new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System

Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce Mem4Nav, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.

  • 6 authors
·
Jun 24 1

FABRIC: Framework for Agent-Based Realistic Intelligence Creation

Large language models (LLMs) are increasingly deployed as agents, expected to decompose goals, invoke tools, and verify results in dynamic environments. Realizing these capabilities requires access to agentic data-structured interaction records that couple user intents with tool specifications, argument-grounded calls, and verifiable execution traces. However, collecting such data from human annotators is costly, time-consuming, and difficult to scale. We present a unified framework for synthesizing agentic data using only LLMs, without any human-in-the-loop supervision. This framework decomposes generation into modular pipelines that produce complete interaction records spanning task specifications, tool definitions, policy pseudocode, natural language exchanges, and execution traces. Records conform to strict syntactic and semantic constraints, ensuring machine-parseability and faithful alignment across inputs, outputs, and tool calls. Beyond single tasks, there is support for both multi-task and multi-turn agent interactions, enabling the construction of datasets that reflect the full spectrum of tool-use competencies. To ensure quality and consistency, the framework integrates constrained generation formats, JSON-schema validation, and judge-based filtering. This paper formalizes the schema for agentic records, details the prompt design principles that guide generation, and introduces scalable pipelines for high-quality synthetic data. By providing a reproducible, LLM-only alternative to manual collection, hence advancing the development of agentic LLMs capable of robust tool use.

  • 4 authors
·
Oct 20

VCoT-Grasp: Grasp Foundation Models with Visual Chain-of-Thought Reasoning for Language-driven Grasp Generation

Robotic grasping is one of the most fundamental tasks in robotic manipulation, and grasp detection/generation has long been the subject of extensive research. Recently, language-driven grasp generation has emerged as a promising direction due to its practical interaction capabilities. However, most existing approaches either lack sufficient reasoning and generalization capabilities or depend on complex modular pipelines. Moreover, current grasp foundation models tend to overemphasize dialog and object semantics, resulting in inferior performance and restriction to single-object grasping. To maintain strong reasoning ability and generalization in cluttered environments, we propose VCoT-Grasp, an end-to-end grasp foundation model that incorporates visual chain-of-thought reasoning to enhance visual understanding for grasp generation. VCoT-Grasp adopts a multi-turn processing paradigm that dynamically focuses on visual inputs while providing interpretable reasoning traces. For training, we refine and introduce a large-scale dataset, VCoT-GraspSet, comprising 167K synthetic images with over 1.36M grasps, as well as 400+ real-world images with more than 1.2K grasps, annotated with intermediate bounding boxes. Extensive experiments on both VCoT-GraspSet and real robot demonstrate that our method significantly improves grasp success rates and generalizes effectively to unseen objects, backgrounds, and distractors. More details can be found at https://zhanghr2001.github.io/VCoT-Grasp.github.io.

  • 9 authors
·
Oct 7

OmniDocBench: Benchmarking Diverse PDF Document Parsing with Comprehensive Annotations

Document content extraction is crucial in computer vision, especially for meeting the high-quality data needs of large language models (LLMs) and retrieval-augmented generation (RAG) technologies. However, current document parsing methods suffer from significant limitations in terms of diversity and comprehensive evaluation. To address these challenges, we introduce OmniDocBench, a novel multi-source benchmark designed to advance automated document content extraction. OmniDocBench includes a meticulously curated and annotated high-quality evaluation dataset comprising nine diverse document types, such as academic papers, textbooks, slides, among others. Our benchmark provides a flexible and comprehensive evaluation framework with 19 layout category labels and 14 attribute labels, enabling multi-level assessments across entire datasets, individual modules, or specific data types. Using OmniDocBench, we perform an exhaustive comparative analysis of existing modular pipelines and multimodal end-to-end methods, highlighting their limitations in handling document diversity and ensuring fair evaluation. OmniDocBench establishes a robust, diverse, and fair evaluation standard for the document content extraction field, offering crucial insights for future advancements and fostering the development of document parsing technologies. The codes and dataset is available in https://github.com/opendatalab/OmniDocBench.

  • 20 authors
·
Dec 10, 2024 3

Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning. This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP). We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) direct prompting baseline, (2) Facts+Rules prompting, and (3) DSPy-based LLM+ASP pipeline with iterative refinement. Our experimental results demonstrate that the LLM+ASP pipeline significantly outperforms baseline methods, achieving an average 82% accuracy on StepGame and 69% on SparQA, marking improvements of 40-50% and 8-15% respectively over direct prompting. The success stems from three key innovations: (1) effective separation of semantic parsing and logical reasoning through a modular pipeline, (2) iterative feedback mechanism between LLMs and ASP solvers that improves program rate, and (3) robust error handling that addresses parsing, grounding, and solving failures. Additionally, we propose Facts+Rules as a lightweight alternative that achieves comparable performance on complex SparQA dataset, while reducing computational overhead.Our analysis across different LLM architectures (Deepseek, Llama3-70B, GPT-4.0 mini) demonstrates the framework's generalizability and provides insights into the trade-offs between implementation complexity and reasoning capability, contributing to the development of more interpretable and reliable AI systems.

  • 3 authors
·
Nov 27, 2024

FireRedChat: A Pluggable, Full-Duplex Voice Interaction System with Cascaded and Semi-Cascaded Implementations

Full-duplex voice interaction allows users and agents to speak simultaneously with controllable barge-in, enabling lifelike assistants and customer service. Existing solutions are either end-to-end, difficult to design and hard to control, or modular pipelines governed by turn-taking controllers that ease upgrades and per-module optimization; however, prior modular frameworks depend on non-open components and external providers, limiting holistic optimization. In this work, we present a complete, practical full-duplex voice interaction system comprising a turn-taking controller, an interaction module, and a dialogue manager. The controller integrates streaming personalized VAD (pVAD) to suppress false barge-ins from noise and non-primary speakers, precisely timestamp primary-speaker segments, and explicitly enable primary-speaker barge-ins; a semantic end-of-turn detector improves stop decisions. It upgrades heterogeneous half-duplex pipelines, cascaded, semi-cascaded, and speech-to-speech, to full duplex. Using internal models, we implement cascaded and semi-cascaded variants; the semi-cascaded one captures emotional and paralinguistic cues, yields more coherent responses, lowers latency and error propagation, and improves robustness. A dialogue manager extends capabilities via tool invocation and context management. We also propose three system-level metrics, barge-in, end-of-turn detection accuracy, and end-to-end latency, to assess naturalness, control accuracy, and efficiency. Experiments show fewer false interruptions, more accurate semantic ends, and lower latency approaching industrial systems, enabling robust, natural, real-time full-duplex interaction. Demos: https://fireredteam.github.io/demos/firered_chat.

  • 15 authors
·
Sep 8

OmniBench-RAG: A Multi-Domain Evaluation Platform for Retrieval-Augmented Generation Tools

While Retrieval Augmented Generation (RAG) is now widely adopted to enhance LLMs, evaluating its true performance benefits in a reproducible and interpretable way remains a major hurdle. Existing methods often fall short: they lack domain coverage, employ coarse metrics that miss sub document precision, and fail to capture computational trade offs. Most critically, they provide no standardized framework for comparing RAG effectiveness across different models and domains. We introduce OmniBench RAG, a novel automated platform for multi domain evaluation of RAG systems. The platform quantifies performance gains across accuracy and efficiency dimensions, spanning nine knowledge fields including culture, geography, and health. We introduce two standardized metrics: Improvements (accuracy gains) and Transformation (efficiency differences between pre RAG and post RAG models), enabling reproducible comparisons across models and tasks. The platform features dynamic test generation, modular evaluation pipelines, and automated knowledge base construction. Our evaluation reveals striking variability in RAG effectiveness, from significant gains in culture to declines in mathematics, highlighting the critical importance of systematic, domain aware assessment. A demonstration video is available at: https://www.youtube.com/watch?v=BZx83QFcTCI. Code and datasets: https://github.com/Garnett-Liang/Omnibench-RAG.

  • 3 authors
·
Jul 25

AudioStory: Generating Long-Form Narrative Audio with Large Language Models

Recent advances in text-to-audio (TTA) generation excel at synthesizing short audio clips but struggle with long-form narrative audio, which requires temporal coherence and compositional reasoning. To address this gap, we propose AudioStory, a unified framework that integrates large language models (LLMs) with TTA systems to generate structured, long-form audio narratives. AudioStory possesses strong instruction-following reasoning generation capabilities. It employs LLMs to decompose complex narrative queries into temporally ordered sub-tasks with contextual cues, enabling coherent scene transitions and emotional tone consistency. AudioStory has two appealing features: (1) Decoupled bridging mechanism: AudioStory disentangles LLM-diffuser collaboration into two specialized components, i.e., a bridging query for intra-event semantic alignment and a residual query for cross-event coherence preservation. (2) End-to-end training: By unifying instruction comprehension and audio generation within a single end-to-end framework, AudioStory eliminates the need for modular training pipelines while enhancing synergy between components. Furthermore, we establish a benchmark AudioStory-10K, encompassing diverse domains such as animated soundscapes and natural sound narratives. Extensive experiments show the superiority of AudioStory on both single-audio generation and narrative audio generation, surpassing prior TTA baselines in both instruction-following ability and audio fidelity. Our code is available at https://github.com/TencentARC/AudioStory

  • 7 authors
·
Aug 27 3

Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models

Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains. In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior. Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities and aiming to achieve comprehensive perception, precise understanding, and deep reasoning. As research advances, multimodal reasoning has rapidly evolved from modular, perception-driven pipelines to unified, language-centric frameworks that offer more coherent cross-modal understanding. While instruction tuning and reinforcement learning have improved model reasoning, significant challenges remain in omni-modal generalization, reasoning depth, and agentic behavior. To address these issues, we present a comprehensive and structured survey of multimodal reasoning research, organized around a four-stage developmental roadmap that reflects the field's shifting design philosophies and emerging capabilities. First, we review early efforts based on task-specific modules, where reasoning was implicitly embedded across stages of representation, alignment, and fusion. Next, we examine recent approaches that unify reasoning into multimodal LLMs, with advances such as Multimodal Chain-of-Thought (MCoT) and multimodal reinforcement learning enabling richer and more structured reasoning chains. Finally, drawing on empirical insights from challenging benchmarks and experimental cases of OpenAI O3 and O4-mini, we discuss the conceptual direction of native large multimodal reasoning models (N-LMRMs), which aim to support scalable, agentic, and adaptive reasoning and planning in complex, real-world environments.

HIT-TMG Lychee Team
·
May 7 3

Break-for-Make: Modular Low-Rank Adaptations for Composable Content-Style Customization

Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by tuning or adapting pre-trained text-to-image models on a few images. Recent works explore approaches for concurrently customizing both content and detailed visual style appearance. However, these existing approaches often generate images where the content and style are entangled. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style, we propose a learning framework that separates the parameter space to facilitate individual learning of content and style, thereby enabling disentangled content and style. To achieve this goal, we introduce "partly learnable projection" (PLP) matrices to separate the original adapters into divided sub-parameter spaces. We propose "break-for-make" customization learning pipeline based on PLP, which is simple yet effective. We break the original adapters into "up projection" and "down projection", train content and style PLPs individually with the guidance of corresponding textual prompts in the separate adapters, and maintain generalization by employing a multi-correspondence projection learning strategy. Based on the adapters broken apart for separate training content and style, we then make the entity parameter space by reconstructing the content and style PLPs matrices, followed by fine-tuning the combined adapter to generate the target object with the desired appearance. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines in terms of content-style-prompt alignment.

  • 8 authors
·
Mar 28, 2024

OmniFusion: Simultaneous Multilingual Multimodal Translations via Modular Fusion

There has been significant progress in open-source text-only translation large language models (LLMs) with better language coverage and quality. However, these models can be only used in cascaded pipelines for speech translation (ST), performing automatic speech recognition first followed by translation. This introduces additional latency, which is particularly critical in simultaneous ST (SimulST), and prevents the model from exploiting multimodal context, such as images, which can aid disambiguation. Pretrained multimodal foundation models (MMFMs) already possess strong perception and reasoning capabilities across multiple modalities, but generally lack the multilingual coverage and specialized translation performance of dedicated translation LLMs. To build an effective multimodal translation system, we propose an end-to-end approach that fuses MMFMs with translation LLMs. We introduce a novel fusion strategy that connects hidden states from multiple layers of a pretrained MMFM to a translation LLM, enabling joint end-to-end training. The resulting model, OmniFusion, built on Omni 2.5-7B as the MMFM and SeedX PPO-7B as the translation LLM, can perform speech-to-text, speech-and-image-to-text, and text-and-image-to-text translation. Experiments demonstrate that OmniFusion effectively leverages both audio and visual inputs, achieves a 1-second latency reduction in SimulST compared to cascaded pipelines and also improves the overall translation qualityCode is available at https://github.com/saikoneru/OmniFusion.

GigaEvo: An Open Source Optimization Framework Powered By LLMs And Evolution Algorithms

Recent advances in LLM-guided evolutionary computation, particularly AlphaEvolve (Novikov et al., 2025; Georgiev et al., 2025), have demonstrated remarkable success in discovering novel mathematical constructions and solving challenging optimization problems. However, the high-level descriptions in published work leave many implementation details unspecified, hindering reproducibility and further research. In this report we present GigaEvo, an extensible open-source framework that enables researchers to study and experiment with hybrid LLM-evolution approaches inspired by AlphaEvolve. Our system provides modular implementations of key components: MAP-Elites quality-diversity algorithms, asynchronous DAG-based evaluation pipelines, LLM-driven mutation operators with insight generation and bidirectional lineage tracking, and flexible multi-island evolutionary strategies. In order to assess reproducibility and validate our implementation we evaluate GigaEvo on challenging problems from the AlphaEvolve paper: Heilbronn triangle placement, circle packing in squares, and high-dimensional kissing numbers. The framework emphasizes modularity, concurrency, and ease of experimentation, enabling rapid prototyping through declarative configuration. We provide detailed descriptions of system architecture, implementation decisions, and experimental methodology to support further research in LLM driven evolutionary methods. The GigaEvo framework and all experimental code are available at https://github.com/AIRI-Institute/gigaevo-core.

Hierarchical Spatial Algorithms for High-Resolution Image Quantization and Feature Extraction

This study introduces a modular framework for spatial image processing, integrating grayscale quantization, color and brightness enhancement, image sharpening, bidirectional transformation pipelines, and geometric feature extraction. A stepwise intensity transformation quantizes grayscale images into eight discrete levels, producing a posterization effect that simplifies representation while preserving structural detail. Color enhancement is achieved via histogram equalization in both RGB and YCrCb color spaces, with the latter improving contrast while maintaining chrominance fidelity. Brightness adjustment is implemented through HSV value-channel manipulation, and image sharpening is performed using a 3 * 3 convolution kernel to enhance high-frequency details. A bidirectional transformation pipeline that integrates unsharp masking, gamma correction, and noise amplification achieved accuracy levels of 76.10% and 74.80% for the forward and reverse processes, respectively. Geometric feature extraction employed Canny edge detection, Hough-based line estimation (e.g., 51.50{\deg} for billiard cue alignment), Harris corner detection, and morphological window localization. Cue isolation further yielded 81.87\% similarity against ground truth images. Experimental evaluation across diverse datasets demonstrates robust and deterministic performance, highlighting its potential for real-time image analysis and computer vision.

  • 1 authors
·
Oct 9

ComfyUI-R1: Exploring Reasoning Models for Workflow Generation

AI-generated content has evolved from monolithic models to modular workflows, particularly on platforms like ComfyUI, enabling customization in creative pipelines. However, crafting effective workflows requires great expertise to orchestrate numerous specialized components, presenting a steep learning curve for users. To address this challenge, we introduce ComfyUI-R1, the first large reasoning model for automated workflow generation. Starting with our curated dataset of 4K workflows, we construct long chain-of-thought (CoT) reasoning data, including node selection, workflow planning, and code-level workflow representation. ComfyUI-R1 is trained through a two-stage framework: (1) CoT fine-tuning for cold start, adapting models to the ComfyUI domain; (2) reinforcement learning for incentivizing reasoning capability, guided by a fine-grained rule-metric hybrid reward, ensuring format validity, structural integrity, and node-level fidelity. Experiments show that our 7B-parameter model achieves a 97\% format validity rate, along with high pass rate, node-level and graph-level F1 scores, significantly surpassing prior state-of-the-art methods that employ leading closed-source models such as GPT-4o and Claude series. Further analysis highlights the critical role of the reasoning process and the advantage of transforming workflows into code. Qualitative comparison reveals our strength in synthesizing intricate workflows with diverse nodes, underscoring the potential of long CoT reasoning in AI art creation.

  • 8 authors
·
Jun 11 4

Reconstructing the Charlie Parker Omnibook using an audio-to-score automatic transcription pipeline

The Charlie Parker Omnibook is a cornerstone of jazz music education, described by pianist Ethan Iverson as "the most important jazz education text ever published". In this work we propose a new transcription pipeline and explore the extent to which state of the art music technology is able to reconstruct these scores directly from the audio without human intervention. Our pipeline includes: a newly trained source separation model for saxophone, a new MIDI transcription model for solo saxophone and an adaptation of an existing MIDI-to-score method for monophonic instruments. To assess this pipeline we also provide an enhanced dataset of Charlie Parker transcriptions as score-audio pairs with accurate MIDI alignments and downbeat annotations. This represents a challenging new benchmark for automatic audio-to-score transcription that we hope will advance research into areas beyond transcribing audio-to-MIDI alone. Together, these form another step towards producing scores that musicians can use directly, without the need for onerous corrections or revisions. To facilitate future research, all model checkpoints and data are made available to download along with code for the transcription pipeline. Improvements in our modular pipeline could one day make the automatic transcription of complex jazz solos a routine possibility, thereby enriching the resources available for music education and preservation.

  • 2 authors
·
May 26, 2024

ZS-VCOS: Zero-Shot Video Camouflaged Object Segmentation By Optical Flow and Open Vocabulary Object Detection

Camouflaged object segmentation presents unique challenges compared to traditional segmentation tasks, primarily due to the high similarity in patterns and colors between camouflaged objects and their backgrounds. Effective solutions to this problem have significant implications in critical areas such as pest control, defect detection, and lesion segmentation in medical imaging. Prior research has predominantly emphasized supervised or unsupervised pre-training methods, leaving zero-shot approaches significantly underdeveloped. Existing zero-shot techniques commonly utilize the Segment Anything Model (SAM) in automatic mode or rely on vision-language models to generate cues for segmentation; however, their performances remain unsatisfactory, due to the similarity of the camouflaged object and the background. This work studies how to avoid training by integrating large pre-trained models like SAM-2 and Owl-v2 with temporal information into a modular pipeline. Evaluated on the MoCA-Mask dataset, our approach achieves outstanding performance improvements, significantly outperforming existing zero-shot methods by raising the F-measure (F_beta^w) from 0.296 to 0.628. Our approach also surpasses supervised methods, increasing the F-measure from 0.476 to 0.628. Additionally, evaluation on the MoCA-Filter dataset demonstrates an increase in the success rate from 0.628 to 0.697 when compared with FlowSAM, a supervised transfer method. A thorough ablation study further validates the individual contributions of each component. Besides our main contributions, we also highlight inconsistencies in previous work regarding metrics and settings. Code can be found in https://github.com/weathon/vcos.

  • 3 authors
·
Apr 10

ALAS: Autonomous Learning Agent for Self-Updating Language Models

Large language models (LLMs) often have a fixed knowledge cutoff, limiting their accuracy on emerging information. We present ALAS (Autonomous Learning Agent System), a modular pipeline that continuously updates an LLM's knowledge with minimal human intervention. ALAS autonomously generates a learning curriculum for a target domain, retrieves up-to-date information from the web (with citations), distills this into question-answer training data, and fine-tunes the model through supervised fine-tuning (SFT) and direct preference optimization (DPO). It iteratively evaluates performance and revises the curriculum, enabling long-term continual learning. We demonstrate ALAS's ability to self-improve a model on rapidly evolving domains (e.g., new Python releases, latest security CVEs, academic trends), significantly boosting post-cutoff question answering accuracy (from 15% to 90% on average) without manual dataset curation. The system emphasizes modularity and reproducibility: each component (planning, retrieval, distillation, memory, fine-tuning) is interchangeable and built on standard APIs. We discuss comparative baselines (e.g., retrieval-augmented generation vs. fine-tuning) and show that ALAS achieves 90% accuracy on knowledge-updated queries with minimal engineering overhead. Finally, we outline limitations (cost, dependency on source quality) and future directions for autonomous lifelong learning in LLMs.

  • 1 authors
·
Aug 14

DetZero: Rethinking Offboard 3D Object Detection with Long-term Sequential Point Clouds

Existing offboard 3D detectors always follow a modular pipeline design to take advantage of unlimited sequential point clouds. We have found that the full potential of offboard 3D detectors is not explored mainly due to two reasons: (1) the onboard multi-object tracker cannot generate sufficient complete object trajectories, and (2) the motion state of objects poses an inevitable challenge for the object-centric refining stage in leveraging the long-term temporal context representation. To tackle these problems, we propose a novel paradigm of offboard 3D object detection, named DetZero. Concretely, an offline tracker coupled with a multi-frame detector is proposed to focus on the completeness of generated object tracks. An attention-mechanism refining module is proposed to strengthen contextual information interaction across long-term sequential point clouds for object refining with decomposed regression methods. Extensive experiments on Waymo Open Dataset show our DetZero outperforms all state-of-the-art onboard and offboard 3D detection methods. Notably, DetZero ranks 1st place on Waymo 3D object detection leaderboard with 85.15 mAPH (L2) detection performance. Further experiments validate the application of taking the place of human labels with such high-quality results. Our empirical study leads to rethinking conventions and interesting findings that can guide future research on offboard 3D object detection.

  • 12 authors
·
Jun 9, 2023

NoHumansRequired: Autonomous High-Quality Image Editing Triplet Mining

Recent advances in generative modeling enable image editing assistants that follow natural language instructions without additional user input. Their supervised training requires millions of triplets: original image, instruction, edited image. Yet mining pixel-accurate examples is hard. Each edit must affect only prompt-specified regions, preserve stylistic coherence, respect physical plausibility, and retain visual appeal. The lack of robust automated edit-quality metrics hinders reliable automation at scale. We present an automated, modular pipeline that mines high-fidelity triplets across domains, resolutions, instruction complexities, and styles. Built on public generative models and running without human intervention, our system uses a task-tuned Gemini validator to score instruction adherence and aesthetics directly, removing any need for segmentation or grounding models. Inversion and compositional bootstrapping enlarge the mined set by approximately 2.2x, enabling large-scale high-fidelity training data. By automating the most repetitive annotation steps, the approach allows a new scale of training without human labeling effort. To democratize research in this resource-intensive area, we release NHR-Edit: an open dataset of 358k high-quality triplets. In the largest cross-dataset evaluation, it surpasses all public alternatives. We also release Bagel-NHR-Edit, an open-source fine-tuned Bagel model, which achieves state-of-the-art metrics in our experiments.

  • 7 authors
·
Jul 18 1

An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning

The differential diagnosis of neurodegenerative dementias is a challenging clinical task, mainly because of the overlap in symptom presentation and the similarity of patterns observed in structural neuroimaging. To improve diagnostic efficiency and accuracy, deep learning-based methods such as Convolutional Neural Networks and Vision Transformers have been proposed for the automatic classification of brain MRIs. However, despite their strong predictive performance, these models find limited clinical utility due to their opaque decision making. In this work, we propose a framework that integrates two core components to enhance diagnostic transparency. First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports. Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis between Frontotemporal dementia subtypes, Alzheimer's disease, and normal aging based on the generated reports. To bridge the gap between predictive accuracy and explainability, we employ reinforcement learning to incentivize diagnostic reasoning in LLMs. Without requiring supervised reasoning traces or distillation from larger models, our approach enables the emergence of structured diagnostic rationales grounded in neuroimaging findings. Unlike post-hoc explainability methods that retrospectively justify model decisions, our framework generates diagnostic rationales as part of the inference process-producing causally grounded explanations that inform and guide the model's decision-making process. In doing so, our framework matches the diagnostic performance of existing deep learning methods while offering rationales that support its diagnostic conclusions.

  • 6 authors
·
May 26 2

PresentAgent: Multimodal Agent for Presentation Video Generation

We present PresentAgent, a multimodal agent that transforms long-form documents into narrated presentation videos. While existing approaches are limited to generating static slides or text summaries, our method advances beyond these limitations by producing fully synchronized visual and spoken content that closely mimics human-style presentations. To achieve this integration, PresentAgent employs a modular pipeline that systematically segments the input document, plans and renders slide-style visual frames, generates contextual spoken narration with large language models and Text-to-Speech models, and seamlessly composes the final video with precise audio-visual alignment. Given the complexity of evaluating such multimodal outputs, we introduce PresentEval, a unified assessment framework powered by Vision-Language Models that comprehensively scores videos across three critical dimensions: content fidelity, visual clarity, and audience comprehension through prompt-based evaluation. Our experimental validation on a curated dataset of 30 document-presentation pairs demonstrates that PresentAgent approaches human-level quality across all evaluation metrics. These results highlight the significant potential of controllable multimodal agents in transforming static textual materials into dynamic, effective, and accessible presentation formats. Code will be available at https://github.com/AIGeeksGroup/PresentAgent.

  • 7 authors
·
Jul 5 1

Gen2Det: Generate to Detect

Recently diffusion models have shown improvement in synthetic image quality as well as better control in generation. We motivate and present Gen2Det, a simple modular pipeline to create synthetic training data for object detection for free by leveraging state-of-the-art grounded image generation methods. Unlike existing works which generate individual object instances, require identifying foreground followed by pasting on other images, we simplify to directly generating scene-centric images. In addition to the synthetic data, Gen2Det also proposes a suite of techniques to best utilize the generated data, including image-level filtering, instance-level filtering, and better training recipe to account for imperfections in the generation. Using Gen2Det, we show healthy improvements on object detection and segmentation tasks under various settings and agnostic to detection methods. In the long-tailed detection setting on LVIS, Gen2Det improves the performance on rare categories by a large margin while also significantly improving the performance on other categories, e.g. we see an improvement of 2.13 Box AP and 1.84 Mask AP over just training on real data on LVIS with Mask R-CNN. In the low-data regime setting on COCO, Gen2Det consistently improves both Box and Mask AP by 2.27 and 1.85 points. In the most general detection setting, Gen2Det still demonstrates robust performance gains, e.g. it improves the Box and Mask AP on COCO by 0.45 and 0.32 points.

  • 7 authors
·
Dec 7, 2023

ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning

Climate models have been key for assessing the impact of climate change and simulating future climate scenarios. The machine learning (ML) community has taken an increased interest in supporting climate scientists' efforts on various tasks such as climate model emulation, downscaling, and prediction tasks. Many of those tasks have been addressed on datasets created with single climate models. However, both the climate science and ML communities have suggested that to address those tasks at scale, we need large, consistent, and ML-ready climate model datasets. Here, we introduce ClimateSet, a dataset containing the inputs and outputs of 36 climate models from the Input4MIPs and CMIP6 archives. In addition, we provide a modular dataset pipeline for retrieving and preprocessing additional climate models and scenarios. We showcase the potential of our dataset by using it as a benchmark for ML-based climate model emulation. We gain new insights about the performance and generalization capabilities of the different ML models by analyzing their performance across different climate models. Furthermore, the dataset can be used to train an ML emulator on several climate models instead of just one. Such a "super emulator" can quickly project new climate change scenarios, complementing existing scenarios already provided to policymakers. We believe ClimateSet will create the basis needed for the ML community to tackle climate-related tasks at scale.

  • 9 authors
·
Nov 6, 2023

Emergent Mixture-of-Experts: Can Dense Pre-trained Transformers Benefit from Emergent Modular Structures?

Incorporating modular designs into neural networks demonstrates superior out-of-generalization, learning efficiency, etc. Existing modular neural networks are generally explicit because their modular architectures are pre-defined, and individual modules are expected to implement distinct functions. Conversely, recent works reveal that there exist implicit modular structures in standard pre-trained transformers, namely Emergent Modularity. They indicate that such modular structures exhibit during the early pre-training phase and are totally spontaneous. However, most transformers are still treated as monolithic models with their modular natures underutilized. Therefore, given the excellent properties of explicit modular architecture, we explore whether and how dense pre-trained transformers can benefit from emergent modular structures. To study this question, we construct Emergent Mixture-of-Experts (EMoE). Without introducing additional parameters, EMoE can be seen as the modular counterpart of the original model and can be effortlessly incorporated into downstream tuning. Extensive experiments (we tune 1785 models) on various downstream tasks (vision and language) and models (22M to1.5B) demonstrate that EMoE effectively boosts in-domain and out-of-domain generalization abilities. Further analysis and ablation study suggest that EMoE mitigates negative knowledge transfer and is robust to various configurations. Code is available at https://github.com/qiuzh20/EMoE

  • 3 authors
·
Oct 16, 2023

m2mKD: Module-to-Module Knowledge Distillation for Modular Transformers

Modular neural architectures are gaining increasing attention due to their powerful capability for generalization and sample-efficient adaptation to new domains. However, training modular models, particularly in the early stages, poses challenges due to the optimization difficulties arising from their intrinsic sparse connectivity. Leveraging the knowledge from monolithic models, using techniques such as knowledge distillation, is likely to facilitate the training of modular models and enable them to integrate knowledge from multiple models pretrained on diverse sources. Nevertheless, conventional knowledge distillation approaches are not tailored to modular models and can fail when directly applied due to the unique architectures and the enormous number of parameters involved. Motivated by these challenges, we propose a general module-to-module knowledge distillation (m2mKD) method for transferring knowledge between modules. Our approach involves teacher modules split from a pretrained monolithic model, and student modules of a modular model. m2mKD separately combines these modules with a shared meta model and encourages the student module to mimic the behaviour of the teacher module. We evaluate the effectiveness of m2mKD on two distinct modular neural architectures: Neural Attentive Circuits (NACs) and Vision Mixture-of-Experts (V-MoE). By applying m2mKD to NACs, we achieve significant improvements in IID accuracy on Tiny-ImageNet (up to 5.6%) and OOD robustness on Tiny-ImageNet-R (up to 4.2%). On average, we observe a 1% gain in both ImageNet and ImageNet-R. The V-MoE-Base model trained using m2mKD also achieves 3.5% higher accuracy than end-to-end training on ImageNet. The experimental results demonstrate that our method offers a promising solution for connecting modular networks with pretrained monolithic models. Code is available at https://github.com/kamanphoebe/m2mKD.

  • 8 authors
·
Feb 25, 2024

One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings

Deploying language models often requires handling model size vs. performance trade-offs to satisfy downstream latency constraints while preserving the model's usefulness. Model distillation is commonly employed to reduce model size while maintaining acceptable performance. However, distillation can be inefficient since it involves multiple training steps. In this work, we introduce MODULARSTARENCODER, a modular multi-exit encoder with 1B parameters, useful for multiple tasks within the scope of code retrieval. MODULARSTARENCODER is trained with a novel self-distillation mechanism that significantly improves lower-layer representations-allowing different portions of the model to be used while still maintaining a good trade-off in terms of performance. Our architecture focuses on enhancing text-to-code and code-to-code search by systematically capturing syntactic and semantic structures across multiple levels of representation. Specific encoder layers are targeted as exit heads, allowing higher layers to guide earlier layers during training. This self-distillation effect improves intermediate representations, increasing retrieval recall at no extra training cost. In addition to the multi-exit scheme, our approach integrates a repository-level contextual loss that maximally utilizes the training context window, further enhancing the learned representations. We also release a new dataset constructed via code translation, seamlessly expanding traditional text-to-code benchmarks with code-to-code pairs across diverse programming languages. Experimental results highlight the benefits of self-distillation through multi-exit supervision.

  • 4 authors
·
Mar 4

EVOC2RUST: A Skeleton-guided Framework for Project-Level C-to-Rust Translation

Rust's compile-time safety guarantees make it ideal for safety-critical systems, creating demand for translating legacy C codebases to Rust. While various approaches have emerged for this task, they face inherent trade-offs: rule-based solutions face challenges in meeting code safety and idiomaticity requirements, while LLM-based solutions often fail to generate semantically equivalent Rust code, due to the heavy dependencies of modules across the entire codebase. Recent studies have revealed that both solutions are limited to small-scale programs. In this paper, we propose EvoC2Rust, an automated framework for converting entire C projects to equivalent Rust ones. EvoC2Rust employs a skeleton-guided translation strategy for project-level translation. The pipeline consists of three evolutionary stages: 1) it first decomposes the C project into functional modules, employs a feature-mapping-enhanced LLM to transform definitions and macros and generates type-checked function stubs, which form a compilable Rust skeleton; 2) it then incrementally translates the function, replacing the corresponding stub placeholder; 3) finally, it repairs compilation errors by integrating LLM and static analysis. Through evolutionary augmentation, EvoC2Rust combines the advantages of both rule-based and LLM-based solutions. Our evaluation on open-source benchmarks and six industrial projects demonstrates EvoC2Rust's superior performance in project-level C-to-Rust translation. On average, it achieves 17.24% and 14.32% improvements in syntax and semantic accuracy over the LLM-based approaches, along with a 96.79% higher code safety rate than the rule-based tools. At the module level, EvoC2Rust reaches 92.25% compilation and 89.53% test pass rates on industrial projects, even for complex codebases and long functions.

  • 8 authors
·
Aug 6 2