10 SWE-EVO: Benchmarking Coding Agents in Long-Horizon Software Evolution Scenarios Existing benchmarks for AI coding agents focus on isolated, single-issue tasks such as fixing a bug or implementing a small feature. However, real-world software engineering is fundamentally a long-horizon endeavor: developers must interpret high-level requirements, plan coordinated changes across many files, and evolve codebases over multiple iterations while preserving existing functionality. We introduce SWE-EVO, a benchmark that evaluates agents on this long-horizon software evolution challenge. Constructed from release notes and version histories of seven mature open-source Python projects, Tool comprises 48 evolution tasks that require agents to implement multi-step modifications spanning an average of 21 files, validated against comprehensive test suites averaging 874 tests per instance. Experiments with state-of-the-art models reveal a striking capability gap: even GPT-5 with OpenHands achieves only a 21 percent resolution rate on Tool, compared to 65 percent on the single-issue SWE-Bench Verified. This demonstrates that current agents struggle with sustained, multi-file reasoning. We also propose Fix Rate, a fine-grained metric that captures partial progress toward solving these complex, long-horizon tasks. 5 authors · Dec 20, 2025 2
43 NL2Repo-Bench: Towards Long-Horizon Repository Generation Evaluation of Coding Agents Recent advances in coding agents suggest rapid progress toward autonomous software development, yet existing benchmarks fail to rigorously evaluate the long-horizon capabilities required to build complete software systems. Most prior evaluations focus on localized code generation, scaffolded completion, or short-term repair tasks, leaving open the question of whether agents can sustain coherent reasoning, planning, and execution over the extended horizons demanded by real-world repository construction. To address this gap, we present NL2Repo Bench, a benchmark explicitly designed to evaluate the long-horizon repository generation ability of coding agents. Given only a single natural-language requirements document and an empty workspace, agents must autonomously design the architecture, manage dependencies, implement multi-module logic, and produce a fully installable Python library. Our experiments across state-of-the-art open- and closed-source models reveal that long-horizon repository generation remains largely unsolved: even the strongest agents achieve below 40% average test pass rates and rarely complete an entire repository correctly. Detailed analysis uncovers fundamental long-horizon failure modes, including premature termination, loss of global coherence, fragile cross-file dependencies, and inadequate planning over hundreds of interaction steps. NL2Repo Bench establishes a rigorous, verifiable testbed for measuring sustained agentic competence and highlights long-horizon reasoning as a central bottleneck for the next generation of autonomous coding agents. 48 authors · Dec 14, 2025 2
21 SWE-Bench Pro: Can AI Agents Solve Long-Horizon Software Engineering Tasks? We introduce SWE-Bench Pro, a substantially more challenging benchmark that builds upon the best practices of SWE-BENCH [25], but is explicitly designed to capture realistic, complex, enterprise-level problems beyond the scope of SWE-BENCH. SWE-BENCH PRO contains 1,865 problems sourced from a diverse set of 41 actively maintained repositories spanning business applications, B2B services, and developer tools. The benchmark is partitioned into a public set with open access to problems sourced from 11 repositories, a held-out set of 12 repositories and a commercial set of 18 proprietary repositories where we have formal partnership agreements with early-stage startups. Problems in the held-out and the commercial set are not publicly accessible, but we release results on the commercial set. Our benchmark features long-horizon tasks that may require hours to days for a professional software engineer to complete, often involving patches across multiple files and substantial code modifications. All tasks are human-verified and augmented with sufficient context to ensure resolvability. In our evaluation of widely used coding models, under a unified scaffold, we observe that their performance on SWE-Bench PRO remains below 25% (Pass@1), with GPT-5 achieving the highest score to date at 23.3%. To better understand these limitations, we cluster the failure modes observed in the collected agent trajectories for a clearer characterization of the error patterns exhibited by current models. Overall, SWE-BENCH PRO provides a contamination-resistant testbed that more faithfully captures the complexity and diversity of real-world software development, advancing the pursuit of truly autonomous software engineering agents at a professional level. 19 authors · Sep 21, 2025 3