new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

TRUEBench: Can LLM Response Meet Real-world Constraints as Productivity Assistant?

Large language models (LLMs) are increasingly integral as productivity assistants, but existing benchmarks fall short in rigorously evaluating their real-world instruction-following capabilities. Current benchmarks often (i) lack sufficient multilinguality, (ii) fail to capture the implicit constraints inherent in user requests, and (iii) overlook the complexities of multi-turn dialogue. To address these critical gaps and provide a more realistic assessment, we introduce TRUEBench (Trustworthy Real-world Usage Evaluation Benchmark)1, a novel benchmark specifically designed for LLM-based productivity assistants. TRUEBench distinguishes itself by featuring input prompts across 12 languages, incorporating intra-instance multilingual instructions, employing rigorous evaluation criteria to capture both explicit and implicit constraints, and including complex multi-turn dialogue scenarios with both accumulating constraints and context switches. Furthermore, to ensure reliability in evaluation, we refined constraints using an LLM validator. Extensive experiments demonstrate that TRUEBench presents significantly greater challenges than existing benchmarks; for instance, a strong model like OpenAI o1 achieved only a 69.07% overall pass rate. TRUEBench offers a demanding and realistic assessment of LLMs in practical productivity settings, highlighting their capabilities and limitations.

  • 6 authors
·
Sep 24

CFBench: A Comprehensive Constraints-Following Benchmark for LLMs

The adeptness of Large Language Models (LLMs) in comprehending and following natural language instructions is critical for their deployment in sophisticated real-world applications. Existing evaluations mainly focus on fragmented constraints or narrow scenarios, but they overlook the comprehensiveness and authenticity of constraints from the user's perspective. To bridge this gap, we propose CFBench, a large-scale Comprehensive Constraints Following Benchmark for LLMs, featuring 1,000 curated samples that cover more than 200 real-life scenarios and over 50 NLP tasks. CFBench meticulously compiles constraints from real-world instructions and constructs an innovative systematic framework for constraint types, which includes 10 primary categories and over 25 subcategories, and ensures each constraint is seamlessly integrated within the instructions. To make certain that the evaluation of LLM outputs aligns with user perceptions, we propose an advanced methodology that integrates multi-dimensional assessment criteria with requirement prioritization, covering various perspectives of constraints, instructions, and requirement fulfillment. Evaluating current leading LLMs on CFBench reveals substantial room for improvement in constraints following, and we further investigate influencing factors and enhancement strategies. The data and code are publicly available at https://github.com/PKU-Baichuan-MLSystemLab/CFBench

  • 13 authors
·
Aug 2, 2024

Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning

High-speed online trajectory planning for UAVs poses a significant challenge due to the need for precise modeling of complex dynamics while also being constrained by computational limitations. This paper presents a multi-fidelity reinforcement learning method (MFRL) that aims to effectively create a realistic dynamics model and simultaneously train a planning policy that can be readily deployed in real-time applications. The proposed method involves the co-training of a planning policy and a reward estimator; the latter predicts the performance of the policy's output and is trained efficiently through multi-fidelity Bayesian optimization. This optimization approach models the correlation between different fidelity levels, thereby constructing a high-fidelity model based on a low-fidelity foundation, which enables the accurate development of the reward model with limited high-fidelity experiments. The framework is further extended to include real-world flight experiments in reinforcement learning training, allowing the reward model to precisely reflect real-world constraints and broadening the policy's applicability to real-world scenarios. We present rigorous evaluations by training and testing the planning policy in both simulated and real-world environments. The resulting trained policy not only generates faster and more reliable trajectories compared to the baseline snap minimization method, but it also achieves trajectory updates in 2 ms on average, while the baseline method takes several minutes.

  • 3 authors
·
Mar 12, 2024

SurgiSAM2: Fine-tuning a foundational model for surgical video anatomy segmentation and detection

Background: We evaluate SAM 2 for surgical scene understanding by examining its semantic segmentation capabilities for organs/tissues both in zero-shot scenarios and after fine-tuning. Methods: We utilized five public datasets to evaluate and fine-tune SAM 2 for segmenting anatomical tissues in surgical videos/images. Fine-tuning was applied to the image encoder and mask decoder. We limited training subsets from 50 to 400 samples per class to better model real-world constraints with data acquisition. The impact of dataset size on fine-tuning performance was evaluated with weighted mean Dice coefficient (WMDC), and the results were also compared against previously reported state-of-the-art (SOTA) results. Results: SurgiSAM 2, a fine-tuned SAM 2 model, demonstrated significant improvements in segmentation performance, achieving a 17.9% relative WMDC gain compared to the baseline SAM 2. Increasing prompt points from 1 to 10 and training data scale from 50/class to 400/class enhanced performance; the best WMDC of 0.92 on the validation subset was achieved with 10 prompt points and 400 samples per class. On the test subset, this model outperformed prior SOTA methods in 24/30 (80%) of the classes with a WMDC of 0.91 using 10-point prompts. Notably, SurgiSAM 2 generalized effectively to unseen organ classes, achieving SOTA on 7/9 (77.8%) of them. Conclusion: SAM 2 achieves remarkable zero-shot and fine-tuned performance for surgical scene segmentation, surpassing prior SOTA models across several organ classes of diverse datasets. This suggests immense potential for enabling automated/semi-automated annotation pipelines, thereby decreasing the burden of annotations facilitating several surgical applications.

  • 8 authors
·
Mar 5

PropensityBench: Evaluating Latent Safety Risks in Large Language Models via an Agentic Approach

Recent advances in Large Language Models (LLMs) have sparked concerns over their potential to acquire and misuse dangerous or high-risk capabilities, posing frontier risks. Current safety evaluations primarily test for what a model can do - its capabilities - without assessing what it would do if endowed with high-risk capabilities. This leaves a critical blind spot: models may strategically conceal capabilities or rapidly acquire them, while harboring latent inclinations toward misuse. We argue that propensity - the likelihood of a model to pursue harmful actions if empowered - is a critical, yet underexplored, axis of safety evaluation. We present PropensityBench, a novel benchmark framework that assesses the proclivity of models to engage in risky behaviors when equipped with simulated dangerous capabilities using proxy tools. Our framework includes 5,874 scenarios with 6,648 tools spanning four high-risk domains: cybersecurity, self-proliferation, biosecurity, and chemical security. We simulate access to powerful capabilities via a controlled agentic environment and evaluate the models' choices under varying operational pressures that reflect real-world constraints or incentives models may encounter, such as resource scarcity or gaining more autonomy. Across open-source and proprietary frontier models, we uncover 9 alarming signs of propensity: models frequently choose high-risk tools when under pressure, despite lacking the capability to execute such actions unaided. These findings call for a shift from static capability audits toward dynamic propensity assessments as a prerequisite for deploying frontier AI systems safely. Our code is available at https://github.com/scaleapi/propensity-evaluation.

  • 7 authors
·
Nov 24

Multi-modal Co-learning for Earth Observation: Enhancing single-modality models via modality collaboration

Multi-modal co-learning is emerging as an effective paradigm in machine learning, enabling models to collaboratively learn from different modalities to enhance single-modality predictions. Earth Observation (EO) represents a quintessential domain for multi-modal data analysis, wherein diverse remote sensors collect data to sense our planet. This unprecedented volume of data introduces novel challenges. Specifically, the access to the same sensor modalities at both training and inference stages becomes increasingly complex based on real-world constraints affecting remote sensing platforms. In this context, multi-modal co-learning presents a promising strategy to leverage the vast amount of sensor-derived data available at the training stage to improve single-modality models for inference-time deployment. Most current research efforts focus on designing customized solutions for either particular downstream tasks or specific modalities available at the inference stage. To address this, we propose a novel multi-modal co-learning framework capable of generalizing across various tasks without targeting a specific modality for inference. Our approach combines contrastive and modality discriminative learning together to guide single-modality models to structure the internal model manifold into modality-shared and modality-specific information. We evaluate our framework on four EO benchmarks spanning classification and regression tasks across different sensor modalities, where only one of the modalities available during training is accessible at inference time. Our results demonstrate consistent predictive improvements over state-of-the-art approaches from the recent machine learning and computer vision literature, as well as EO-specific methods. The obtained findings validate our framework in the single-modality inference scenarios across a diverse range of EO applications.

  • 5 authors
·
Oct 22 1

Diverse And Private Synthetic Datasets Generation for RAG evaluation: A multi-agent framework

Retrieval-augmented generation (RAG) systems improve large language model outputs by incorporating external knowledge, enabling more informed and context-aware responses. However, the effectiveness and trustworthiness of these systems critically depends on how they are evaluated, particularly on whether the evaluation process captures real-world constraints like protecting sensitive information. While current evaluation efforts for RAG systems have primarily focused on the development of performance metrics, far less attention has been given to the design and quality of the underlying evaluation datasets, despite their pivotal role in enabling meaningful, reliable assessments. In this work, we introduce a novel multi-agent framework for generating synthetic QA datasets for RAG evaluation that prioritize semantic diversity and privacy preservation. Our approach involves: (1) a Diversity agent leveraging clustering techniques to maximize topical coverage and semantic variability, (2) a Privacy Agent that detects and mask sensitive information across multiple domains and (3) a QA curation agent that synthesizes private and diverse QA pairs suitable as ground truth for RAG evaluation. Extensive experiments demonstrate that our evaluation sets outperform baseline methods in diversity and achieve robust privacy masking on domain-specific datasets. This work offers a practical and ethically aligned pathway toward safer, more comprehensive RAG system evaluation, laying the foundation for future enhancements aligned with evolving AI regulations and compliance standards.

  • 3 authors
·
Aug 26

NutriGen: Personalized Meal Plan Generator Leveraging Large Language Models to Enhance Dietary and Nutritional Adherence

Maintaining a balanced diet is essential for overall health, yet many individuals struggle with meal planning due to nutritional complexity, time constraints, and lack of dietary knowledge. Personalized food recommendations can help address these challenges by tailoring meal plans to individual preferences, habits, and dietary restrictions. However, existing dietary recommendation systems often lack adaptability, fail to consider real-world constraints such as food ingredient availability, and require extensive user input, making them impractical for sustainable and scalable daily use. To address these limitations, we introduce NutriGen, a framework based on large language models (LLM) designed to generate personalized meal plans that align with user-defined dietary preferences and constraints. By building a personalized nutrition database and leveraging prompt engineering, our approach enables LLMs to incorporate reliable nutritional references like the USDA nutrition database while maintaining flexibility and ease-of-use. We demonstrate that LLMs have strong potential in generating accurate and user-friendly food recommendations, addressing key limitations in existing dietary recommendation systems by providing structured, practical, and scalable meal plans. Our evaluation shows that Llama 3.1 8B and GPT-3.5 Turbo achieve the lowest percentage errors of 1.55\% and 3.68\%, respectively, producing meal plans that closely align with user-defined caloric targets while minimizing deviation and improving precision. Additionally, we compared the performance of DeepSeek V3 against several established models to evaluate its potential in personalized nutrition planning.

  • 4 authors
·
Feb 27

PhyX: Does Your Model Have the "Wits" for Physical Reasoning?

Existing benchmarks fail to capture a crucial aspect of intelligence: physical reasoning, the integrated ability to combine domain knowledge, symbolic reasoning, and understanding of real-world constraints. To address this gap, we introduce PhyX: the first large-scale benchmark designed to assess models capacity for physics-grounded reasoning in visual scenarios. PhyX includes 3K meticulously curated multimodal questions spanning 6 reasoning types across 25 sub-domains and 6 core physics domains: thermodynamics, electromagnetism, mechanics, modern physics, optics, and wave\&acoustics. In our comprehensive evaluation, even state-of-the-art models struggle significantly with physical reasoning. GPT-4o, Claude3.7-Sonnet, and GPT-o4-mini achieve only 32.5\%, 42.2\%, and 45.8\% accuracy respectively-performance gaps exceeding 29\% compared to human experts. Our analysis exposes critical limitations in current models: over-reliance on memorized disciplinary knowledge, excessive dependence on mathematical formulations, and surface-level visual pattern matching rather than genuine physical understanding. We provide in-depth analysis through fine-grained statistics, detailed case studies, and multiple evaluation paradigms to thoroughly examine physical reasoning capabilities. To ensure reproducibility, we implement a compatible evaluation protocol based on widely-used toolkits such as VLMEvalKit, enabling one-click evaluation.

  • 19 authors
·
May 21 4

Improving Performance, Robustness, and Fairness of Radiographic AI Models with Finely-Controllable Synthetic Data

Achieving robust performance and fairness across diverse patient populations remains a challenge in developing clinically deployable deep learning models for diagnostic imaging. Synthetic data generation has emerged as a promising strategy to address limitations in dataset scale and diversity. We introduce RoentGen-v2, a text-to-image diffusion model for chest radiographs that enables fine-grained control over both radiographic findings and patient demographic attributes, including sex, age, and race/ethnicity. RoentGen-v2 is the first model to generate clinically plausible images with demographic conditioning, facilitating the creation of a large, demographically balanced synthetic dataset comprising over 565,000 images. We use this large synthetic dataset to evaluate optimal training pipelines for downstream disease classification models. In contrast to prior work that combines real and synthetic data naively, we propose an improved training strategy that leverages synthetic data for supervised pretraining, followed by fine-tuning on real data. Through extensive evaluation on over 137,000 chest radiographs from five institutions, we demonstrate that synthetic pretraining consistently improves model performance, generalization to out-of-distribution settings, and fairness across demographic subgroups. Across datasets, synthetic pretraining led to a 6.5% accuracy increase in the performance of downstream classification models, compared to a modest 2.7% increase when naively combining real and synthetic data. We observe this performance improvement simultaneously with the reduction of the underdiagnosis fairness gap by 19.3%. These results highlight the potential of synthetic imaging to advance equitable and generalizable medical deep learning under real-world data constraints. We open source our code, trained models, and synthetic dataset at https://github.com/StanfordMIMI/RoentGen-v2 .

  • 11 authors
·
Aug 22

Beyond Chemical QA: Evaluating LLM's Chemical Reasoning with Modular Chemical Operations

While large language models (LLMs) with Chain-of-Thought (CoT) reasoning excel in mathematics and coding, their potential for systematic reasoning in chemistry, a domain demanding rigorous structural analysis for real-world tasks like drug design and reaction engineering, remains untapped. Current benchmarks focus on simple knowledge retrieval, neglecting step-by-step reasoning required for complex tasks such as molecular optimization and reaction prediction. To address this, we introduce ChemCoTBench, a reasoning framework that bridges molecular structure understanding with arithmetic-inspired operations, including addition, deletion, and substitution, to formalize chemical problem-solving into transparent, step-by-step workflows. By treating molecular transformations as modular "chemical operations", the framework enables slow-thinking reasoning, mirroring the logic of mathematical proofs while grounding solutions in real-world chemical constraints. We evaluate models on two high-impact tasks: Molecular Property Optimization and Chemical Reaction Prediction. These tasks mirror real-world challenges while providing structured evaluability. By providing annotated datasets, a reasoning taxonomy, and baseline evaluations, ChemCoTBench bridges the gap between abstract reasoning methods and practical chemical discovery, establishing a foundation for advancing LLMs as tools for AI-driven scientific innovation.

  • 9 authors
·
May 27

Guardians of Generation: Dynamic Inference-Time Copyright Shielding with Adaptive Guidance for AI Image Generation

Modern text-to-image generative models can inadvertently reproduce copyrighted content memorized in their training data, raising serious concerns about potential copyright infringement. We introduce Guardians of Generation, a model agnostic inference time framework for dynamic copyright shielding in AI image generation. Our approach requires no retraining or modification of the generative model weights, instead integrating seamlessly with existing diffusion pipelines. It augments the generation process with an adaptive guidance mechanism comprising three components: a detection module, a prompt rewriting module, and a guidance adjustment module. The detection module monitors user prompts and intermediate generation steps to identify features indicative of copyrighted content before they manifest in the final output. If such content is detected, the prompt rewriting mechanism dynamically transforms the user's prompt by sanitizing or replacing references that could trigger copyrighted material while preserving the prompt's intended semantics. The adaptive guidance module adaptively steers the diffusion process away from flagged content by modulating the model's sampling trajectory. Together, these components form a robust shield that enables a tunable balance between preserving creative fidelity and ensuring copyright compliance. We validate our method on a variety of generative models such as Stable Diffusion, SDXL, and Flux, demonstrating substantial reductions in copyrighted content generation with negligible impact on output fidelity or alignment with user intent. This work provides a practical, plug-and-play safeguard for generative image models, enabling more responsible deployment under real-world copyright constraints. Source code is available at: https://respailab.github.io/gog

  • 4 authors
·
Mar 19

BikeBench: A Bicycle Design Benchmark for Generative Models with Objectives and Constraints

We introduce BikeBench, an engineering design benchmark for evaluating generative models on problems with multiple real-world objectives and constraints. As generative AI's reach continues to grow, evaluating its capability to understand physical laws, human guidelines, and hard constraints grows increasingly important. Engineering product design lies at the intersection of these difficult tasks, providing new challenges for AI capabilities. BikeBench evaluates AI models' capabilities to generate bicycle designs that not only resemble the dataset, but meet specific performance objectives and constraints. To do so, BikeBench quantifies a variety of human-centered and multiphysics performance characteristics, such as aerodynamics, ergonomics, structural mechanics, human-rated usability, and similarity to subjective text or image prompts. Supporting the benchmark are several datasets of simulation results, a dataset of 10,000 human-rated bicycle assessments, and a synthetically generated dataset of 1.6M designs, each with a parametric, CAD/XML, SVG, and PNG representation. BikeBench is uniquely configured to evaluate tabular generative models, large language models (LLMs), design optimization, and hybrid algorithms side-by-side. Our experiments indicate that LLMs and tabular generative models fall short of hybrid GenAI+optimization algorithms in design quality, constraint satisfaction, and similarity scores, suggesting significant room for improvement. We hope that BikeBench, a first-of-its-kind benchmark, will help catalyze progress in generative AI for constrained multi-objective engineering design problems. We provide code, data, an interactive leaderboard, and other resources at https://github.com/Lyleregenwetter/BikeBench.

  • 5 authors
·
May 25

Can-SAVE: Deploying Low-Cost and Population-Scale Cancer Screening via Survival Analysis Variables and EHR

Conventional medical cancer screening methods are costly, labor-intensive, and extremely difficult to scale. Although AI can improve cancer detection, most systems rely on complex or specialized medical data, making them impractical for large-scale screening. We introduce Can-SAVE, a lightweight AI system that ranks population-wide cancer risks solely based on medical history events. By integrating survival model outputs into a gradient-boosting framework, our approach detects subtle, long-term patient risk patterns - often well before clinical symptoms manifest. Can-SAVE was rigorously evaluated on a real-world dataset of 2.5 million adults spanning five Russian regions, marking the study as one of the largest and most comprehensive deployments of AI-driven cancer risk assessment. In a retrospective oncologist-supervised study over 1.9M patients, Can-SAVE achieves a 4-10x higher detection rate at identical screening volumes and an Average Precision (AP) of 0.228 vs. 0.193 for the best baseline (LoRA-tuned Qwen3-Embeddings via DeepSeek-R1 summarization). In a year-long prospective pilot (426K patients), our method almost doubled the cancer detection rate (+91%) and increased population coverage by 36% over the national screening protocol. The system demonstrates practical scalability: a city-wide population of 1 million patients can be processed in under three hours using standard hardware, enabling seamless clinical integration. This work proves that Can-SAVE achieves nationally significant cancer detection improvements while adhering to real-world public healthcare constraints, offering immediate clinical utility and a replicable framework for population-wide screening. Code for training and feature engineering is available at https://github.com/sb-ai-lab/Can-SAVE.

sb-ai-lab
·
Sep 26, 2023

Retrieval Augmented Structured Generation: Business Document Information Extraction As Tool Use

Business Document Information Extraction (BDIE) is the problem of transforming a blob of unstructured information (raw text, scanned documents, etc.) into a structured format that downstream systems can parse and use. It has two main tasks: Key-Information Extraction (KIE) and Line Items Recognition (LIR). In this paper, we argue that BDIE is best modeled as a Tool Use problem, where the tools are these downstream systems. We then present Retrieval Augmented Structured Generation (RASG), a novel general framework for BDIE that achieves state of the art (SOTA) results on both KIE and LIR tasks on BDIE benchmarks. The contributions of this paper are threefold: (1) We show, with ablation benchmarks, that Large Language Models (LLMs) with RASG are already competitive with or surpasses current SOTA Large Multimodal Models (LMMs) without RASG on BDIE benchmarks. (2) We propose a new metric class for Line Items Recognition, General Line Items Recognition Metric (GLIRM), that is more aligned with practical BDIE use cases compared to existing metrics, such as ANLS*, DocILE, and GriTS. (3) We provide a heuristic algorithm for backcalculating bounding boxes of predicted line items and tables without the need for vision encoders. Finally, we claim that, while LMMs might sometimes offer marginal performance benefits, LLMs + RASG is oftentimes superior given real-world applications and constraints of BDIE.

  • 4 authors
·
May 30, 2024 1

3CAD: A Large-Scale Real-World 3C Product Dataset for Unsupervised Anomaly

Industrial anomaly detection achieves progress thanks to datasets such as MVTec-AD and VisA. However, they suf- fer from limitations in terms of the number of defect sam- ples, types of defects, and availability of real-world scenes. These constraints inhibit researchers from further exploring the performance of industrial detection with higher accuracy. To this end, we propose a new large-scale anomaly detection dataset called 3CAD, which is derived from real 3C produc- tion lines. Specifically, the proposed 3CAD includes eight different types of manufactured parts, totaling 27,039 high- resolution images labeled with pixel-level anomalies. The key features of 3CAD are that it covers anomalous regions of different sizes, multiple anomaly types, and the possibility of multiple anomalous regions and multiple anomaly types per anomaly image. This is the largest and first anomaly de- tection dataset dedicated to 3C product quality control for community exploration and development. Meanwhile, we in- troduce a simple yet effective framework for unsupervised anomaly detection: a Coarse-to-Fine detection paradigm with Recovery Guidance (CFRG). To detect small defect anoma- lies, the proposed CFRG utilizes a coarse-to-fine detection paradigm. Specifically, we utilize a heterogeneous distilla- tion model for coarse localization and then fine localiza- tion through a segmentation model. In addition, to better capture normal patterns, we introduce recovery features as guidance. Finally, we report the results of our CFRG frame- work and popular anomaly detection methods on the 3CAD dataset, demonstrating strong competitiveness and providing a highly challenging benchmark to promote the development of the anomaly detection field. Data and code are available: https://github.com/EnquanYang2022/3CAD.

  • 7 authors
·
Feb 8 2

Real-world Anomaly Detection in Surveillance Videos

Surveillance videos are able to capture a variety of realistic anomalies. In this paper, we propose to learn anomalies by exploiting both normal and anomalous videos. To avoid annotating the anomalous segments or clips in training videos, which is very time consuming, we propose to learn anomaly through the deep multiple instance ranking framework by leveraging weakly labeled training videos, i.e. the training labels (anomalous or normal) are at video-level instead of clip-level. In our approach, we consider normal and anomalous videos as bags and video segments as instances in multiple instance learning (MIL), and automatically learn a deep anomaly ranking model that predicts high anomaly scores for anomalous video segments. Furthermore, we introduce sparsity and temporal smoothness constraints in the ranking loss function to better localize anomaly during training. We also introduce a new large-scale first of its kind dataset of 128 hours of videos. It consists of 1900 long and untrimmed real-world surveillance videos, with 13 realistic anomalies such as fighting, road accident, burglary, robbery, etc. as well as normal activities. This dataset can be used for two tasks. First, general anomaly detection considering all anomalies in one group and all normal activities in another group. Second, for recognizing each of 13 anomalous activities. Our experimental results show that our MIL method for anomaly detection achieves significant improvement on anomaly detection performance as compared to the state-of-the-art approaches. We provide the results of several recent deep learning baselines on anomalous activity recognition. The low recognition performance of these baselines reveals that our dataset is very challenging and opens more opportunities for future work. The dataset is available at: https://webpages.uncc.edu/cchen62/dataset.html

  • 3 authors
·
Jan 12, 2018

AdInject: Real-World Black-Box Attacks on Web Agents via Advertising Delivery

Vision-Language Model (VLM) based Web Agents represent a significant step towards automating complex tasks by simulating human-like interaction with websites. However, their deployment in uncontrolled web environments introduces significant security vulnerabilities. Existing research on adversarial environmental injection attacks often relies on unrealistic assumptions, such as direct HTML manipulation, knowledge of user intent, or access to agent model parameters, limiting their practical applicability. In this paper, we propose AdInject, a novel and real-world black-box attack method that leverages the internet advertising delivery to inject malicious content into the Web Agent's environment. AdInject operates under a significantly more realistic threat model than prior work, assuming a black-box agent, static malicious content constraints, and no specific knowledge of user intent. AdInject includes strategies for designing malicious ad content aimed at misleading agents into clicking, and a VLM-based ad content optimization technique that infers potential user intents from the target website's context and integrates these intents into the ad content to make it appear more relevant or critical to the agent's task, thus enhancing attack effectiveness. Experimental evaluations demonstrate the effectiveness of AdInject, attack success rates exceeding 60% in most scenarios and approaching 100% in certain cases. This strongly demonstrates that prevalent advertising delivery constitutes a potent and real-world vector for environment injection attacks against Web Agents. This work highlights a critical vulnerability in Web Agent security arising from real-world environment manipulation channels, underscoring the urgent need for developing robust defense mechanisms against such threats. Our code is available at https://github.com/NicerWang/AdInject.

  • 8 authors
·
May 27 2

Learning Getting-Up Policies for Real-World Humanoid Robots

Automatic fall recovery is a crucial prerequisite before humanoid robots can be reliably deployed. Hand-designing controllers for getting up is difficult because of the varied configurations a humanoid can end up in after a fall and the challenging terrains humanoid robots are expected to operate on. This paper develops a learning framework to produce controllers that enable humanoid robots to get up from varying configurations on varying terrains. Unlike previous successful applications of humanoid locomotion learning, the getting-up task involves complex contact patterns, which necessitates accurately modeling the collision geometry and sparser rewards. We address these challenges through a two-phase approach that follows a curriculum. The first stage focuses on discovering a good getting-up trajectory under minimal constraints on smoothness or speed / torque limits. The second stage then refines the discovered motions into deployable (i.e. smooth and slow) motions that are robust to variations in initial configuration and terrains. We find these innovations enable a real-world G1 humanoid robot to get up from two main situations that we considered: a) lying face up and b) lying face down, both tested on flat, deformable, slippery surfaces and slopes (e.g., sloppy grass and snowfield). To the best of our knowledge, this is the first successful demonstration of learned getting-up policies for human-sized humanoid robots in the real world. Project page: https://humanoid-getup.github.io/

  • 4 authors
·
Feb 17 3

DriveDreamer: Towards Real-world-driven World Models for Autonomous Driving

World models, especially in autonomous driving, are trending and drawing extensive attention due to their capacity for comprehending driving environments. The established world model holds immense potential for the generation of high-quality driving videos, and driving policies for safe maneuvering. However, a critical limitation in relevant research lies in its predominant focus on gaming environments or simulated settings, thereby lacking the representation of real-world driving scenarios. Therefore, we introduce DriveDreamer, a pioneering world model entirely derived from real-world driving scenarios. Regarding that modeling the world in intricate driving scenes entails an overwhelming search space, we propose harnessing the powerful diffusion model to construct a comprehensive representation of the complex environment. Furthermore, we introduce a two-stage training pipeline. In the initial phase, DriveDreamer acquires a deep understanding of structured traffic constraints, while the subsequent stage equips it with the ability to anticipate future states. The proposed DriveDreamer is the first world model established from real-world driving scenarios. We instantiate DriveDreamer on the challenging nuScenes benchmark, and extensive experiments verify that DriveDreamer empowers precise, controllable video generation that faithfully captures the structural constraints of real-world traffic scenarios. Additionally, DriveDreamer enables the generation of realistic and reasonable driving policies, opening avenues for interaction and practical applications.

  • 5 authors
·
Sep 18, 2023

NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios

Offline reinforcement learning (RL) aims to learn from historical data without requiring (costly) access to the environment. To facilitate offline RL research, we previously introduced NeoRL, which highlighted that datasets from real-world tasks are often conservative and limited. With years of experience applying offline RL to various domains, we have identified additional real-world challenges. These include extremely conservative data distributions produced by deployed control systems, delayed action effects caused by high-latency transitions, external factors arising from the uncontrollable variance of transitions, and global safety constraints that are difficult to evaluate during the decision-making process. These challenges are underrepresented in previous benchmarks but frequently occur in real-world tasks. To address this, we constructed the extended Near Real-World Offline RL Benchmark (NeoRL-2), which consists of 7 datasets from 7 simulated tasks along with their corresponding evaluation simulators. Benchmarking results from state-of-the-art offline RL approaches demonstrate that current methods often struggle to outperform the data-collection behavior policy, highlighting the need for more effective methods. We hope NeoRL-2 will accelerate the development of reinforcement learning algorithms for real-world applications. The benchmark project page is available at https://github.com/polixir/NeoRL2.

  • 6 authors
·
Mar 24

LocationReasoner: Evaluating LLMs on Real-World Site Selection Reasoning

Recent advances in large language models (LLMs), particularly those enhanced through reinforced post-training, have demonstrated impressive reasoning capabilities, as exemplified by models such as OpenAI o1 and DeepSeek-R1. However, these capabilities are predominantly benchmarked on domains like mathematical problem solving and code generation -- leaving open the question of whether such reasoning skills generalize to complex, real-world scenarios. In this paper, we introduce LocationReasoner, a benchmark designed to evaluate LLMs' reasoning abilities in the context of real-world site selection, where models must identify feasible locations by reasoning over diverse and complicated spatial, environmental, and logistical constraints. The benchmark comprises over 300 carefully crafted queries of varying difficulty levels, supported by a sandbox environment with in-house tools for constraint-based location search. Extensive evaluations reveal that state-of-the-art reasoning models offer limited improvement over their non-reasoning predecessors in real-world contexts, with even the latest OpenAI o4 model failing on 30% of site selection tasks. Moreover, agentic strategies such as ReAct and Reflexion often suffer from over-reasoning, leading to worse outcomes than direct code-generation prompting. With key limitations of LLMs in holistic and non-linear reasoning highlighted, we release LocationReasoner to foster the development of LLMs and agents capable of robust, grounded reasoning in real-world decision-making tasks. Codes and data for our benchmark are available at https://github.com/miho-koda/LocationReasoner.

  • 7 authors
·
Jun 16

Large Language Models Can Solve Real-World Planning Rigorously with Formal Verification Tools

Large Language Models (LLMs) struggle to directly generate correct plans for complex multi-constraint planning problems, even with self-verification and self-critique. For example, a U.S. domestic travel planning benchmark TravelPlanner was proposed in Xie et al. (2024), where the best LLM OpenAI o1-preview can only find viable travel plans with a 10% success rate given all needed information. In this work, we tackle this by proposing an LLM-based planning framework that formalizes and solves complex multi-constraint planning problems as constrained satisfiability problems, which are further consumed by sound and complete satisfiability solvers. We start with TravelPlanner as the primary use case and show that our framework achieves a success rate of 93.9% and is effective with diverse paraphrased prompts. More importantly, our framework has strong zero-shot generalizability, successfully handling unseen constraints in our newly created unseen international travel dataset and generalizing well to new fundamentally different domains. Moreover, when user input queries are infeasible, our framework can identify the unsatisfiable core, provide failure reasons, and offers personalized modification suggestions. We show that our framework can modify and solve for an average of 81.6% and 91.7% unsatisfiable queries from two datasets and prove with ablations that all key components of our framework are effective and necessary. Project page: https://sites.google.com/view/llm-rwplanning.

  • 4 authors
·
Apr 18, 2024

RealisVSR: Detail-enhanced Diffusion for Real-World 4K Video Super-Resolution

Video Super-Resolution (VSR) has achieved significant progress through diffusion models, effectively addressing the over-smoothing issues inherent in GAN-based methods. Despite recent advances, three critical challenges persist in VSR community: 1) Inconsistent modeling of temporal dynamics in foundational models; 2) limited high-frequency detail recovery under complex real-world degradations; and 3) insufficient evaluation of detail enhancement and 4K super-resolution, as current methods primarily rely on 720P datasets with inadequate details. To address these challenges, we propose RealisVSR, a high-frequency detail-enhanced video diffusion model with three core innovations: 1) Consistency Preserved ControlNet (CPC) architecture integrated with the Wan2.1 video diffusion to model the smooth and complex motions and suppress artifacts; 2) High-Frequency Rectified Diffusion Loss (HR-Loss) combining wavelet decomposition and HOG feature constraints for texture restoration; 3) RealisVideo-4K, the first public 4K VSR benchmark containing 1,000 high-definition video-text pairs. Leveraging the advanced spatio-temporal guidance of Wan2.1, our method requires only 5-25% of the training data volume compared to existing approaches. Extensive experiments on VSR benchmarks (REDS, SPMCS, UDM10, YouTube-HQ, VideoLQ, RealisVideo-720P) demonstrate our superiority, particularly in ultra-high-resolution scenarios.

  • 7 authors
·
Jul 25

Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning

Spatial reasoning plays a vital role in both human cognition and machine intelligence, prompting new research into language models' (LMs) capabilities in this regard. However, existing benchmarks reveal shortcomings in evaluating qualitative spatial reasoning (QSR). These benchmarks typically present oversimplified scenarios or unclear natural language descriptions, hindering effective evaluation. We present a novel benchmark for assessing QSR in LMs, which is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships. This approach provides a more detailed and context-rich narrative for spatial reasoning evaluation, diverging from traditional, toy-task-oriented scenarios. Our benchmark encompasses a broad spectrum of qualitative spatial relationships, including topological, directional, and distance relations. These are presented with different viewing points, varied granularities, and density of relation constraints to mimic real-world complexities. A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions, aligning with real-world scenarios where spatial relationships are often open to interpretation. Our benchmark evaluation of advanced LMs reveals their strengths and limitations in spatial reasoning. They face difficulties with multi-hop spatial reasoning and interpreting a mix of different view descriptions, pointing to areas for future improvement.

  • 3 authors
·
May 23, 2024

Pipette: Automatic Fine-grained Large Language Model Training Configurator for Real-World Clusters

Training large language models (LLMs) is known to be challenging because of the huge computational and memory capacity requirements. To address these issues, it is common to use a cluster of GPUs with 3D parallelism, which splits a model along the data batch, pipeline stage, and intra-layer tensor dimensions. However, the use of 3D parallelism produces the additional challenge of finding the optimal number of ways on each dimension and mapping the split models onto the GPUs. Several previous studies have attempted to automatically find the optimal configuration, but many of these lacked several important aspects. For instance, the heterogeneous nature of the interconnect speeds is often ignored. While the peak bandwidths for the interconnects are usually made equal, the actual attained bandwidth varies per link in real-world clusters. Combined with the critical path modeling that does not properly consider the communication, they easily fall into sub-optimal configurations. In addition, they often fail to consider the memory requirement per GPU, often recommending solutions that could not be executed. To address these challenges, we propose Pipette, which is an automatic fine-grained LLM training configurator for real-world clusters. By devising better performance models along with the memory estimator and fine-grained individual GPU assignment, Pipette achieves faster configurations that satisfy the memory constraints. We evaluated Pipette on large clusters to show that it provides a significant speedup over the prior art. The implementation of Pipette is available at https://github.com/yimjinkyu1/date2024_pipette.

  • 7 authors
·
May 28, 2024

Cloud-Device Collaborative Adaptation to Continual Changing Environments in the Real-world

When facing changing environments in the real world, the lightweight model on client devices suffers from severe performance drops under distribution shifts. The main limitations of the existing device model lie in (1) unable to update due to the computation limit of the device, (2) the limited generalization ability of the lightweight model. Meanwhile, recent large models have shown strong generalization capability on the cloud while they can not be deployed on client devices due to poor computation constraints. To enable the device model to deal with changing environments, we propose a new learning paradigm of Cloud-Device Collaborative Continual Adaptation, which encourages collaboration between cloud and device and improves the generalization of the device model. Based on this paradigm, we further propose an Uncertainty-based Visual Prompt Adapted (U-VPA) teacher-student model to transfer the generalization capability of the large model on the cloud to the device model. Specifically, we first design the Uncertainty Guided Sampling (UGS) to screen out challenging data continuously and transmit the most out-of-distribution samples from the device to the cloud. Then we propose a Visual Prompt Learning Strategy with Uncertainty guided updating (VPLU) to specifically deal with the selected samples with more distribution shifts. We transmit the visual prompts to the device and concatenate them with the incoming data to pull the device testing distribution closer to the cloud training distribution. We conduct extensive experiments on two object detection datasets with continually changing environments. Our proposed U-VPA teacher-student framework outperforms previous state-of-the-art test time adaptation and device-cloud collaboration methods. The code and datasets will be released.

  • 7 authors
·
Dec 2, 2022

GeoManip: Geometric Constraints as General Interfaces for Robot Manipulation

We present GeoManip, a framework to enable generalist robots to leverage essential conditions derived from object and part relationships, as geometric constraints, for robot manipulation. For example, cutting the carrot requires adhering to a geometric constraint: the blade of the knife should be perpendicular to the carrot's direction. By interpreting these constraints through symbolic language representations and translating them into low-level actions, GeoManip bridges the gap between natural language and robotic execution, enabling greater generalizability across diverse even unseen tasks, objects, and scenarios. Unlike vision-language-action models that require extensive training, operates training-free by utilizing large foundational models: a constraint generation module that predicts stage-specific geometric constraints and a geometry parser that identifies object parts involved in these constraints. A solver then optimizes trajectories to satisfy inferred constraints from task descriptions and the scene. Furthermore, GeoManip learns in-context and provides five appealing human-robot interaction features: on-the-fly policy adaptation, learning from human demonstrations, learning from failure cases, long-horizon action planning, and efficient data collection for imitation learning. Extensive evaluations on both simulations and real-world scenarios demonstrate GeoManip's state-of-the-art performance, with superior out-of-distribution generalization while avoiding costly model training.

  • 7 authors
·
Jan 16

LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints

Instruction following is a key capability for LLMs. However, recent studies have shown that LLMs often struggle with instructions containing multiple constraints (e.g. a request to create a social media post "in a funny tone" with "no hashtag"). Despite this, most evaluations focus solely on synthetic data. To address this, we introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions by leveraging queries real users asked AI assistants. We also investigate model-based evaluation as a cost-effective alternative to human annotation for this task. Our findings reveal that even the proprietary GPT-4 model fails to meet at least one constraint on over 21% of instructions, highlighting the limitations of state-of-the-art models. To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline, which enhances LLMs' ability to follow constraints. DeCRIM works by decomposing the original instruction into a list of constraints and using a Critic model to decide when and where the LLM's response needs refinement. Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback. Moreover, we demonstrate that with strong feedback, open-source LLMs with DeCRIM can outperform GPT-4 on both benchmarks.

  • 10 authors
·
Oct 8, 2024 2

Camera Calibration through Geometric Constraints from Rotation and Projection Matrices

The process of camera calibration involves estimating the intrinsic and extrinsic parameters, which are essential for accurately performing tasks such as 3D reconstruction, object tracking and augmented reality. In this work, we propose a novel constraints-based loss for measuring the intrinsic (focal length: (f_x, f_y) and principal point: (p_x, p_y)) and extrinsic (baseline: (b), disparity: (d), translation: (t_x, t_y, t_z), and rotation specifically pitch: (theta_p)) camera parameters. Our novel constraints are based on geometric properties inherent in the camera model, including the anatomy of the projection matrix (vanishing points, image of world origin, axis planes) and the orthonormality of the rotation matrix. Thus we proposed a novel Unsupervised Geometric Constraint Loss (UGCL) via a multitask learning framework. Our methodology is a hybrid approach that employs the learning power of a neural network to estimate the desired parameters along with the underlying mathematical properties inherent in the camera projection matrix. This distinctive approach not only enhances the interpretability of the model but also facilitates a more informed learning process. Additionally, we introduce a new CVGL Camera Calibration dataset, featuring over 900 configurations of camera parameters, incorporating 63,600 image pairs that closely mirror real-world conditions. By training and testing on both synthetic and real-world datasets, our proposed approach demonstrates improvements across all parameters when compared to the state-of-the-art (SOTA) benchmarks. The code and the updated dataset can be found here: https://github.com/CVLABLUMS/CVGL-Camera-Calibration

  • 3 authors
·
Feb 13, 2024

Shielded Controller Units for RL with Operational Constraints Applied to Remote Microgrids

Reinforcement learning (RL) is a powerful framework for optimizing decision-making in complex systems under uncertainty, an essential challenge in real-world settings, particularly in the context of the energy transition. A representative example is remote microgrids that supply power to communities disconnected from the main grid. Enabling the energy transition in such systems requires coordinated control of renewable sources like wind turbines, alongside fuel generators and batteries, to meet demand while minimizing fuel consumption and battery degradation under exogenous and intermittent load and wind conditions. These systems must often conform to extensive regulations and complex operational constraints. To ensure that RL agents respect these constraints, it is crucial to provide interpretable guarantees. In this paper, we introduce Shielded Controller Units (SCUs), a systematic and interpretable approach that leverages prior knowledge of system dynamics to ensure constraint satisfaction. Our shield synthesis methodology, designed for real-world deployment, decomposes the environment into a hierarchical structure where each SCU explicitly manages a subset of constraints. We demonstrate the effectiveness of SCUs on a remote microgrid optimization task with strict operational requirements. The RL agent, equipped with SCUs, achieves a 24% reduction in fuel consumption without increasing battery degradation, outperforming other baselines while satisfying all constraints. We hope SCUs contribute to the safe application of RL to the many decision-making challenges linked to the energy transition.

  • 5 authors
·
Nov 30

World-Env: Leveraging World Model as a Virtual Environment for VLA Post-Training

Vision-Language-Action (VLA) models trained via imitation learning suffer from significant performance degradation in data-scarce scenarios due to their reliance on large-scale demonstration datasets. Although reinforcement learning (RL)-based post-training has proven effective in addressing data scarcity, its application to VLA models is hindered by the non-resettable nature of real-world environments. This limitation is particularly critical in high-risk domains such as industrial automation, where interactions often induce state changes that are costly or infeasible to revert. Furthermore, existing VLA approaches lack a reliable mechanism for detecting task completion, leading to redundant actions that reduce overall task success rates. To address these challenges, we propose World-Env, an RL-based post-training framework that replaces physical interaction with a low-cost, world model-based virtual simulator. World-Env consists of two key components: (1) a video-based world simulator that generates temporally consistent future visual observations, and (2) a vision-language model (VLM)-guided instant reflector that provides continuous reward signals and predicts action termination. This simulated environment enables VLA models to safely explore and generalize beyond their initial imitation learning distribution. Our method achieves notable performance gains with as few as five expert demonstrations per task. Experiments on complex robotic manipulation tasks demonstrate that World-Env effectively overcomes the data inefficiency, safety constraints, and inefficient execution of conventional VLA models that rely on real-world interaction, offering a practical and scalable solution for post-training in resource-constrained settings.

  • 8 authors
·
Sep 29

Multi-channel Autobidding with Budget and ROI Constraints

In digital online advertising, advertisers procure ad impressions simultaneously on multiple platforms, or so-called channels, such as Google Ads, Meta Ads Manager, etc., each of which consists of numerous ad auctions. We study how an advertiser maximizes total conversion (e.g. ad clicks) while satisfying aggregate return-on-investment (ROI) and budget constraints across all channels. In practice, an advertiser does not have control over, and thus cannot globally optimize, which individual ad auctions she participates in for each channel, and instead authorizes a channel to procure impressions on her behalf: the advertiser can only utilize two levers on each channel, namely setting a per-channel budget and per-channel target ROI. In this work, we first analyze the effectiveness of each of these levers for solving the advertiser's global multi-channel problem. We show that when an advertiser only optimizes over per-channel ROIs, her total conversion can be arbitrarily worse than what she could have obtained in the global problem. Further, we show that the advertiser can achieve the global optimal conversion when she only optimizes over per-channel budgets. In light of this finding, under a bandit feedback setting that mimics real-world scenarios where advertisers have limited information on ad auctions in each channels and how channels procure ads, we present an efficient learning algorithm that produces per-channel budgets whose resulting conversion approximates that of the global optimal problem. Finally, we argue that all our results hold for both single-item and multi-item auctions from which channels procure impressions on advertisers' behalf.

  • 5 authors
·
Feb 2, 2023

Multidimensional Rubric-oriented Reward Model Learning via Geometric Projection Reference Constraints

The integration of large language models (LLMs) into medical practice holds transformative potential, yet their real-world clinical utility remains limited by critical alignment challenges: (1) a disconnect between static evaluation benchmarks and dynamic clinical cognitive needs, (2) difficulties in adapting to evolving, multi-source medical standards, and (3) the inability of conventional reward models to capture nuanced, multi-dimensional medical quality criteria. To address these gaps, we propose MR-RML (Multidimensional Rubric-oriented Reward Model Learning) via GPRC (Geometric Projection Reference Constraints), a novel alignment framework that integrates medical standards into a structured "Dimensions-Scenarios-Disciplines" matrix to guide data generation and model optimization. MR-RML introduces three core innovations: (1) a "Dimensions-Scenarios-Disciplines" medical standard system that embeds domain standards into the full training pipeline; (2) an independent multi-dimensional reward model that decomposes evaluation criteria, shifting from real-time rubric-based scoring to internalized reward modeling for improved consistency and cost-efficiency; (3) geometric projection reference constraints that transform medical cognitive logic into mathematical regularization, aligning scoring gradients with clinical reasoning and enabling synthetic data-driven training. Through extensive evaluations on the authoritative medical benchmark Healthbench, our method yields substantial performance gains over the base LLM Qwen-32B (45% on the full subset and 85% on Hard subset, respectively). It achieves a SOTA among open-source LLMs with scores of 62.7 (full subset) and 44.7 (hard subset), while also outperforming the majority of closed-source models.

  • 5 authors
·
Nov 20

A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Flight Computers

Spacecraft deployed in outer space are routinely subjected to various forms of damage due to exposure to hazardous environments. In addition, there are significant risks to the subsequent process of in-space repairs through human extravehicular activity or robotic manipulation, incurring substantial operational costs. Recent developments in image segmentation could enable the development of reliable and cost-effective autonomous inspection systems. While these models often require large amounts of training data to achieve satisfactory results, publicly available annotated spacecraft segmentation data are very scarce. Here, we present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models, superimposed on a mixture of real and synthetic backgrounds generated using NASA's TTALOS pipeline. To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images. Finally, we finetuned YOLOv8 and YOLOv11 segmentation models to generate performance benchmarks for the dataset under well-defined hardware and inference time constraints to mimic real-world image segmentation challenges for real-time onboard applications in space on NASA's inspector spacecraft. The resulting models, when tested under these constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second. The dataset and models for performance benchmark are available at https://github.com/RiceD2KLab/SWiM.

  • 9 authors
·
Jul 14

Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints

Ensuring reliable confidence scores from deep neural networks is of paramount significance in critical decision-making systems, particularly in real-world domains such as healthcare. Recent literature on calibrating deep segmentation networks has resulted in substantial progress. Nevertheless, these approaches are strongly inspired by the advancements in classification tasks, and thus their uncertainty is usually modeled by leveraging the information of individual pixels, disregarding the local structure of the object of interest. Indeed, only the recent Spatially Varying Label Smoothing (SVLS) approach considers pixel spatial relationships across classes, by softening the pixel label assignments with a discrete spatial Gaussian kernel. In this work, we first present a constrained optimization perspective of SVLS and demonstrate that it enforces an implicit constraint on soft class proportions of surrounding pixels. Furthermore, our analysis shows that SVLS lacks a mechanism to balance the contribution of the constraint with the primary objective, potentially hindering the optimization process. Based on these observations, we propose NACL (Neighbor Aware CaLibration), a principled and simple solution based on equality constraints on the logit values, which enables to control explicitly both the enforced constraint and the weight of the penalty, offering more flexibility. Comprehensive experiments on a wide variety of well-known segmentation benchmarks demonstrate the superior calibration performance of the proposed approach, without affecting its discriminative power. Furthermore, ablation studies empirically show the model agnostic nature of our approach, which can be used to train a wide span of deep segmentation networks.

  • 6 authors
·
Jan 25, 2024

KORE: Enhancing Knowledge Injection for Large Multimodal Models via Knowledge-Oriented Augmentations and Constraints

Large Multimodal Models encode extensive factual knowledge in their pre-trained weights. However, its knowledge remains static and limited, unable to keep pace with real-world developments, which hinders continuous knowledge acquisition. Effective knowledge injection thus becomes critical, involving two goals: knowledge adaptation (injecting new knowledge) and knowledge retention (preserving old knowledge). Existing methods often struggle to learn new knowledge and suffer from catastrophic forgetting. To address this, we propose KORE, a synergistic method of KnOwledge-oRientEd augmentations and constraints for injecting new knowledge into large multimodal models while preserving old knowledge. Unlike general text or image data augmentation, KORE automatically converts individual knowledge items into structured and comprehensive knowledge to ensure that the model accurately learns new knowledge, enabling accurate adaptation. Meanwhile, KORE stores previous knowledge in the covariance matrix of LMM's linear layer activations and initializes the adapter by projecting the original weights into the matrix's null space, defining a fine-tuning direction that minimizes interference with previous knowledge, enabling powerful retention. Extensive experiments on various LMMs, including LLaVA-v1.5-7B, LLaVA-v1.5-13B, and Qwen2.5-VL-7B, show that KORE achieves superior new knowledge injection performance and effectively mitigates catastrophic forgetting.

  • 10 authors
·
Oct 22 3

Programmable Motion Generation for Open-Set Motion Control Tasks

Character animation in real-world scenarios necessitates a variety of constraints, such as trajectories, key-frames, interactions, etc. Existing methodologies typically treat single or a finite set of these constraint(s) as separate control tasks. They are often specialized, and the tasks they address are rarely extendable or customizable. We categorize these as solutions to the close-set motion control problem. In response to the complexity of practical motion control, we propose and attempt to solve the open-set motion control problem. This problem is characterized by an open and fully customizable set of motion control tasks. To address this, we introduce a new paradigm, programmable motion generation. In this paradigm, any given motion control task is broken down into a combination of atomic constraints. These constraints are then programmed into an error function that quantifies the degree to which a motion sequence adheres to them. We utilize a pre-trained motion generation model and optimize its latent code to minimize the error function of the generated motion. Consequently, the generated motion not only inherits the prior of the generative model but also satisfies the required constraints. Experiments show that we can generate high-quality motions when addressing a wide range of unseen tasks. These tasks encompass motion control by motion dynamics, geometric constraints, physical laws, interactions with scenes, objects or the character own body parts, etc. All of these are achieved in a unified approach, without the need for ad-hoc paired training data collection or specialized network designs. During the programming of novel tasks, we observed the emergence of new skills beyond those of the prior model. With the assistance of large language models, we also achieved automatic programming. We hope that this work will pave the way for the motion control of general AI agents.

  • 5 authors
·
May 29, 2024

Gen-L-Video: Multi-Text to Long Video Generation via Temporal Co-Denoising

Leveraging large-scale image-text datasets and advancements in diffusion models, text-driven generative models have made remarkable strides in the field of image generation and editing. This study explores the potential of extending the text-driven ability to the generation and editing of multi-text conditioned long videos. Current methodologies for video generation and editing, while innovative, are often confined to extremely short videos (typically less than 24 frames) and are limited to a single text condition. These constraints significantly limit their applications given that real-world videos usually consist of multiple segments, each bearing different semantic information. To address this challenge, we introduce a novel paradigm dubbed as Gen-L-Video, capable of extending off-the-shelf short video diffusion models for generating and editing videos comprising hundreds of frames with diverse semantic segments without introducing additional training, all while preserving content consistency. We have implemented three mainstream text-driven video generation and editing methodologies and extended them to accommodate longer videos imbued with a variety of semantic segments with our proposed paradigm. Our experimental outcomes reveal that our approach significantly broadens the generative and editing capabilities of video diffusion models, offering new possibilities for future research and applications. The code is available at https://github.com/G-U-N/Gen-L-Video.

  • 6 authors
·
May 29, 2023

SLA Management in Reconfigurable Multi-Agent RAG: A Systems Approach to Question Answering

Retrieval Augmented Generation (RAG) enables Large Language Models (LLMs) to generalize to new information by decoupling reasoning capabilities from static knowledge bases. Traditional RAG enhancements have explored vertical scaling -- assigning subtasks to specialized modules -- and horizontal scaling -- replicating tasks across multiple agents -- to improve performance. However, real-world applications impose diverse Service Level Agreements (SLAs) and Quality of Service (QoS) requirements, involving trade-offs among objectives such as reducing cost, ensuring answer quality, and adhering to specific operational constraints. In this work, we present a systems-oriented approach to multi-agent RAG tailored for real-world Question Answering (QA) applications. By integrating task-specific non-functional requirements -- such as answer quality, cost, and latency -- into the system, we enable dynamic reconfiguration to meet diverse SLAs. Our method maps these Service Level Objectives (SLOs) to system-level parameters, allowing the generation of optimal results within specified resource constraints. We conduct a case study in the QA domain, demonstrating how dynamic re-orchestration of a multi-agent RAG system can effectively manage the trade-off between answer quality and cost. By adjusting the system based on query intent and operational conditions, we systematically balance performance and resource utilization. This approach allows the system to meet SLOs for various query types, showcasing its practicality for real-world applications.

  • 3 authors
·
Dec 6, 2024

POA: Pre-training Once for Models of All Sizes

Large-scale self-supervised pre-training has paved the way for one foundation model to handle many different vision tasks. Most pre-training methodologies train a single model of a certain size at one time. Nevertheless, various computation or storage constraints in real-world scenarios require substantial efforts to develop a series of models with different sizes to deploy. Thus, in this study, we propose a novel tri-branch self-supervised training framework, termed as POA (Pre-training Once for All), to tackle this aforementioned issue. Our approach introduces an innovative elastic student branch into a modern self-distillation paradigm. At each pre-training step, we randomly sample a sub-network from the original student to form the elastic student and train all branches in a self-distilling fashion. Once pre-trained, POA allows the extraction of pre-trained models of diverse sizes for downstream tasks. Remarkably, the elastic student facilitates the simultaneous pre-training of multiple models with different sizes, which also acts as an additional ensemble of models of various sizes to enhance representation learning. Extensive experiments, including k-nearest neighbors, linear probing evaluation and assessments on multiple downstream tasks demonstrate the effectiveness and advantages of our POA. It achieves state-of-the-art performance using ViT, Swin Transformer and ResNet backbones, producing around a hundred models with different sizes through a single pre-training session. The code is available at: https://github.com/Qichuzyy/POA.

  • 10 authors
·
Aug 2, 2024 3

Nemotron-Flash: Towards Latency-Optimal Hybrid Small Language Models

Efficient deployment of small language models (SLMs) is essential for numerous real-world applications with stringent latency constraints. While previous work on SLM design has primarily focused on reducing the number of parameters to achieve parameter-optimal SLMs, parameter efficiency does not necessarily translate into proportional real-device speed-ups. This work aims to identify the key determinants of SLMs' real-device latency and offer generalizable principles and methodologies for SLM design and training when real-device latency is the primary consideration. Specifically, we identify two central architectural factors: depth-width ratios and operator choices. The former is crucial for small-batch-size latency, while the latter affects both latency and large-batch-size throughput. In light of this, we first study latency-optimal depth-width ratios, with the key finding that although deep-thin models generally achieve better accuracy under the same parameter budget, they may not lie on the accuracy-latency trade-off frontier. Next, we explore emerging efficient attention alternatives to evaluate their potential as candidate building operators. Using the identified promising operators, we construct an evolutionary search framework to automatically discover latency-optimal combinations of these operators within hybrid SLMs, thereby advancing the accuracy-latency frontier. In addition to architectural improvements, we further enhance SLM training using a weight normalization technique that enables more effective weight updates and improves final convergence. Combining these methods, we introduce a new family of hybrid SLMs, called Nemotron-Flash, which significantly advances the accuracy-efficiency frontier of state-of-the-art SLMs, e.g., achieving over +5.5% average accuracy, 1.3x/1.9x lower latency, and 18.7x/45.6x higher throughput compared to Qwen3-1.7B/0.6B, respectively.

nvidia NVIDIA
·
Nov 24 2

SViMo: Synchronized Diffusion for Video and Motion Generation in Hand-object Interaction Scenarios

Hand-Object Interaction (HOI) generation has significant application potential. However, current 3D HOI motion generation approaches heavily rely on predefined 3D object models and lab-captured motion data, limiting generalization capabilities. Meanwhile, HOI video generation methods prioritize pixel-level visual fidelity, often sacrificing physical plausibility. Recognizing that visual appearance and motion patterns share fundamental physical laws in the real world, we propose a novel framework that combines visual priors and dynamic constraints within a synchronized diffusion process to generate the HOI video and motion simultaneously. To integrate the heterogeneous semantics, appearance, and motion features, our method implements tri-modal adaptive modulation for feature aligning, coupled with 3D full-attention for modeling inter- and intra-modal dependencies. Furthermore, we introduce a vision-aware 3D interaction diffusion model that generates explicit 3D interaction sequences directly from the synchronized diffusion outputs, then feeds them back to establish a closed-loop feedback cycle. This architecture eliminates dependencies on predefined object models or explicit pose guidance while significantly enhancing video-motion consistency. Experimental results demonstrate our method's superiority over state-of-the-art approaches in generating high-fidelity, dynamically plausible HOI sequences, with notable generalization capabilities in unseen real-world scenarios. Project page at https://github.com/Droliven/SViMo\_project.

  • 6 authors
·
Jun 3 3

Thinking in 360°: Humanoid Visual Search in the Wild

Humans rely on the synergistic control of head (cephalomotor) and eye (oculomotor) to efficiently search for visual information in 360°. However, prior approaches to visual search are limited to a static image, neglecting the physical embodiment and its interaction with the 3D world. How can we develop embodied visual search agents as efficient as humans while bypassing the constraints imposed by real-world hardware? To this end, we propose humanoid visual search where a humanoid agent actively rotates its head to search for objects or paths in an immersive world represented by a 360° panoramic image. To study visual search in visually-crowded real-world scenarios, we build H* Bench, a new benchmark that moves beyond household scenes to challenging in-the-wild scenes that necessitate advanced visual-spatial reasoning capabilities, such as transportation hubs, large-scale retail spaces, urban streets, and public institutions. Our experiments first reveal that even top-tier proprietary models falter, achieving only ~30% success in object and path search. We then use post-training techniques to enhance the open-source Qwen2.5-VL, increasing its success rate by over threefold for both object search (14.83% to 47.38%) and path search (6.44% to 24.94%). Notably, the lower ceiling of path search reveals its inherent difficulty, which we attribute to the demand for sophisticated spatial commonsense. Our results not only show a promising path forward but also quantify the immense challenge that remains in building MLLM agents that can be seamlessly integrated into everyday human life.

  • 12 authors
·
Nov 25

Common Sense Is All You Need

Artificial intelligence (AI) has made significant strides in recent years, yet it continues to struggle with a fundamental aspect of cognition present in all animals: common sense. Current AI systems, including those designed for complex tasks like autonomous driving, problem-solving challenges such as the Abstraction and Reasoning Corpus (ARC), and conversational benchmarks like the Turing Test, often lack the ability to adapt to new situations without extensive prior knowledge. This manuscript argues that integrating common sense into AI systems is essential for achieving true autonomy and unlocking the full societal and commercial value of AI. We propose a shift in the order of knowledge acquisition emphasizing the importance of developing AI systems that start from minimal prior knowledge and are capable of contextual learning, adaptive reasoning, and embodiment -- even within abstract domains. Additionally, we highlight the need to rethink the AI software stack to address this foundational challenge. Without common sense, AI systems may never reach true autonomy, instead exhibiting asymptotic performance that approaches theoretical ideals like AIXI but remains unattainable in practice due to infinite resource and computation requirements. While scaling AI models and passing benchmarks like the Turing Test have brought significant advancements in applications that do not require autonomy, these approaches alone are insufficient to achieve autonomous AI with common sense. By redefining existing benchmarks and challenges to enforce constraints that require genuine common sense, and by broadening our understanding of embodiment to include both physical and abstract domains, we can encourage the development of AI systems better equipped to handle the complexities of real-world and abstract environments.

  • 1 authors
·
Jan 11

Generative Action Tell-Tales: Assessing Human Motion in Synthesized Videos

Despite rapid advances in video generative models, robust metrics for evaluating visual and temporal correctness of complex human actions remain elusive. Critically, existing pure-vision encoders and Multimodal Large Language Models (MLLMs) are strongly appearance-biased, lack temporal understanding, and thus struggle to discern intricate motion dynamics and anatomical implausibilities in generated videos. We tackle this gap by introducing a novel evaluation metric derived from a learned latent space of real-world human actions. Our method first captures the nuances, constraints, and temporal smoothness of real-world motion by fusing appearance-agnostic human skeletal geometry features with appearance-based features. We posit that this combined feature space provides a robust representation of action plausibility. Given a generated video, our metric quantifies its action quality by measuring the distance between its underlying representations and this learned real-world action distribution. For rigorous validation, we develop a new multi-faceted benchmark specifically designed to probe temporally challenging aspects of human action fidelity. Through extensive experiments, we show that our metric achieves substantial improvement of more than 68% compared to existing state-of-the-art methods on our benchmark, performs competitively on established external benchmarks, and has a stronger correlation with human perception. Our in-depth analysis reveals critical limitations in current video generative models and establishes a new standard for advanced research in video generation.

Harnessing the Plug-and-Play Controller by Prompting

Controllable text generation is a growing field within natural language generation (NLG) that focuses on producing text that meets specific constraints in real-world applications. Previous approaches, such as plug-and-play controllers (PPCs), aimed to steer the properties of generated text in a flexible manner. However, these methods often compromised the integrity of the language model's decoding process, resulting in less smooth text generation. Alternatively, other techniques utilized multiple attribute prompts to align the generated text with desired attributes, but this approach required prompt design for each attribute and was dependent on the size of the language model. This paper introduces a novel method for flexible attribute control in text generation using pre-trained language models (PLMs). The proposed approach aims to enhance the fluency of generated text by guiding the generation process with PPCs. The key idea is to dynamically adjust the distribution of generated text by modifying prompts, effectively constraining the output space of the language model and influencing the desired attribute. To enable smooth cooperation between the PLM and the PPC, our work innovatively proposes a new model fine-tuning method: Reinforcement Learning with Dynamic Adjust Feedback (RLDAF).This fine-tuning process adapts a small subset of the language model's parameters based on the generating actions taken during the PPC control process. The resulting harmonious collaboration between the PLM and PPC leads to improved smoothness in text generation during inference. Extensive experiments were conducted on the SST2 dataset, and the proposed method outperformed previous approaches in various evaluation metrics, including text fluency and attribute consistency.

  • 2 authors
·
Feb 6, 2024

Integrating Summarization and Retrieval for Enhanced Personalization via Large Language Models

Personalization, the ability to tailor a system to individual users, is an essential factor in user experience with natural language processing (NLP) systems. With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences. To personalize a language model's output, a straightforward approach is to incorporate past user data into the language model prompt, but this approach can result in lengthy inputs exceeding limitations on input length and incurring latency and cost issues. Existing approaches tackle such challenges by selectively extracting relevant user data (i.e. selective retrieval) to construct a prompt for downstream tasks. However, retrieval-based methods are limited by potential information loss, lack of more profound user understanding, and cold-start challenges. To overcome these limitations, we propose a novel summary-augmented approach by extending retrieval-augmented personalization with task-aware user summaries generated by LLMs. The summaries can be generated and stored offline, enabling real-world systems with runtime constraints like voice assistants to leverage the power of LLMs. Experiments show our method with 75% less of retrieved user data is on-par or outperforms retrieval augmentation on most tasks in the LaMP personalization benchmark. We demonstrate that offline summarization via LLMs and runtime retrieval enables better performance for personalization on a range of tasks under practical constraints.

  • 8 authors
·
Oct 30, 2023

Scalable Language Model with Generalized Continual Learning

Continual learning has gained increasing importance as it facilitates the acquisition and refinement of scalable knowledge and skills in language models. However, existing methods typically encounter strict limitations and challenges in real-world scenarios, such as reliance on experience replay, optimization constraints, and inference task-ID. In this study, we introduce the Scalable Language Model (SLM) to overcome these limitations within a more challenging and generalized setting, representing a significant advancement toward practical applications for continual learning. Specifically, we propose the Joint Adaptive Re-Parameterization (JARe), integrated with Dynamic Task-related Knowledge Retrieval (DTKR), to enable adaptive adjustment of language models based on specific downstream tasks. This approach leverages the task distribution within the vector space, aiming to achieve a smooth and effortless continual learning process. Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting. Moreover, while prior research primarily focused on a single task type such as classification, our study goes beyond, with the large language model, i.e., LLaMA-2, to explore the effects across diverse domains and task types, such that a single language model can be decently scaled to broader applications.

  • 5 authors
·
Apr 11, 2024

Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models

Improving reasoning capabilities of Large Language Models (LLMs), especially under parameter constraints, is crucial for real-world applications. Prior work proposes recurrent transformers, which allocate a fixed number of extra iterations per token to improve generation quality. After the first, standard forward pass, instead of verbalization, last-layer hidden states are fed back as inputs for additional iterations to refine token predictions. Yet we identify a latent overthinking phenomenon: easy token predictions that are already correct after the first pass are sometimes revised into errors in additional iterations. To address this, we propose Think-at-Hard (TaH), a dynamic latent thinking method that iterates deeper only at hard tokens. It employs a lightweight neural decider to trigger latent iterations only at tokens that are likely incorrect after the standard forward pass. During latent iterations, Low-Rank Adaptation (LoRA) modules shift the LLM objective from general next-token prediction to focused hard-token refinement. We further introduce a duo-causal attention mechanism that extends attention from the token sequence dimension to an additional iteration depth dimension. This enables cross-iteration information flow while maintaining full sequential parallelism. Experiments show that TaH boosts LLM reasoning performance across five challenging benchmarks while maintaining the same parameter count. Compared with baselines that iterate twice for all output tokens, TaH delivers 8.1-11.3% accuracy gains while exempting 94% of tokens from the second iteration. Against strong single-iteration Qwen3 models finetuned with the same data, it also delivers 4.0-5.0% accuracy gains. When allowing less than 3% additional parameters from LoRA and the iteration decider, the gains increase to 8.5-12.6% and 5.3-5.4%, respectively. Our code is available at https://github.com/thu-nics/TaH.

SysBench: Can Large Language Models Follow System Messages?

Large Language Models (LLMs) have become instrumental across various applications, with the customization of these models to specific scenarios becoming increasingly critical. System message, a fundamental component of LLMs, is consist of carefully crafted instructions that guide the behavior of model to meet intended goals. Despite the recognized potential of system messages to optimize AI-driven solutions, there is a notable absence of a comprehensive benchmark for evaluating how well different LLMs follow these system messages. To fill this gap, we introduce SysBench, a benchmark that systematically analyzes system message following ability in terms of three challenging aspects: constraint complexity, instruction misalignment and multi-turn stability. In order to enable effective evaluation, SysBench constructs multi-turn user conversations covering various interaction relationships, based on six common types of constraints from system messages in real-world scenarios. Our dataset contains 500 system messages from various domains, each paired with 5 turns of user conversations, which have been manually formulated and checked to guarantee high quality. SysBench provides extensive evaluation across various LLMs, measuring their ability to follow specified constraints given in system messages. The results highlight both the strengths and weaknesses of existing models, offering key insights and directions for future research. The open source library SysBench is available at https://github.com/PKU-Baichuan-MLSystemLab/SysBench.

  • 12 authors
·
Aug 20, 2024

Reasoning Capacity in Multi-Agent Systems: Limitations, Challenges and Human-Centered Solutions

Remarkable performance of large language models (LLMs) in a variety of tasks brings forth many opportunities as well as challenges of utilizing them in production settings. Towards practical adoption of LLMs, multi-agent systems hold great promise to augment, integrate, and orchestrate LLMs in the larger context of enterprise platforms that use existing proprietary data and models to tackle complex real-world tasks. Despite the tremendous success of these systems, current approaches rely on narrow, single-focus objectives for optimization and evaluation, often overlooking potential constraints in real-world scenarios, including restricted budgets, resources and time. Furthermore, interpreting, analyzing, and debugging these systems requires different components to be evaluated in relation to one another. This demand is currently not feasible with existing methodologies. In this postion paper, we introduce the concept of reasoning capacity as a unifying criterion to enable integration of constraints during optimization and establish connections among different components within the system, which also enable a more holistic and comprehensive approach to evaluation. We present a formal definition of reasoning capacity and illustrate its utility in identifying limitations within each component of the system. We then argue how these limitations can be addressed with a self-reflective process wherein human-feedback is used to alleviate shortcomings in reasoning and enhance overall consistency of the system.

  • 6 authors
·
Feb 1, 2024