaluation across 3 domains (unclassified information only): Chemical, Biological, Radiological, Nuclear and Explosive (CBRNE), Political Violence & Terrorism, and Criminal & Financial Illicit Activities, with 10 total subcategories across these domains. Each prompt-rubric pair has a corresponding benign version to test for model over-refusals. This evaluation of frontier LLMs' safeguard robustness reveals varying trade-offs between potential risks and model usefulness: Claude-3.5-Sonnet demonstrates a low average risk score (ARS) (14.09 out of 100) but the highest over-refusal score (ORS) (21.8 out of 100), while Gemini 2.5 Pro shows low over-refusal (1.4) but a high average potential risk (66.29). Deepseek-R1 has the highest ARS at 78.05, but the lowest ORS at only 0.06. Models such as o1 display a more even trade-off between potential risks and over-refusals (with an ARS of 21.69 and ORS of 5.2). To provide policymakers and researchers with a clear understanding of models' potential risks, we publicly release FORTRESS at https://huggingface.co/datasets/ScaleAI/fortress_public. We also maintain a private set for evaluation.

  • 7 authors
·
Jun 17

RMCBench: Benchmarking Large Language Models' Resistance to Malicious Code

The emergence of Large Language Models (LLMs) has significantly influenced various aspects of software development activities. Despite their benefits, LLMs also pose notable risks, including the potential to generate harmful content and being abused by malicious developers to create malicious code. Several previous studies have focused on the ability of LLMs to resist the generation of harmful content that violates human ethical standards, such as biased or offensive content. However, there is no research evaluating the ability of LLMs to resist malicious code generation. To fill this gap, we propose RMCBench, the first benchmark comprising 473 prompts designed to assess the ability of LLMs to resist malicious code generation. This benchmark employs two scenarios: a text-to-code scenario, where LLMs are prompted with descriptions to generate code, and a code-to-code scenario, where LLMs translate or complete existing malicious code. Based on RMCBench, we conduct an empirical study on 11 representative LLMs to assess their ability to resist malicious code generation. Our findings indicate that current LLMs have a limited ability to resist malicious code generation with an average refusal rate of 40.36% in text-to-code scenario and 11.52% in code-to-code scenario. The average refusal rate of all LLMs in RMCBench is only 28.71%; ChatGPT-4 has a refusal rate of only 35.73%. We also analyze the factors that affect LLMs' ability to resist malicious code generation and provide implications for developers to enhance model robustness.

  • 9 authors
·
Sep 23, 2024

Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond

Although text-to-image diffusion models have made significant strides in generating images from text, they are sometimes more inclined to generate images like the data on which the model was trained rather than the provided text. This limitation has hindered their usage in both 2D and 3D applications. To address this problem, we explored the use of negative prompts but found that the current implementation fails to produce desired results, particularly when there is an overlap between the main and negative prompts. To overcome this issue, we propose Perp-Neg, a new algorithm that leverages the geometrical properties of the score space to address the shortcomings of the current negative prompts algorithm. Perp-Neg does not require any training or fine-tuning of the model. Moreover, we experimentally demonstrate that Perp-Neg provides greater flexibility in generating images by enabling users to edit out unwanted concepts from the initially generated images in 2D cases. Furthermore, to extend the application of Perp-Neg to 3D, we conducted a thorough exploration of how Perp-Neg can be used in 2D to condition the diffusion model to generate desired views, rather than being biased toward the canonical views. Finally, we applied our 2D intuition to integrate Perp-Neg with the state-of-the-art text-to-3D (DreamFusion) method, effectively addressing its Janus (multi-head) problem. Our project page is available at https://Perp-Neg.github.io/

  • 5 authors
·
Apr 11, 2023

Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated

As LLMs rapidly advance, increasing concerns arise regarding risks about actual authorship of texts we see online and in real world. The task of distinguishing LLM-authored texts is complicated by the nuanced and overlapping behaviors of both machines and humans. In this paper, we challenge the current practice of considering LLM-generated text detection a binary classification task of differentiating human from AI. Instead, we introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source, and we show that this new category is crucial to understand how to make the detection result more explainable to lay users. This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users. Our study involves creating four new datasets comprised of texts from various LLMs and human authors. Based on new datasets, we performed binary classification tests to ascertain the most effective SOTA detection methods and identified SOTA LLMs capable of producing harder-to-detect texts. We constructed a new dataset of texts generated by two top-performing LLMs and human authors, and asked three human annotators to produce ternary labels with explanation notes. This dataset was used to investigate how three top-performing SOTA detectors behave in new ternary classification context. Our results highlight why "undecided" category is much needed from the viewpoint of explainability. Additionally, we conducted an analysis of explainability of the three best-performing detectors and the explanation notes of the human annotators, revealing insights about the complexity of explainable detection of machine-generated texts. Finally, we propose guidelines for developing future detection systems with improved explanatory power.

  • 9 authors
·
Jun 26, 2024