Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSina at FigNews 2024: Multilingual Datasets Annotated with Bias and Propaganda
The proliferation of bias and propaganda on social media is an increasingly significant concern, leading to the development of techniques for automatic detection. This article presents a multilingual corpus of 12, 000 Facebook posts fully annotated for bias and propaganda. The corpus was created as part of the FigNews 2024 Shared Task on News Media Narratives for framing the Israeli War on Gaza. It covers various events during the War from October 7, 2023 to January 31, 2024. The corpus comprises 12, 000 posts in five languages (Arabic, Hebrew, English, French, and Hindi), with 2, 400 posts for each language. The annotation process involved 10 graduate students specializing in Law. The Inter-Annotator Agreement (IAA) was used to evaluate the annotations of the corpus, with an average IAA of 80.8% for bias and 70.15% for propaganda annotations. Our team was ranked among the bestperforming teams in both Bias and Propaganda subtasks. The corpus is open-source and available at https://sina.birzeit.edu/fada
EcoVerse: An Annotated Twitter Dataset for Eco-Relevance Classification, Environmental Impact Analysis, and Stance Detection
Anthropogenic ecological crisis constitutes a significant challenge that all within the academy must urgently face, including the Natural Language Processing (NLP) community. While recent years have seen increasing work revolving around climate-centric discourse, crucial environmental and ecological topics outside of climate change remain largely unaddressed, despite their prominent importance. Mainstream NLP tasks, such as sentiment analysis, dominate the scene, but there remains an untouched space in the literature involving the analysis of environmental impacts of certain events and practices. To address this gap, this paper presents EcoVerse, an annotated English Twitter dataset of 3,023 tweets spanning a wide spectrum of environmental topics. We propose a three-level annotation scheme designed for Eco-Relevance Classification, Stance Detection, and introducing an original approach for Environmental Impact Analysis. We detail the data collection, filtering, and labeling process that led to the creation of the dataset. Remarkable Inter-Annotator Agreement indicates that the annotation scheme produces consistent annotations of high quality. Subsequent classification experiments using BERT-based models, including ClimateBERT, are presented. These yield encouraging results, while also indicating room for a model specifically tailored for environmental texts. The dataset is made freely available to stimulate further research.
BEEP! Korean Corpus of Online News Comments for Toxic Speech Detection
Toxic comments in online platforms are an unavoidable social issue under the cloak of anonymity. Hate speech detection has been actively done for languages such as English, German, or Italian, where manually labeled corpus has been released. In this work, we first present 9.4K manually labeled entertainment news comments for identifying Korean toxic speech, collected from a widely used online news platform in Korea. The comments are annotated regarding social bias and hate speech since both aspects are correlated. The inter-annotator agreement Krippendorff's alpha score is 0.492 and 0.496, respectively. We provide benchmarks using CharCNN, BiLSTM, and BERT, where BERT achieves the highest score on all tasks. The models generally display better performance on bias identification, since the hate speech detection is a more subjective issue. Additionally, when BERT is trained with bias label for hate speech detection, the prediction score increases, implying that bias and hate are intertwined. We make our dataset publicly available and open competitions with the corpus and benchmarks.
A Crowd-Annotated Spanish Corpus for Humor Analysis
Computational Humor involves several tasks, such as humor recognition, humor generation, and humor scoring, for which it is useful to have human-curated data. In this work we present a corpus of 27,000 tweets written in Spanish and crowd-annotated by their humor value and funniness score, with about four annotations per tweet, tagged by 1,300 people over the Internet. It is equally divided between tweets coming from humorous and non-humorous accounts. The inter-annotator agreement Krippendorff's alpha value is 0.5710. The dataset is available for general use and can serve as a basis for humor detection and as a first step to tackle subjectivity.
An Annotation Scheme for Factuality and its Application to Parliamentary Proceedings
Factuality assesses the extent to which a language utterance relates to real-world information; it determines whether utterances correspond to facts, possibilities, or imaginary situations, and as such, it is instrumental for fact checking. Factuality is a complex notion that relies on multiple linguistic signals, and has been studied in various disciplines. We present a complex, multi-faceted annotation scheme of factuality that combines concepts from a variety of previous works. We developed the scheme for Hebrew, but we trust that it can be adapted to other languages. We also present a set of almost 5,000 sentences in the domain of parliamentary discourse that we manually annotated according to this scheme. We report on inter-annotator agreement, and experiment with various approaches to automatically predict (some features of) the scheme, in order to extend the annotation to a large corpus.
Chronocept: Instilling a Sense of Time in Machines
Human cognition is deeply intertwined with a sense of time, known as Chronoception. This sense allows us to judge how long facts remain valid and when knowledge becomes outdated. Despite progress in vision, language, and motor control, AI still struggles to reason about temporal validity. We introduce Chronocept, the first benchmark to model temporal validity as a continuous probability distribution over time. Using skew-normal curves fitted along semantically decomposed temporal axes, Chronocept captures nuanced patterns of emergence, decay, and peak relevance. It includes two datasets: Benchmark I (atomic facts) and Benchmark II (multi-sentence passages). Annotations show strong inter-annotator agreement (84% and 89%). Our baselines predict curve parameters - location, scale, and skewness - enabling interpretable, generalizable learning and outperforming classification-based approaches. Chronocept fills a foundational gap in AI's temporal reasoning, supporting applications in knowledge grounding, fact-checking, retrieval-augmented generation (RAG), and proactive agents. Code and data are publicly available.
A Large and Balanced Corpus for Fine-grained Arabic Readability Assessment
This paper introduces the Balanced Arabic Readability Evaluation Corpus (BAREC), a large-scale, fine-grained dataset for Arabic readability assessment. BAREC consists of 69,441 sentences spanning 1+ million words, carefully curated to cover 19 readability levels, from kindergarten to postgraduate comprehension. The corpus balances genre diversity, topical coverage, and target audiences, offering a comprehensive resource for evaluating Arabic text complexity. The corpus was fully manually annotated by a large team of annotators. The average pairwise inter-annotator agreement, measured by Quadratic Weighted Kappa, is 81.8%, reflecting a high level of substantial agreement. Beyond presenting the corpus, we benchmark automatic readability assessment across different granularity levels, comparing a range of techniques. Our results highlight the challenges and opportunities in Arabic readability modeling, demonstrating competitive performance across various methods. To support research and education, we make BAREC openly available, along with detailed annotation guidelines and benchmark results.
MIMICause: Representation and automatic extraction of causal relation types from clinical notes
Understanding causal narratives communicated in clinical notes can help make strides towards personalized healthcare. Extracted causal information from clinical notes can be combined with structured EHR data such as patients' demographics, diagnoses, and medications. This will enhance healthcare providers' ability to identify aspects of a patient's story communicated in the clinical notes and help make more informed decisions. In this work, we propose annotation guidelines, develop an annotated corpus and provide baseline scores to identify types and direction of causal relations between a pair of biomedical concepts in clinical notes; communicated implicitly or explicitly, identified either in a single sentence or across multiple sentences. We annotate a total of 2714 de-identified examples sampled from the 2018 n2c2 shared task dataset and train four different language model based architectures. Annotation based on our guidelines achieved a high inter-annotator agreement i.e. Fleiss' kappa (kappa) score of 0.72, and our model for identification of causal relations achieved a macro F1 score of 0.56 on the test data. The high inter-annotator agreement for clinical text shows the quality of our annotation guidelines while the provided baseline F1 score sets the direction for future research towards understanding narratives in clinical texts.
FinnSentiment -- A Finnish Social Media Corpus for Sentiment Polarity Annotation
Sentiment analysis and opinion mining is an important task with obvious application areas in social media, e.g. when indicating hate speech and fake news. In our survey of previous work, we note that there is no large-scale social media data set with sentiment polarity annotations for Finnish. This publications aims to remedy this shortcoming by introducing a 27,000 sentence data set annotated independently with sentiment polarity by three native annotators. We had the same three annotators for the whole data set, which provides a unique opportunity for further studies of annotator behaviour over time. We analyse their inter-annotator agreement and provide two baselines to validate the usefulness of the data set.
The SOFC-Exp Corpus and Neural Approaches to Information Extraction in the Materials Science Domain
This paper presents a new challenging information extraction task in the domain of materials science. We develop an annotation scheme for marking information on experiments related to solid oxide fuel cells in scientific publications, such as involved materials and measurement conditions. With this paper, we publish our annotation guidelines, as well as our SOFC-Exp corpus consisting of 45 open-access scholarly articles annotated by domain experts. A corpus and an inter-annotator agreement study demonstrate the complexity of the suggested named entity recognition and slot filling tasks as well as high annotation quality. We also present strong neural-network based models for a variety of tasks that can be addressed on the basis of our new data set. On all tasks, using BERT embeddings leads to large performance gains, but with increasing task complexity, adding a recurrent neural network on top seems beneficial. Our models will serve as competitive baselines in future work, and analysis of their performance highlights difficult cases when modeling the data and suggests promising research directions.
GODEL: Large-Scale Pre-Training for Goal-Directed Dialog
We introduce GODEL (Grounded Open Dialogue Language Model), a large pre-trained language model for dialog. In contrast with earlier models such as DialoGPT, GODEL leverages a new phase of grounded pre-training designed to better support adapting GODEL to a wide range of downstream dialog tasks that require information external to the current conversation (e.g., a database or document) to produce good responses. Experiments against an array of benchmarks that encompass task-oriented dialog, conversational QA, and grounded open-domain dialog show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups, in terms of both human and automatic evaluation. A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses (extrinsic evaluation) in addition to their communicative features (intrinsic evaluation). We show that extrinsic evaluation offers improved inter-annotator agreement and correlation with automated metrics. Code and data processing scripts are publicly available.
FRACAS: A FRench Annotated Corpus of Attribution relations in newS
Quotation extraction is a widely useful task both from a sociological and from a Natural Language Processing perspective. However, very little data is available to study this task in languages other than English. In this paper, we present a manually annotated corpus of 1676 newswire texts in French for quotation extraction and source attribution. We first describe the composition of our corpus and the choices that were made in selecting the data. We then detail the annotation guidelines and annotation process, as well as a few statistics about the final corpus and the obtained balance between quote types (direct, indirect and mixed, which are particularly challenging). We end by detailing our inter-annotator agreement between the 8 annotators who worked on manual labelling, which is substantially high for such a difficult linguistic phenomenon.
EmoMent: An Emotion Annotated Mental Health Corpus from two South Asian Countries
People often utilise online media (e.g., Facebook, Reddit) as a platform to express their psychological distress and seek support. State-of-the-art NLP techniques demonstrate strong potential to automatically detect mental health issues from text. Research suggests that mental health issues are reflected in emotions (e.g., sadness) indicated in a person's choice of language. Therefore, we developed a novel emotion-annotated mental health corpus (EmoMent), consisting of 2802 Facebook posts (14845 sentences) extracted from two South Asian countries - Sri Lanka and India. Three clinical psychology postgraduates were involved in annotating these posts into eight categories, including 'mental illness' (e.g., depression) and emotions (e.g., 'sadness', 'anger'). EmoMent corpus achieved 'very good' inter-annotator agreement of 98.3% (i.e. % with two or more agreement) and Fleiss' Kappa of 0.82. Our RoBERTa based models achieved an F1 score of 0.76 and a macro-averaged F1 score of 0.77 for the first task (i.e. predicting a mental health condition from a post) and the second task (i.e. extent of association of relevant posts with the categories defined in our taxonomy), respectively.
The ParlaSent-BCS dataset of sentiment-annotated parliamentary debates from Bosnia-Herzegovina, Croatia, and Serbia
Expression of sentiment in parliamentary debates is deemed to be significantly different from that on social media or in product reviews. This paper adds to an emerging body of research on parliamentary debates with a dataset of sentences annotated for detection sentiment polarity in political discourse. We sample the sentences for annotation from the proceedings of three Southeast European parliaments: Croatia, Bosnia-Herzegovina, and Serbia. A six-level schema is applied to the data with the aim of training a classification model for the detection of sentiment in parliamentary proceedings. Krippendorff's alpha measuring the inter-annotator agreement ranges from 0.6 for the six-level annotation schema to 0.75 for the three-level schema and 0.83 for the two-level schema. Our initial experiments on the dataset show that transformer models perform significantly better than those using a simpler architecture. Furthermore, regardless of the similarity of the three languages, we observe differences in performance across different languages. Performing parliament-specific training and evaluation shows that the main reason for the differing performance between parliaments seems to be the different complexity of the automatic classification task, which is not observable in annotator performance. Language distance does not seem to play any role neither in annotator nor in automatic classification performance. We release the dataset and the best-performing model under permissive licences.
CsFEVER and CTKFacts: Acquiring Czech data for fact verification
In this paper, we examine several methods of acquiring Czech data for automated fact-checking, which is a task commonly modeled as a classification of textual claim veracity w.r.t. a corpus of trusted ground truths. We attempt to collect sets of data in form of a factual claim, evidence within the ground truth corpus, and its veracity label (supported, refuted or not enough info). As a first attempt, we generate a Czech version of the large-scale FEVER dataset built on top of Wikipedia corpus. We take a hybrid approach of machine translation and document alignment; the approach and the tools we provide can be easily applied to other languages. We discuss its weaknesses and inaccuracies, propose a future approach for their cleaning and publish the 127k resulting translations, as well as a version of such dataset reliably applicable for the Natural Language Inference task - the CsFEVER-NLI. Furthermore, we collect a novel dataset of 3,097 claims, which is annotated using the corpus of 2.2M articles of Czech News Agency. We present its extended annotation methodology based on the FEVER approach, and, as the underlying corpus is kept a trade secret, we also publish a standalone version of the dataset for the task of Natural Language Inference we call CTKFactsNLI. We analyze both acquired datasets for spurious cues - annotation patterns leading to model overfitting. CTKFacts is further examined for inter-annotator agreement, thoroughly cleaned, and a typology of common annotator errors is extracted. Finally, we provide baseline models for all stages of the fact-checking pipeline and publish the NLI datasets, as well as our annotation platform and other experimental data.
Dialogue Act Sequence Labeling using Hierarchical encoder with CRF
Dialogue Act recognition associate dialogue acts (i.e., semantic labels) to utterances in a conversation. The problem of associating semantic labels to utterances can be treated as a sequence labeling problem. In this work, we build a hierarchical recurrent neural network using bidirectional LSTM as a base unit and the conditional random field (CRF) as the top layer to classify each utterance into its corresponding dialogue act. The hierarchical network learns representations at multiple levels, i.e., word level, utterance level, and conversation level. The conversation level representations are input to the CRF layer, which takes into account not only all previous utterances but also their dialogue acts, thus modeling the dependency among both, labels and utterances, an important consideration of natural dialogue. We validate our approach on two different benchmark data sets, Switchboard and Meeting Recorder Dialogue Act, and show performance improvement over the state-of-the-art methods by 2.2% and 4.1% absolute points, respectively. It is worth noting that the inter-annotator agreement on Switchboard data set is 84%, and our method is able to achieve the accuracy of about 79% despite being trained on the noisy data.
CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets
Over the course of the COVID-19 pandemic, large volumes of biomedical information concerning this new disease have been published on social media. Some of this information can pose a real danger to people's health, particularly when false information is shared, for instance recommendations on how to treat diseases without professional medical advice. Therefore, automatic fact-checking resources and systems developed specifically for the medical domain are crucial. While existing fact-checking resources cover COVID-19-related information in news or quantify the amount of misinformation in tweets, there is no dataset providing fact-checked COVID-19-related Twitter posts with detailed annotations for biomedical entities, relations and relevant evidence. We contribute CoVERT, a fact-checked corpus of tweets with a focus on the domain of biomedicine and COVID-19-related (mis)information. The corpus consists of 300 tweets, each annotated with medical named entities and relations. We employ a novel crowdsourcing methodology to annotate all tweets with fact-checking labels and supporting evidence, which crowdworkers search for online. This methodology results in moderate inter-annotator agreement. Furthermore, we use the retrieved evidence extracts as part of a fact-checking pipeline, finding that the real-world evidence is more useful than the knowledge indirectly available in pretrained language models.
SuperMat: Construction of a linked annotated dataset from superconductors-related publications
A growing number of papers are published in the area of superconducting materials science. However, novel text and data mining (TDM) processes are still needed to efficiently access and exploit this accumulated knowledge, paving the way towards data-driven materials design. Herein, we present SuperMat (Superconductor Materials), an annotated corpus of linked data derived from scientific publications on superconductors, which comprises 142 articles, 16052 entities, and 1398 links that are characterised into six categories: the names, classes, and properties of materials; links to their respective superconducting critical temperature (Tc); and parametric conditions such as applied pressure or measurement methods. The construction of SuperMat resulted from a fruitful collaboration between computer scientists and material scientists, and its high quality is ensured through validation by domain experts. The quality of the annotation guidelines was ensured by satisfactory Inter Annotator Agreement (IAA) between the annotators and the domain experts. SuperMat includes the dataset, annotation guidelines, and annotation support tools that use automatic suggestions to help minimise human errors.
Neural Media Bias Detection Using Distant Supervision With BABE -- Bias Annotations By Experts
Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F1-score of 0.804, outperforming existing methods.
HEVAL: Yet Another Human Evaluation Metric
Machine translation evaluation is a very important activity in machine translation development. Automatic evaluation metrics proposed in literature are inadequate as they require one or more human reference translations to compare them with output produced by machine translation. This does not always give accurate results as a text can have several different translations. Human evaluation metrics, on the other hand, lacks inter-annotator agreement and repeatability. In this paper we have proposed a new human evaluation metric which addresses these issues. Moreover this metric also provides solid grounds for making sound assumptions on the quality of the text produced by a machine translation.
DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis
Accurate document layout analysis is a key requirement for high-quality PDF document conversion. With the recent availability of public, large ground-truth datasets such as PubLayNet and DocBank, deep-learning models have proven to be very effective at layout detection and segmentation. While these datasets are of adequate size to train such models, they severely lack in layout variability since they are sourced from scientific article repositories such as PubMed and arXiv only. Consequently, the accuracy of the layout segmentation drops significantly when these models are applied on more challenging and diverse layouts. In this paper, we present DocLayNet, a new, publicly available, document-layout annotation dataset in COCO format. It contains 80863 manually annotated pages from diverse data sources to represent a wide variability in layouts. For each PDF page, the layout annotations provide labelled bounding-boxes with a choice of 11 distinct classes. DocLayNet also provides a subset of double- and triple-annotated pages to determine the inter-annotator agreement. In multiple experiments, we provide baseline accuracy scores (in mAP) for a set of popular object detection models. We also demonstrate that these models fall approximately 10\% behind the inter-annotator agreement. Furthermore, we provide evidence that DocLayNet is of sufficient size. Lastly, we compare models trained on PubLayNet, DocBank and DocLayNet, showing that layout predictions of the DocLayNet-trained models are more robust and thus the preferred choice for general-purpose document-layout analysis.
LMUnit: Fine-grained Evaluation with Natural Language Unit Tests
As language models become integral to critical workflows, assessing their behavior remains a fundamental challenge -- human evaluation is costly and noisy, while automated metrics provide only coarse, difficult-to-interpret signals. We introduce natural language unit tests, a paradigm that decomposes response quality into explicit, testable criteria, along with a unified scoring model, LMUnit, which combines multi-objective training across preferences, direct ratings, and natural language rationales. Through controlled human studies, we show this paradigm significantly improves inter-annotator agreement and enables more effective LLM development workflows. LMUnit achieves state-of-the-art performance on evaluation benchmarks (FLASK, BigGenBench) and competitive results on RewardBench. These results validate both our proposed paradigm and scoring model, suggesting a promising path forward for language model evaluation and development.
ShEMO -- A Large-Scale Validated Database for Persian Speech Emotion Detection
This paper introduces a large-scale, validated database for Persian called Sharif Emotional Speech Database (ShEMO). The database includes 3000 semi-natural utterances, equivalent to 3 hours and 25 minutes of speech data extracted from online radio plays. The ShEMO covers speech samples of 87 native-Persian speakers for five basic emotions including anger, fear, happiness, sadness and surprise, as well as neutral state. Twelve annotators label the underlying emotional state of utterances and majority voting is used to decide on the final labels. According to the kappa measure, the inter-annotator agreement is 64% which is interpreted as "substantial agreement". We also present benchmark results based on common classification methods in speech emotion detection task. According to the experiments, support vector machine achieves the best results for both gender-independent (58.2%) and gender-dependent models (female=59.4%, male=57.6%). The ShEMO is available for academic purposes free of charge to provide a baseline for further research on Persian emotional speech.
CheckEval: Robust Evaluation Framework using Large Language Model via Checklist
We introduce CheckEval, a novel evaluation framework using Large Language Models, addressing the challenges of ambiguity and inconsistency in current evaluation methods. CheckEval addresses these challenges by dividing evaluation criteria into detailed sub-aspects and constructing a checklist of Boolean questions for each, simplifying the evaluation. This approach not only renders the process more interpretable but also significantly enhances the robustness and reliability of results by focusing on specific evaluation dimensions. Validated through a focused case study using the SummEval benchmark, CheckEval indicates a strong correlation with human judgments. Furthermore, it demonstrates a highly consistent Inter-Annotator Agreement. These findings highlight the effectiveness of CheckEval for objective, flexible, and precise evaluations. By offering a customizable and interactive framework, CheckEval sets a new standard for the use of LLMs in evaluation, responding to the evolving needs of the field and establishing a clear method for future LLM-based evaluation.
Czech Dataset for Cross-lingual Subjectivity Classification
In this paper, we introduce a new Czech subjectivity dataset of 10k manually annotated subjective and objective sentences from movie reviews and descriptions. Our prime motivation is to provide a reliable dataset that can be used with the existing English dataset as a benchmark to test the ability of pre-trained multilingual models to transfer knowledge between Czech and English and vice versa. Two annotators annotated the dataset reaching 0.83 of the Cohen's appa inter-annotator agreement. To the best of our knowledge, this is the first subjectivity dataset for the Czech language. We also created an additional dataset that consists of 200k automatically labeled sentences. Both datasets are freely available for research purposes. Furthermore, we fine-tune five pre-trained BERT-like models to set a monolingual baseline for the new dataset and we achieve 93.56% of accuracy. We fine-tune models on the existing English dataset for which we obtained results that are on par with the current state-of-the-art results. Finally, we perform zero-shot cross-lingual subjectivity classification between Czech and English to verify the usability of our dataset as the cross-lingual benchmark. We compare and discuss the cross-lingual and monolingual results and the ability of multilingual models to transfer knowledge between languages.
Beyond Understanding: Evaluating the Pragmatic Gap in LLMs' Cultural Processing of Figurative Language
We present a comprehensive evaluation of the ability of large language models (LLMs) to process culturally grounded language, specifically to understand and pragmatically use figurative expressions that encode local knowledge and cultural nuance. Using figurative language as a proxy for cultural nuance and local knowledge, we design evaluation tasks for contextual understanding, pragmatic use, and connotation interpretation in Arabic and English. We evaluate 22 open- and closed-source LLMs on Egyptian Arabic idioms, multidialectal Arabic proverbs, and English proverbs. Our results show a consistent hierarchy: the average accuracy for Arabic proverbs is 4.29% lower than for English proverbs, and performance for Egyptian idioms is 10.28% lower than for Arabic proverbs. For the pragmatic use task, accuracy drops by 14.07% relative to understanding, though providing contextual idiomatic sentences improves accuracy by 10.66%. Models also struggle with connotative meaning, reaching at most 85.58% agreement with human annotators on idioms with 100% inter-annotator agreement. These findings demonstrate that figurative language serves as an effective diagnostic for cultural reasoning: while LLMs can often interpret figurative meaning, they face challenges in using it appropriately. To support future research, we release Kinayat, the first dataset of Egyptian Arabic idioms designed for both figurative understanding and pragmatic use evaluation.
CTI-HAL: A Human-Annotated Dataset for Cyber Threat Intelligence Analysis
Organizations are increasingly targeted by Advanced Persistent Threats (APTs), which involve complex, multi-stage tactics and diverse techniques. Cyber Threat Intelligence (CTI) sources, such as incident reports and security blogs, provide valuable insights, but are often unstructured and in natural language, making it difficult to automatically extract information. Recent studies have explored the use of AI to perform automatic extraction from CTI data, leveraging existing CTI datasets for performance evaluation and fine-tuning. However, they present challenges and limitations that impact their effectiveness. To overcome these issues, we introduce a novel dataset manually constructed from CTI reports and structured according to the MITRE ATT&CK framework. To assess its quality, we conducted an inter-annotator agreement study using Krippendorff alpha, confirming its reliability. Furthermore, the dataset was used to evaluate a Large Language Model (LLM) in a real-world business context, showing promising generalizability.
Malaysian English News Decoded: A Linguistic Resource for Named Entity and Relation Extraction
Standard English and Malaysian English exhibit notable differences, posing challenges for natural language processing (NLP) tasks on Malaysian English. Unfortunately, most of the existing datasets are mainly based on standard English and therefore inadequate for improving NLP tasks in Malaysian English. An experiment using state-of-the-art Named Entity Recognition (NER) solutions on Malaysian English news articles highlights that they cannot handle morphosyntactic variations in Malaysian English. To the best of our knowledge, there is no annotated dataset available to improvise the model. To address these issues, we constructed a Malaysian English News (MEN) dataset, which contains 200 news articles that are manually annotated with entities and relations. We then fine-tuned the spaCy NER tool and validated that having a dataset tailor-made for Malaysian English could improve the performance of NER in Malaysian English significantly. This paper presents our effort in the data acquisition, annotation methodology, and thorough analysis of the annotated dataset. To validate the quality of the annotation, inter-annotator agreement was used, followed by adjudication of disagreements by a subject matter expert. Upon completion of these tasks, we managed to develop a dataset with 6,061 entities and 3,268 relation instances. Finally, we discuss on spaCy fine-tuning setup and analysis on the NER performance. This unique dataset will contribute significantly to the advancement of NLP research in Malaysian English, allowing researchers to accelerate their progress, particularly in NER and relation extraction. The dataset and annotation guideline has been published on Github.
Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
SentiGOLD: A Large Bangla Gold Standard Multi-Domain Sentiment Analysis Dataset and its Evaluation
This study introduces SentiGOLD, a Bangla multi-domain sentiment analysis dataset. Comprising 70,000 samples, it was created from diverse sources and annotated by a gender-balanced team of linguists. SentiGOLD adheres to established linguistic conventions agreed upon by the Government of Bangladesh and a Bangla linguistics committee. Unlike English and other languages, Bangla lacks standard sentiment analysis datasets due to the absence of a national linguistics framework. The dataset incorporates data from online video comments, social media posts, blogs, news, and other sources while maintaining domain and class distribution rigorously. It spans 30 domains (e.g., politics, entertainment, sports) and includes 5 sentiment classes (strongly negative, weakly negative, neutral, and strongly positive). The annotation scheme, approved by the national linguistics committee, ensures a robust Inter Annotator Agreement (IAA) with a Fleiss' kappa score of 0.88. Intra- and cross-dataset evaluation protocols are applied to establish a standard classification system. Cross-dataset evaluation on the noisy SentNoB dataset presents a challenging test scenario. Additionally, zero-shot experiments demonstrate the generalizability of SentiGOLD. The top model achieves a macro f1 score of 0.62 (intra-dataset) across 5 classes, setting a benchmark, and 0.61 (cross-dataset from SentNoB) across 3 classes, comparable to the state-of-the-art. Fine-tuned sentiment analysis model can be accessed at https://sentiment.bangla.gov.bd.
Revisiting the Gold Standard: Grounding Summarization Evaluation with Robust Human Evaluation
Human evaluation is the foundation upon which the evaluation of both summarization systems and automatic metrics rests. However, existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale, and an in-depth analysis of human evaluation is lacking. Therefore, we address the shortcomings of existing summarization evaluation along the following axes: (1) We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units and allows for a high inter-annotator agreement. (2) We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems on three datasets. (3) We conduct a comparative study of four human evaluation protocols, underscoring potential confounding factors in evaluation setups. (4) We evaluate 50 automatic metrics and their variants using the collected human annotations across evaluation protocols and demonstrate how our benchmark leads to more statistically stable and significant results. The metrics we benchmarked include recent methods based on large language models (LLMs), GPTScore and G-Eval. Furthermore, our findings have important implications for evaluating LLMs, as we show that LLMs adjusted by human feedback (e.g., GPT-3.5) may overfit unconstrained human evaluation, which is affected by the annotators' prior, input-agnostic preferences, calling for more robust, targeted evaluation methods.
DravidianMultiModality: A Dataset for Multi-modal Sentiment Analysis in Tamil and Malayalam
Human communication is inherently multimodal and asynchronous. Analyzing human emotions and sentiment is an emerging field of artificial intelligence. We are witnessing an increasing amount of multimodal content in local languages on social media about products and other topics. However, there are not many multimodal resources available for under-resourced Dravidian languages. Our study aims to create a multimodal sentiment analysis dataset for the under-resourced Tamil and Malayalam languages. First, we downloaded product or movies review videos from YouTube for Tamil and Malayalam. Next, we created captions for the videos with the help of annotators. Then we labelled the videos for sentiment, and verified the inter-annotator agreement using Fleiss's Kappa. This is the first multimodal sentiment analysis dataset for Tamil and Malayalam by volunteer annotators.
Vietnamese Complaint Detection on E-Commerce Websites
Customer product reviews play a role in improving the quality of products and services for business organizations or their brands. Complaining is an attitude that expresses dissatisfaction with an event or a product not meeting customer expectations. In this paper, we build a Open-domain Complaint Detection dataset (UIT-ViOCD), including 5,485 human-annotated reviews on four categories about product reviews on e-commerce sites. After the data collection phase, we proceed to the annotation task and achieve the inter-annotator agreement Am of 87%. Then, we present an extensive methodology for the research purposes and achieve 92.16% by F1-score for identifying complaints. With the results, in the future, we aim to build a system for open-domain complaint detection in E-commerce websites.
NorNE: Annotating Named Entities for Norwegian
This paper presents NorNE, a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokm{\aa}l and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons, organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names. We here present details on the annotation effort, guidelines, inter-annotator agreement and an experimental analysis of the corpus using a neural sequence labeling architecture.
Competence-Level Prediction and Resume & Job Description Matching Using Context-Aware Transformer Models
This paper presents a comprehensive study on resume classification to reduce the time and labor needed to screen an overwhelming number of applications significantly, while improving the selection of suitable candidates. A total of 6,492 resumes are extracted from 24,933 job applications for 252 positions designated into four levels of experience for Clinical Research Coordinators (CRC). Each resume is manually annotated to its most appropriate CRC position by experts through several rounds of triple annotation to establish guidelines. As a result, a high Kappa score of 61% is achieved for inter-annotator agreement. Given this dataset, novel transformer-based classification models are developed for two tasks: the first task takes a resume and classifies it to a CRC level (T1), and the second task takes both a resume and a job description to apply and predicts if the application is suited to the job T2. Our best models using section encoding and multi-head attention decoding give results of 73.3% to T1 and 79.2% to T2. Our analysis shows that the prediction errors are mostly made among adjacent CRC levels, which are hard for even experts to distinguish, implying the practical value of our models in real HR platforms.
The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English
In this paper we present datasets of Facebook comment threads to mainstream media posts in Slovene and English developed inside the Slovene national project FRENK which cover two topics, migrants and LGBT, and are manually annotated for different types of socially unacceptable discourse (SUD). The main advantages of these datasets compared to the existing ones are identical sampling procedures, producing comparable data across languages and an annotation schema that takes into account six types of SUD and five targets at which SUD is directed. We describe the sampling and annotation procedures, and analyze the annotation distributions and inter-annotator agreements. We consider this dataset to be an important milestone in understanding and combating SUD for both languages.
Word Sense Linking: Disambiguating Outside the Sandbox
Word Sense Disambiguation (WSD) is the task of associating a word in a given context with its most suitable meaning among a set of possible candidates. While the task has recently witnessed renewed interest, with systems achieving performances above the estimated inter-annotator agreement, at the time of writing it still struggles to find downstream applications. We argue that one of the reasons behind this is the difficulty of applying WSD to plain text. Indeed, in the standard formulation, models work under the assumptions that a) all the spans to disambiguate have already been identified, and b) all the possible candidate senses of each span are provided, both of which are requirements that are far from trivial. In this work, we present a new task called Word Sense Linking (WSL) where, given an input text and a reference sense inventory, systems have to both identify which spans to disambiguate and then link them to their most suitable meaning.We put forward a transformer-based architecture for the task and thoroughly evaluate both its performance and those of state-of-the-art WSD systems scaled to WSL, iteratively relaxing the assumptions of WSD. We hope that our work will foster easier integration of lexical semantics into downstream applications.
How does the teacher rate? Observations from the NeuroPiano dataset
This paper provides a detailed analysis of the NeuroPiano dataset, which comprise 104 audio recordings of student piano performances accompanied with 2255 textual feedback and ratings given by professional pianists. We offer a statistical overview of the dataset, focusing on the standardization of annotations and inter-annotator agreement across 12 evaluative questions concerning performance quality. We also explore the predictive relationship between audio features and teacher ratings via machine learning, as well as annotations provided for text analysis of the responses.
SentiPers: A Sentiment Analysis Corpus for Persian
Sentiment Analysis (SA) is a major field of study in natural language processing, computational linguistics and information retrieval. Interest in SA has been constantly growing in both academia and industry over the recent years. Moreover, there is an increasing need for generating appropriate resources and datasets in particular for low resource languages including Persian. These datasets play an important role in designing and developing appropriate opinion mining platforms using supervised, semi-supervised or unsupervised methods. In this paper, we outline the entire process of developing a manually annotated sentiment corpus, SentiPers, which covers formal and informal written contemporary Persian. To the best of our knowledge, SentiPers is a unique sentiment corpus with such a rich annotation in three different levels including document-level, sentence-level, and entity/aspect-level for Persian. The corpus contains more than 26000 sentences of users opinions from digital product domain and benefits from special characteristics such as quantifying the positiveness or negativity of an opinion through assigning a number within a specific range to any given sentence. Furthermore, we present statistics on various components of our corpus as well as studying the inter-annotator agreement among the annotators. Finally, some of the challenges that we faced during the annotation process will be discussed as well.
ACORN: Aspect-wise Commonsense Reasoning Explanation Evaluation
Evaluating free-text explanations is a multifaceted, subjective, and labor-intensive task. Large language models (LLMs) present an appealing alternative due to their potential for consistency, scalability, and cost-efficiency. In this work, we present ACORN, a new dataset of 3,500 free-text explanations and aspect-wise quality ratings, and use it to gain insights into how LLMs evaluate explanations. We observed that replacing one of the human ratings sometimes maintained, but more often lowered the inter-annotator agreement across different settings and quality aspects, suggesting that their judgments are not always consistent with human raters. We further quantified this difference by comparing the correlation between LLM-generated ratings with majority-voted human ratings across different quality aspects. With the best system, Spearman's rank correlation ranged between 0.53 to 0.95, averaging 0.72 across aspects, indicating moderately high but imperfect alignment. Finally, we considered the alternative of using an LLM as an additional rater when human raters are scarce, and measured the correlation between majority-voted labels with a limited human pool and LLMs as an additional rater, compared to the original gold labels. While GPT-4 improved the outcome when there were only two human raters, in all other observed cases, LLMs were neutral to detrimental when there were three or more human raters. We publicly release the dataset to support future improvements in LLM-in-the-loop evaluation here: https://github.com/a-brassard/ACORN.
AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages
Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yor\`ub\'a. These datasets consist of 1,500 turns each, which we translate from a portion of the English multi-domain MultiWOZ dataset. Subsequently, we investigate & analyze the effectiveness of modelling through transfer learning by utilziing state-of-the-art (SoTA) deep monolingual models: DialoGPT and BlenderBot. We compare the models with a simple seq2seq baseline using perplexity. Besides this, we conduct human evaluation of single-turn conversations by using majority votes and measure inter-annotator agreement (IAA). We find that the hypothesis that deep monolingual models learn some abstractions that generalize across languages holds. We observe human-like conversations, to different degrees, in 5 out of the 6 languages. The language with the most transferable properties is the Nigerian Pidgin English, with a human-likeness score of 78.1%, of which 34.4% are unanimous. We freely provide the datasets and host the model checkpoints/demos on the HuggingFace hub for public access.
From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models
Large Language Models (LLMs) have shown promise for financial applications, yet their suitability for this high-stakes domain remains largely unproven due to inadequacies in existing benchmarks. Existing benchmarks solely rely on score-level evaluation, summarizing performance with a single score that obscures the nuanced understanding of what models truly know and their precise limitations. They also rely on datasets that cover only a narrow subset of financial concepts, while overlooking other essentials for real-world applications. To address these gaps, we introduce FinCDM, the first cognitive diagnosis evaluation framework tailored for financial LLMs, enabling the evaluation of LLMs at the knowledge-skill level, identifying what financial skills and knowledge they have or lack based on their response patterns across skill-tagged tasks, rather than a single aggregated number. We construct CPA-QKA, the first cognitively informed financial evaluation dataset derived from the Certified Public Accountant (CPA) examination, with comprehensive coverage of real-world accounting and financial skills. It is rigorously annotated by domain experts, who author, validate, and annotate questions with high inter-annotator agreement and fine-grained knowledge labels. Our extensive experiments on 30 proprietary, open-source, and domain-specific LLMs show that FinCDM reveals hidden knowledge gaps, identifies under-tested areas such as tax and regulatory reasoning overlooked by traditional benchmarks, and uncovers behavioral clusters among models. FinCDM introduces a new paradigm for financial LLM evaluation by enabling interpretable, skill-aware diagnosis that supports more trustworthy and targeted model development, and all datasets and evaluation scripts will be publicly released to support further research.
SciArena: An Open Evaluation Platform for Foundation Models in Scientific Literature Tasks
We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 23 open-source and proprietary foundation models and has collected over 13,000 votes from trusted researchers across diverse scientific domains. We analyze the data collected so far and confirm that the submitted questions are diverse, aligned with real-world literature needs, and that participating researchers demonstrate strong self-consistency and inter-annotator agreement in their evaluations. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on our collected preference data. The benchmark measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.
ViFactCheck: A New Benchmark Dataset and Methods for Multi-domain News Fact-Checking in Vietnamese
The rapid spread of information in the digital age highlights the critical need for effective fact-checking tools, particularly for languages with limited resources, such as Vietnamese. In response to this challenge, we introduce ViFactCheck, the first publicly available benchmark dataset designed specifically for Vietnamese fact-checking across multiple online news domains. This dataset contains 7,232 human-annotated pairs of claim-evidence combinations sourced from reputable Vietnamese online news, covering 12 diverse topics. It has been subjected to a meticulous annotation process to ensure high quality and reliability, achieving a Fleiss Kappa inter-annotator agreement score of 0.83. Our evaluation leverages state-of-the-art pre-trained and large language models, employing fine-tuning and prompting techniques to assess performance. Notably, the Gemma model demonstrated superior effectiveness, with an impressive macro F1 score of 89.90%, thereby establishing a new standard for fact-checking benchmarks. This result highlights the robust capabilities of Gemma in accurately identifying and verifying facts in Vietnamese. To further promote advances in fact-checking technology and improve the reliability of digital media, we have made the ViFactCheck dataset, model checkpoints, fact-checking pipelines, and source code freely available on GitHub. This initiative aims to inspire further research and enhance the accuracy of information in low-resource languages.
LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond
With the recent appearance of LLMs in practical settings, having methods that can effectively detect factual inconsistencies is crucial to reduce the propagation of misinformation and improve trust in model outputs. When testing on existing factual consistency benchmarks, we find that a few large language models (LLMs) perform competitively on classification benchmarks for factual inconsistency detection compared to traditional non-LLM methods. However, a closer analysis reveals that most LLMs fail on more complex formulations of the task and exposes issues with existing evaluation benchmarks, affecting evaluation precision. To address this, we propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits. This new benchmark is 20 times more cost-effective per sample than previous benchmarks and highly reproducible, as we estimate inter-annotator agreement at about 0.9. Most LLMs struggle on SummEdits, with performance close to random chance. The best-performing model, GPT-4, is still 8\% below estimated human performance, highlighting the gaps in LLMs' ability to reason about facts and detect inconsistencies when they occur.
TICKing All the Boxes: Generated Checklists Improve LLM Evaluation and Generation
Given the widespread adoption and usage of Large Language Models (LLMs), it is crucial to have flexible and interpretable evaluations of their instruction-following ability. Preference judgments between model outputs have become the de facto evaluation standard, despite distilling complex, multi-faceted preferences into a single ranking. Furthermore, as human annotation is slow and costly, LLMs are increasingly used to make these judgments, at the expense of reliability and interpretability. In this work, we propose TICK (Targeted Instruct-evaluation with ChecKlists), a fully automated, interpretable evaluation protocol that structures evaluations with LLM-generated, instruction-specific checklists. We first show that, given an instruction, LLMs can reliably produce high-quality, tailored evaluation checklists that decompose the instruction into a series of YES/NO questions. Each question asks whether a candidate response meets a specific requirement of the instruction. We demonstrate that using TICK leads to a significant increase (46.4% to 52.2%) in the frequency of exact agreements between LLM judgements and human preferences, as compared to having an LLM directly score an output. We then show that STICK (Self-TICK) can be used to improve generation quality across multiple benchmarks via self-refinement and Best-of-N selection. STICK self-refinement on LiveBench reasoning tasks leads to an absolute gain of +7.8%, whilst Best-of-N selection with STICK attains +6.3% absolute improvement on the real-world instruction dataset, WildBench. In light of this, structured, multi-faceted self-improvement is shown to be a promising way to further advance LLM capabilities. Finally, by providing LLM-generated checklists to human evaluators tasked with directly scoring LLM responses to WildBench instructions, we notably increase inter-annotator agreement (0.194 to 0.256).
Quati: A Brazilian Portuguese Information Retrieval Dataset from Native Speakers
Despite Portuguese being one of the most spoken languages in the world, there is a lack of high-quality information retrieval datasets in that language. We present Quati, a dataset specifically designed for the Brazilian Portuguese language. It comprises a collection of queries formulated by native speakers and a curated set of documents sourced from a selection of high-quality Brazilian Portuguese websites. These websites are frequented more likely by real users compared to those randomly scraped, ensuring a more representative and relevant corpus. To label the query-document pairs, we use a state-of-the-art LLM, which shows inter-annotator agreement levels comparable to human performance in our assessments. We provide a detailed description of our annotation methodology to enable others to create similar datasets for other languages, providing a cost-effective way of creating high-quality IR datasets with an arbitrary number of labeled documents per query. Finally, we evaluate a diverse range of open-source and commercial retrievers to serve as baseline systems. Quati is publicly available at https://huggingface.co/datasets/unicamp-dl/quati and all scripts at https://github.com/unicamp-dl/quati .
Investigating Counterclaims in Causality Extraction from Text
Research on causality extraction from text has so far almost entirely neglected counterclaims. Existing causality extraction datasets focus solely on "procausal" claims, i.e., statements that support a relationship. "Concausal" claims, i.e., statements that refute a relationship, are entirely ignored or even accidentally annotated as procausal. We address this shortcoming by developing a new dataset that integrates concausality. Based on an extensive literature review, we first show that concausality is an integral part of causal reasoning on incomplete knowledge. We operationalize this theory in the form of a rigorous guideline for annotation and then augment the Causal News Corpus with concausal statements, obtaining a substantial inter-annotator agreement of Cohen's κ=0.74. To demonstrate the importance of integrating concausal statements, we show that models trained without concausal relationships tend to misclassify these as procausal instead. Based on our new dataset, this mistake can be mitigated, enabling transformers to effectively distinguish pro- and concausality.
MENLO: From Preferences to Proficiency -- Evaluating and Modeling Native-like Quality Across 47 Languages
Ensuring native-like quality of large language model (LLM) responses across many languages is challenging. To address this, we introduce MENLO, a framework that operationalizes the evaluation of native-like response quality based on audience design-inspired mechanisms. Using MENLO, we create a dataset of 6,423 human-annotated prompt-response preference pairs covering four quality dimensions with high inter-annotator agreement in 47 language varieties. Our evaluation reveals that zero-shot LLM judges benefit significantly from pairwise evaluation and our structured annotation rubrics, yet they still underperform human annotators on our dataset. We demonstrate substantial improvements through fine-tuning with reinforcement learning, reward shaping, and multi-task learning approaches. Additionally, we show that RL-trained judges can serve as generative reward models to enhance LLMs' multilingual proficiency, though discrepancies with human judgment remain. Our findings suggest promising directions for scalable multilingual evaluation and preference alignment. We release our dataset and evaluation framework to support further research in multilingual LLM evaluation.
VLDBench: Vision Language Models Disinformation Detection Benchmark
The rapid rise of AI-generated content has made detecting disinformation increasingly challenging. In particular, multimodal disinformation, i.e., online posts-articles that contain images and texts with fabricated information are specially designed to deceive. While existing AI safety benchmarks primarily address bias and toxicity, multimodal disinformation detection remains largely underexplored. To address this challenge, we present the Vision-Language Disinformation Detection Benchmark VLDBench, the first comprehensive benchmark for detecting disinformation across both unimodal (text-only) and multimodal (text and image) content, comprising 31,000} news article-image pairs, spanning 13 distinct categories, for robust evaluation. VLDBench features a rigorous semi-automated data curation pipeline, with 22 domain experts dedicating 300 plus hours} to annotation, achieving a strong inter-annotator agreement (Cohen kappa = 0.78). We extensively evaluate state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs), demonstrating that integrating textual and visual cues in multimodal news posts improves disinformation detection accuracy by 5 - 35 % compared to unimodal models. Developed in alignment with AI governance frameworks such as the EU AI Act, NIST guidelines, and the MIT AI Risk Repository 2024, VLDBench is expected to become a benchmark for detecting disinformation in online multi-modal contents. Our code and data will be publicly available.
AVeriTeC: A Dataset for Real-world Claim Verification with Evidence from the Web
Existing datasets for automated fact-checking have substantial limitations, such as relying on artificial claims, lacking annotations for evidence and intermediate reasoning, or including evidence published after the claim. In this paper we introduce AVeriTeC, a new dataset of 4,568 real-world claims covering fact-checks by 50 different organizations. Each claim is annotated with question-answer pairs supported by evidence available online, as well as textual justifications explaining how the evidence combines to produce a verdict. Through a multi-round annotation process, we avoid common pitfalls including context dependence, evidence insufficiency, and temporal leakage, and reach a substantial inter-annotator agreement of kappa=0.619 on verdicts. We develop a baseline as well as an evaluation scheme for verifying claims through several question-answering steps against the open web.
Wojood: Nested Arabic Named Entity Corpus and Recognition using BERT
This paper presents Wojood, a corpus for Arabic nested Named Entity Recognition (NER). Nested entities occur when one entity mention is embedded inside another entity mention. Wojood consists of about 550K Modern Standard Arabic (MSA) and dialect tokens that are manually annotated with 21 entity types including person, organization, location, event and date. More importantly, the corpus is annotated with nested entities instead of the more common flat annotations. The data contains about 75K entities and 22.5% of which are nested. The inter-annotator evaluation of the corpus demonstrated a strong agreement with Cohen's Kappa of 0.979 and an F1-score of 0.976. To validate our data, we used the corpus to train a nested NER model based on multi-task learning and AraBERT (Arabic BERT). The model achieved an overall micro F1-score of 0.884. Our corpus, the annotation guidelines, the source code and the pre-trained model are publicly available.
Cross-Policy Compliance Detection via Question Answering
Policy compliance detection is the task of ensuring that a scenario conforms to a policy (e.g. a claim is valid according to government rules or a post in an online platform conforms to community guidelines). This task has been previously instantiated as a form of textual entailment, which results in poor accuracy due to the complexity of the policies. In this paper we propose to address policy compliance detection via decomposing it into question answering, where questions check whether the conditions stated in the policy apply to the scenario, and an expression tree combines the answers to obtain the label. Despite the initial upfront annotation cost, we demonstrate that this approach results in better accuracy, especially in the cross-policy setup where the policies during testing are unseen in training. In addition, it allows us to use existing question answering models pre-trained on existing large datasets. Finally, it explicitly identifies the information missing from a scenario in case policy compliance cannot be determined. We conduct our experiments using a recent dataset consisting of government policies, which we augment with expert annotations and find that the cost of annotating question answering decomposition is largely offset by improved inter-annotator agreement and speed.
Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
Offering a promising solution to the scalability challenges associated with human evaluation, the LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models (LLMs). However, there are still many open questions about the strengths and weaknesses of this paradigm, and what potential biases it may hold. In this paper, we present a comprehensive study of the performance of various LLMs acting as judges. We leverage TriviaQA as a benchmark for assessing objective knowledge reasoning of LLMs and evaluate them alongside human annotations which we found to have a high inter-annotator agreement. Our study includes 9 judge models and 9 exam taker models -- both base and instruction-tuned. We assess the judge model's alignment across different model sizes, families, and judge prompts. Among other results, our research rediscovers the importance of using Cohen's kappa as a metric of alignment as opposed to simple percent agreement, showing that judges with high percent agreement can still assign vastly different scores. We find that both Llama-3 70B and GPT-4 Turbo have an excellent alignment with humans, but in terms of ranking exam taker models, they are outperformed by both JudgeLM-7B and the lexical judge Contains, which have up to 34 points lower human alignment. Through error analysis and various other studies, including the effects of instruction length and leniency bias, we hope to provide valuable lessons for using LLMs as judges in the future.
JiraiBench: A Bilingual Benchmark for Evaluating Large Language Models' Detection of Human Self-Destructive Behavior Content in Jirai Community
This paper introduces JiraiBench, the first bilingual benchmark for evaluating large language models' effectiveness in detecting self-destructive content across Chinese and Japanese social media communities. Focusing on the transnational "Jirai" (landmine) online subculture that encompasses multiple forms of self-destructive behaviors including drug overdose, eating disorders, and self-harm, we present a comprehensive evaluation framework incorporating both linguistic and cultural dimensions. Our dataset comprises 10,419 Chinese posts and 5,000 Japanese posts with multidimensional annotation along three behavioral categories, achieving substantial inter-annotator agreement. Experimental evaluations across four state-of-the-art models reveal significant performance variations based on instructional language, with Japanese prompts unexpectedly outperforming Chinese prompts when processing Chinese content. This emergent cross-cultural transfer suggests that cultural proximity can sometimes outweigh linguistic similarity in detection tasks. Cross-lingual transfer experiments with fine-tuned models further demonstrate the potential for knowledge transfer between these language systems without explicit target language training. These findings highlight the need for culturally-informed approaches to multilingual content moderation and provide empirical evidence for the importance of cultural context in developing more effective detection systems for vulnerable online communities.
EIDSeg: A Pixel-Level Semantic Segmentation Dataset for Post-Earthquake Damage Assessment from Social Media Images
Rapid post-earthquake damage assessment is crucial for rescue and resource planning. Still, existing remote sensing methods depend on costly aerial images, expert labeling, and produce only binary damage maps for early-stage evaluation. Although ground-level images from social networks provide a valuable source to fill this gap, a large pixel-level annotated dataset for this task is still unavailable. We introduce EIDSeg, the first large-scale semantic segmentation dataset specifically for post-earthquake social media imagery. The dataset comprises 3,266 images from nine major earthquakes (2008-2023), annotated across five classes of infrastructure damage: Undamaged Building, Damaged Building, Destroyed Building, Undamaged Road, and Damaged Road. We propose a practical three-phase cross-disciplinary annotation protocol with labeling guidelines that enables consistent segmentation by non-expert annotators, achieving over 70% inter-annotator agreement. We benchmark several state-of-the-art segmentation models, identifying Encoder-only Mask Transformer (EoMT) as the top-performing method with a Mean Intersection over Union (mIoU) of 80.8%. By unlocking social networks' rich ground-level perspective, our work paves the way for a faster, finer-grained damage assessment in the post-earthquake scenario.
HateBR: A Large Expert Annotated Corpus of Brazilian Instagram Comments for Offensive Language and Hate Speech Detection
Due to the severity of the social media offensive and hateful comments in Brazil, and the lack of research in Portuguese, this paper provides the first large-scale expert annotated corpus of Brazilian Instagram comments for hate speech and offensive language detection. The HateBR corpus was collected from the comment section of Brazilian politicians' accounts on Instagram and manually annotated by specialists, reaching a high inter-annotator agreement. The corpus consists of 7,000 documents annotated according to three different layers: a binary classification (offensive versus non-offensive comments), offensiveness-level classification (highly, moderately, and slightly offensive), and nine hate speech groups (xenophobia, racism, homophobia, sexism, religious intolerance, partyism, apology for the dictatorship, antisemitism, and fatphobia). We also implemented baseline experiments for offensive language and hate speech detection and compared them with a literature baseline. Results show that the baseline experiments on our corpus outperform the current state-of-the-art for the Portuguese language.
The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents synthetic Preference Optimization (PO) datasets generated using multi-agent workflows and evaluates the effectiveness and potential of these workflows in the dataset generation process. PO dataset generation requires two modules: (1) response evaluation, and (2) response generation. In the response evaluation module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. In each step, we use inter-rater agreement using Cohen's Kappa between human annotators and LLMs. For the response generation module, we compare different configurations for the LLM Feedback Loop using the identified LLM evaluator configuration. We use the win rate (the fraction of times a generation framework is selected as the best by an LLM evaluator) to determine the best multi-agent configuration for generation. After identifying the best configurations for both modules, we use models from the GPT, Gemma, and Llama families to generate our PO datasets using the above pipeline. We generate two types of PO datasets, one to improve the generation capabilities of individual LLM and the other to improve the multi-agent workflow. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across datasets when the candidate responses do not include responses from the GPT family. Additionally, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-agent Llama and Gemma, respectively.
Quranic Audio Dataset: Crowdsourced and Labeled Recitation from Non-Arabic Speakers
This paper addresses the challenge of learning to recite the Quran for non-Arabic speakers. We explore the possibility of crowdsourcing a carefully annotated Quranic dataset, on top of which AI models can be built to simplify the learning process. In particular, we use the volunteer-based crowdsourcing genre and implement a crowdsourcing API to gather audio assets. We integrated the API into an existing mobile application called NamazApp to collect audio recitations. We developed a crowdsourcing platform called Quran Voice for annotating the gathered audio assets. As a result, we have collected around 7000 Quranic recitations from a pool of 1287 participants across more than 11 non-Arabic countries, and we have annotated 1166 recitations from the dataset in six categories. We have achieved a crowd accuracy of 0.77, an inter-rater agreement of 0.63 between the annotators, and 0.89 between the labels assigned by the algorithm and the expert judgments.
You Are What You Annotate: Towards Better Models through Annotator Representations
Annotator disagreement is ubiquitous in natural language processing (NLP) tasks. There are multiple reasons for such disagreements, including the subjectivity of the task, difficult cases, unclear guidelines, and so on. Rather than simply aggregating labels to obtain data annotations, we instead try to directly model the diverse perspectives of the annotators, and explicitly account for annotators' idiosyncrasies in the modeling process by creating representations for each annotator (annotator embeddings) and also their annotations (annotation embeddings). In addition, we propose TID-8, The Inherent Disagreement - 8 dataset, a benchmark that consists of eight existing language understanding datasets that have inherent annotator disagreement. We test our approach on TID-8 and show that our approach helps models learn significantly better from disagreements on six different datasets in TID-8 while increasing model size by fewer than 1% parameters. By capturing the unique tendencies and subjectivity of individual annotators through embeddings, our representations prime AI models to be inclusive of diverse viewpoints.
Unsupervised Word-level Quality Estimation for Machine Translation Through the Lens of Annotators (Dis)agreement
Word-level quality estimation (WQE) aims to automatically identify fine-grained error spans in machine-translated outputs and has found many uses, including assisting translators during post-editing. Modern WQE techniques are often expensive, involving prompting of large language models or ad-hoc training on large amounts of human-labeled data. In this work, we investigate efficient alternatives exploiting recent advances in language model interpretability and uncertainty quantification to identify translation errors from the inner workings of translation models. In our evaluation spanning 14 metrics across 12 translation directions, we quantify the impact of human label variation on metric performance by using multiple sets of human labels. Our results highlight the untapped potential of unsupervised metrics, the shortcomings of supervised methods when faced with label uncertainty, and the brittleness of single-annotator evaluation practices.
CODE-ACCORD: A Corpus of Building Regulatory Data for Rule Generation towards Automatic Compliance Checking
Automatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. However, extracting information from textual rules to convert them to a machine-readable format has been a challenge due to the complexities associated with natural language and the limited resources that can support advanced machine-learning techniques. To address this challenge, we introduce CODE-ACCORD, a unique dataset compiled under the EU Horizon ACCORD project. CODE-ACCORD comprises 862 self-contained sentences extracted from the building regulations of England and Finland. Aligned with our core objective of facilitating information extraction from text for machine-readable rule generation, each sentence was annotated with entities and relations. Entities represent specific components such as "window" and "smoke detectors", while relations denote semantic associations between these entities, collectively capturing the conveyed ideas in natural language. We manually annotated all the sentences using a group of 12 annotators. Each sentence underwent annotations by multiple annotators and subsequently careful data curation to finalise annotations, ensuring their accuracy and reliability, thereby establishing the dataset as a solid ground truth. CODE-ACCORD offers a rich resource for diverse machine learning and natural language processing (NLP) related tasks in ACC, including text classification, entity recognition and relation extraction. To the best of our knowledge, this is the first entity and relation-annotated dataset in compliance checking, which is also publicly available.
Improving (Dis)agreement Detection with Inductive Social Relation Information From Comment-Reply Interactions
(Dis)agreement detection aims to identify the authors' attitudes or positions ({agree, disagree, neutral}) towards a specific text. It is limited for existing methods merely using textual information for identifying (dis)agreements, especially for cross-domain settings. Social relation information can play an assistant role in the (dis)agreement task besides textual information. We propose a novel method to extract such relation information from (dis)agreement data into an inductive social relation graph, merely using the comment-reply pairs without any additional platform-specific information. The inductive social relation globally considers the historical discussion and the relation between authors. Textual information based on a pre-trained language model and social relation information encoded by pre-trained RGCN are jointly considered for (dis)agreement detection. Experimental results show that our model achieves state-of-the-art performance for both the in-domain and cross-domain tasks on the benchmark -- DEBAGREEMENT. We find social relations can boost the performance of the (dis)agreement detection model, especially for the long-token comment-reply pairs, demonstrating the effectiveness of the social relation graph. We also explore the effect of the knowledge graph embedding methods, the information fusing method, and the time interval in constructing the social relation graph, which shows the effectiveness of our model.
Can Large Language Models Capture Human Annotator Disagreements?
Human annotation variation (i.e., annotation disagreements) is common in NLP and often reflects important information such as task subjectivity and sample ambiguity. While Large Language Models (LLMs) are increasingly used for automatic annotation to reduce human effort, their evaluation often focuses on predicting the majority-voted "ground truth" labels. It is still unclear, however, whether these models also capture informative human annotation variation. Our work addresses this gap by extensively evaluating LLMs' ability to predict annotation disagreements without access to repeated human labels. Our results show that LLMs struggle with modeling disagreements, which can be overlooked by majority label-based evaluations. Notably, while RLVR-style (Reinforcement learning with verifiable rewards) reasoning generally boosts LLM performance, it degrades performance in disagreement prediction. Our findings highlight the critical need for evaluating and improving LLM annotators in disagreement modeling. Code and data at https://github.com/EdisonNi-hku/Disagreement_Prediction.
Understanding and Predicting Human Label Variation in Natural Language Inference through Explanation
Human label variation (Plank 2022), or annotation disagreement, exists in many natural language processing (NLP) tasks. To be robust and trusted, NLP models need to identify such variation and be able to explain it. To this end, we created the first ecologically valid explanation dataset with diverse reasoning, LiveNLI. LiveNLI contains annotators' highlights and free-text explanations for the label(s) of their choice for 122 English Natural Language Inference items, each with at least 10 annotations. We used its explanations for chain-of-thought prompting, and found there is still room for improvement in GPT-3's ability to predict label distribution with in-context learning.
SIGHT: A Large Annotated Dataset on Student Insights Gathered from Higher Education Transcripts
Lectures are a learning experience for both students and teachers. Students learn from teachers about the subject material, while teachers learn from students about how to refine their instruction. However, online student feedback is unstructured and abundant, making it challenging for teachers to learn and improve. We take a step towards tackling this challenge. First, we contribute a dataset for studying this problem: SIGHT is a large dataset of 288 math lecture transcripts and 15,784 comments collected from the Massachusetts Institute of Technology OpenCourseWare (MIT OCW) YouTube channel. Second, we develop a rubric for categorizing feedback types using qualitative analysis. Qualitative analysis methods are powerful in uncovering domain-specific insights, however they are costly to apply to large data sources. To overcome this challenge, we propose a set of best practices for using large language models (LLMs) to cheaply classify the comments at scale. We observe a striking correlation between the model's and humans' annotation: Categories with consistent human annotations (>0.9 inter-rater reliability, IRR) also display higher human-model agreement (>0.7), while categories with less consistent human annotations (0.7-0.8 IRR) correspondingly demonstrate lower human-model agreement (0.3-0.5). These techniques uncover useful student feedback from thousands of comments, costing around 0.002$ per comment. We conclude by discussing exciting future directions on using online student feedback and improving automated annotation techniques for qualitative research.
Multi3Hate: Multimodal, Multilingual, and Multicultural Hate Speech Detection with Vision-Language Models
Warning: this paper contains content that may be offensive or upsetting Hate speech moderation on global platforms poses unique challenges due to the multimodal and multilingual nature of content, along with the varying cultural perceptions. How well do current vision-language models (VLMs) navigate these nuances? To investigate this, we create the first multimodal and multilingual parallel hate speech dataset, annotated by a multicultural set of annotators, called Multi3Hate. It contains 300 parallel meme samples across 5 languages: English, German, Spanish, Hindi, and Mandarin. We demonstrate that cultural background significantly affects multimodal hate speech annotation in our dataset. The average pairwise agreement among countries is just 74%, significantly lower than that of randomly selected annotator groups. Our qualitative analysis indicates that the lowest pairwise label agreement-only 67% between the USA and India-can be attributed to cultural factors. We then conduct experiments with 5 large VLMs in a zero-shot setting, finding that these models align more closely with annotations from the US than with those from other cultures, even when the memes and prompts are presented in the dominant language of the other culture. Code and dataset are available at https://github.com/MinhDucBui/Multi3Hate.
Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark
We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 18 datasets annotated with named entities in a cross-lingual consistent schema across 12 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We release the data, code, and fitted models to the public.
Pre-trained Language Models as Re-Annotators
Annotation noise is widespread in datasets, but manually revising a flawed corpus is time-consuming and error-prone. Hence, given the prior knowledge in Pre-trained Language Models and the expected uniformity across all annotations, we attempt to reduce annotation noise in the corpus through two tasks automatically: (1) Annotation Inconsistency Detection that indicates the credibility of annotations, and (2) Annotation Error Correction that rectifies the abnormal annotations. We investigate how to acquire semantic sensitive annotation representations from Pre-trained Language Models, expecting to embed the examples with identical annotations to the mutually adjacent positions even without fine-tuning. We proposed a novel credibility score to reveal the likelihood of annotation inconsistencies based on the neighbouring consistency. Then, we fine-tune the Pre-trained Language Models based classifier with cross-validation for annotation correction. The annotation corrector is further elaborated with two approaches: (1) soft labelling by Kernel Density Estimation and (2) a novel distant-peer contrastive loss. We study the re-annotation in relation extraction and create a new manually revised dataset, Re-DocRED, for evaluating document-level re-annotation. The proposed credibility scores show promising agreement with human revisions, achieving a Binary F1 of 93.4 and 72.5 in detecting inconsistencies on TACRED and DocRED respectively. Moreover, the neighbour-aware classifiers based on distant-peer contrastive learning and uncertain labels achieve Macro F1 up to 66.2 and 57.8 in correcting annotations on TACRED and DocRED respectively. These improvements are not merely theoretical: Rather, automatically denoised training sets demonstrate up to 3.6% performance improvement for state-of-the-art relation extraction models.
Minority Reports: Balancing Cost and Quality in Ground Truth Data Annotation
High-quality data annotation is an essential but laborious and costly aspect of developing machine learning-based software. We explore the inherent tradeoff between annotation accuracy and cost by detecting and removing minority reports -- instances where annotators provide incorrect responses -- that indicate unnecessary redundancy in task assignments. We propose an approach to prune potentially redundant annotation task assignments before they are executed by estimating the likelihood of an annotator disagreeing with the majority vote for a given task. Our approach is informed by an empirical analysis over computer vision datasets annotated by a professional data annotation platform, which reveals that the likelihood of a minority report event is dependent primarily on image ambiguity, worker variability, and worker fatigue. Simulations over these datasets show that we can reduce the number of annotations required by over 60% with a small compromise in label quality, saving approximately 6.6 days-equivalent of labor. Our approach provides annotation service platforms with a method to balance cost and dataset quality. Machine learning practitioners can tailor annotation accuracy levels according to specific application needs, thereby optimizing budget allocation while maintaining the data quality necessary for critical settings like autonomous driving technology.
Different Tastes of Entities: Investigating Human Label Variation in Named Entity Annotations
Named Entity Recognition (NER) is a key information extraction task with a long-standing tradition. While recent studies address and aim to correct annotation errors via re-labeling efforts, little is known about the sources of human label variation, such as text ambiguity, annotation error, or guideline divergence. This is especially the case for high-quality datasets and beyond English CoNLL03. This paper studies disagreements in expert-annotated named entity datasets for three languages: English, Danish, and Bavarian. We show that text ambiguity and artificial guideline changes are dominant factors for diverse annotations among high-quality revisions. We survey student annotations on a subset of difficult entities and substantiate the feasibility and necessity of manifold annotations for understanding named entity ambiguities from a distributional perspective.
Revamping Multilingual Agreement Bidirectionally via Switched Back-translation for Multilingual Neural Machine Translation
Despite the fact that multilingual agreement (MA) has shown its importance for multilingual neural machine translation (MNMT), current methodologies in the field have two shortages: (i) require parallel data between multiple language pairs, which is not always realistic and (ii) optimize the agreement in an ambiguous direction, which hampers the translation performance. We present Bidirectional Multilingual Agreement via Switched Back-translation (BMA-SBT), a novel and universal multilingual agreement framework for fine-tuning pre-trained MNMT models, which (i) exempts the need for aforementioned parallel data by using a novel method called switched BT that creates synthetic text written in another source language using the translation target and (ii) optimizes the agreement bidirectionally with the Kullback-Leibler Divergence loss. Experiments indicate that BMA-SBT clearly improves the strong baselines on the task of MNMT with three benchmarks: TED Talks, News, and Europarl. In-depth analyzes indicate that BMA-SBT brings additive improvements to the conventional BT method.
Essential-Web v1.0: 24T tokens of organized web data
Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: https://huggingface.co/datasets/EssentialAI/essential-web-v1.0
MAUD: An Expert-Annotated Legal NLP Dataset for Merger Agreement Understanding
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
Trust or Escalate: LLM Judges with Provable Guarantees for Human Agreement
We present a principled approach to provide LLM-based evaluation with a rigorous guarantee of human agreement. We first propose that a reliable evaluation method should not uncritically rely on model preferences for pairwise evaluation, but rather assess the confidence of judge models and selectively decide when to trust its judgement. We then show that under this selective evaluation framework, human agreement can be provably guaranteed -- such that the model evaluation aligns with that of humans to a user-specified agreement level. As part of our framework, we also introduce Simulated Annotators, a novel confidence estimation method that significantly improves judge calibration and thus enables high coverage of evaluated instances. Finally, we propose Cascaded Selective Evaluation, where we use cheaper models as initial judges and escalate to stronger models only when necessary -- again, while still providing a provable guarantee of human agreement. Experimental results show that Cascaded Selective Evaluation guarantees strong alignment with humans, far beyond what LLM judges could achieve without selective evaluation. For example, on a subset of Chatbot Arena where GPT-4 almost never achieves 80% human agreement, our method, even while employing substantially cost-effective models such as Mistral-7B, guarantees over 80% human agreement with almost 80% test coverage.
Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview
The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them.
Do Differences in Values Influence Disagreements in Online Discussions?
Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.
Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance
NLP benchmarks rely on standardized datasets for training and evaluating models and are crucial for advancing the field. Traditionally, expert annotations ensure high-quality labels; however, the cost of expert annotation does not scale well with the growing demand for larger datasets required by modern models. While crowd-sourcing provides a more scalable solution, it often comes at the expense of annotation precision and consistency. Recent advancements in large language models (LLMs) offer new opportunities to enhance the annotation process, particularly for detecting label errors in existing datasets. In this work, we consider the recent approach of LLM-as-a-judge, leveraging an ensemble of LLMs to flag potentially mislabeled examples. Through a case study of four datasets from the TRUE benchmark, covering different tasks and domains, we empirically analyze the labeling quality of existing datasets, and compare expert, crowd-sourced, and our LLM-based annotations in terms of agreement, label quality, and efficiency, demonstrating the strengths and limitations of each annotation method. Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance. This suggests that many of the LLMs so-called mistakes are due to label errors rather than genuine model failures. Additionally, we discuss the implications of mislabeled data and propose methods to mitigate them in training to improve model performance.
Design Choices for Crowdsourcing Implicit Discourse Relations: Revealing the Biases Introduced by Task Design
Disagreement in natural language annotation has mostly been studied from a perspective of biases introduced by the annotators and the annotation frameworks. Here, we propose to analyze another source of bias: task design bias, which has a particularly strong impact on crowdsourced linguistic annotations where natural language is used to elicit the interpretation of laymen annotators. For this purpose we look at implicit discourse relation annotation, a task that has repeatedly been shown to be difficult due to the relations' ambiguity. We compare the annotations of 1,200 discourse relations obtained using two distinct annotation tasks and quantify the biases of both methods across four different domains. Both methods are natural language annotation tasks designed for crowdsourcing. We show that the task design can push annotators towards certain relations and that some discourse relations senses can be better elicited with one or the other annotation approach. We also conclude that this type of bias should be taken into account when training and testing models.
tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation
The HuggingFace Datasets Hub hosts thousands of datasets. This provides exciting opportunities for language model training and evaluation. However, the datasets for a given type of task are stored with different schemas, and harmonization is harder than it seems (https://xkcd.com/927/). Multi-task training or evaluation requires manual work to fit data into task templates. Various initiatives independently address this problem by releasing the harmonized datasets or harmonization codes to preprocess datasets to the same format. We identify patterns across previous preprocessings, e.g. mapping of column names, and extraction of a specific sub-field from structured data in a column, and propose a structured annotation framework that makes our annotations fully exposed and not buried in unstructured code. We release a dataset annotation framework and dataset annotations for more than 400 English tasks (https://github.com/sileod/tasksource). These annotations provide metadata, like the name of the columns that should be used as input or labels for all datasets, and can save time for future dataset preprocessings, even if they do not use our framework. We fine-tune a multi-task text encoder on all tasksource tasks, outperforming every publicly available text encoder of comparable size on an external evaluation https://hf.co/sileod/deberta-v3-base-tasksource-nli.
THAI Speech Emotion Recognition (THAI-SER) corpus
We present the first sizeable corpus of Thai speech emotion recognition, THAI-SER, containing 41 hours and 36 minutes (27,854 utterances) from 100 recordings made in different recording environments: Zoom and two studio setups. The recordings contain both scripted and improvised sessions, acted by 200 professional actors (112 females and 88 males, aged 18 to 55) and were directed by professional directors. There are five primary emotions: neutral, angry, happy, sad, and frustrated, assigned to the actors when recording utterances. The utterances are annotated with an emotional category using crowdsourcing. To control the annotation process's quality, we also design an extensive filtering and quality control scheme to ensure that the majority agreement score remains above 0.71. We evaluate our annotated corpus using two metrics: inter-annotator reliability and human recognition accuracy. Inter-annotator reliability score was calculated using Krippendorff's alpha, where our corpus, after filtering, achieved an alpha score of 0.692, higher than a recommendation of 0.667. For human recognition accuracy, our corpus scored up to 0.772 post-filtering. We also provide the results of the model trained on the corpus evaluated on both in-corpus and cross-corpus setups. The corpus is publicly available under a Creative Commons BY-SA 4.0, as well as our codes for the experiments.
Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection
Universal Dependencies is an open community effort to create cross-linguistically consistent treebank annotation for many languages within a dependency-based lexicalist framework. The annotation consists in a linguistically motivated word segmentation; a morphological layer comprising lemmas, universal part-of-speech tags, and standardized morphological features; and a syntactic layer focusing on syntactic relations between predicates, arguments and modifiers. In this paper, we describe version 2 of the guidelines (UD v2), discuss the major changes from UD v1 to UD v2, and give an overview of the currently available treebanks for 90 languages.
Large Language Models for Data Annotation: A Survey
Data annotation is the labeling or tagging of raw data with relevant information, essential for improving the efficacy of machine learning models. The process, however, is labor-intensive and expensive. The emergence of advanced Large Language Models (LLMs), exemplified by GPT-4, presents an unprecedented opportunity to revolutionize and automate the intricate process of data annotation. While existing surveys have extensively covered LLM architecture, training, and general applications, this paper uniquely focuses on their specific utility for data annotation. This survey contributes to three core aspects: LLM-Based Data Annotation, Assessing LLM-generated Annotations, and Learning with LLM-generated annotations. Furthermore, the paper includes an in-depth taxonomy of methodologies employing LLMs for data annotation, a comprehensive review of learning strategies for models incorporating LLM-generated annotations, and a detailed discussion on primary challenges and limitations associated with using LLMs for data annotation. As a key guide, this survey aims to direct researchers and practitioners in exploring the potential of the latest LLMs for data annotation, fostering future advancements in this critical domain. We provide a comprehensive papers list at https://github.com/Zhen-Tan-dmml/LLM4Annotation.git.
The FIGNEWS Shared Task on News Media Narratives
We present an overview of the FIGNEWS shared task, organized as part of the ArabicNLP 2024 conference co-located with ACL 2024. The shared task addresses bias and propaganda annotation in multilingual news posts. We focus on the early days of the Israel War on Gaza as a case study. The task aims to foster collaboration in developing annotation guidelines for subjective tasks by creating frameworks for analyzing diverse narratives highlighting potential bias and propaganda. In a spirit of fostering and encouraging diversity, we address the problem from a multilingual perspective, namely within five languages: English, French, Arabic, Hebrew, and Hindi. A total of 17 teams participated in two annotation subtasks: bias (16 teams) and propaganda (6 teams). The teams competed in four evaluation tracks: guidelines development, annotation quality, annotation quantity, and consistency. Collectively, the teams produced 129,800 data points. Key findings and implications for the field are discussed.
Nabra: Syrian Arabic Dialects with Morphological Annotations
This paper presents Nabra, a corpora of Syrian Arabic dialects with morphological annotations. A team of Syrian natives collected more than 6K sentences containing about 60K words from several sources including social media posts, scripts of movies and series, lyrics of songs and local proverbs to build Nabra. Nabra covers several local Syrian dialects including those of Aleppo, Damascus, Deir-ezzur, Hama, Homs, Huran, Latakia, Mardin, Raqqah, and Suwayda. A team of nine annotators annotated the 60K tokens with full morphological annotations across sentence contexts. We trained the annotators to follow methodological annotation guidelines to ensure unique morpheme annotations, and normalized the annotations. F1 and kappa agreement scores ranged between 74% and 98% across features, showing the excellent quality of Nabra annotations. Our corpora are open-source and publicly available as part of the Currasat portal https://sina.birzeit.edu/currasat.
Benchmark Agreement Testing Done Right: A Guide for LLM Benchmark Evaluation
Recent advancements in Language Models (LMs) have catalyzed the creation of multiple benchmarks, designed to assess these models' general capabilities. A crucial task, however, is assessing the validity of the benchmarks themselves. This is most commonly done via Benchmark Agreement Testing (BAT), where new benchmarks are validated against established ones using some agreement metric (e.g., rank correlation). Despite the crucial role of BAT for benchmark builders and consumers, there are no standardized procedures for such agreement testing. This deficiency can lead to invalid conclusions, fostering mistrust in benchmarks and upending the ability to properly choose the appropriate benchmark to use. By analyzing over 40 prominent benchmarks, we demonstrate how some overlooked methodological choices can significantly influence BAT results, potentially undermining the validity of conclusions. To address these inconsistencies, we propose a set of best practices for BAT and demonstrate how utilizing these methodologies greatly improves BAT robustness and validity. To foster adoption and facilitate future research,, we introduce BenchBench, a python package for BAT, and release the BenchBench-leaderboard, a meta-benchmark designed to evaluate benchmarks using their peers. Our findings underscore the necessity for standardized BAT, ensuring the robustness and validity of benchmark evaluations in the evolving landscape of language model research. BenchBench Package: https://github.com/IBM/BenchBench Leaderboard: https://huggingface.co/spaces/per/BenchBench
Why Do Multi-Agent LLM Systems Fail?
Despite growing enthusiasm for Multi-Agent Systems (MAS), where multiple LLM agents collaborate to accomplish tasks, their performance gains across popular benchmarks remain minimal compared to single-agent frameworks. This gap highlights the need to analyze the challenges hindering MAS effectiveness. In this paper, we present the first comprehensive study of MAS challenges. We analyze five popular MAS frameworks across over 150 tasks, involving six expert human annotators. We identify 14 unique failure modes and propose a comprehensive taxonomy applicable to various MAS frameworks. This taxonomy emerges iteratively from agreements among three expert annotators per study, achieving a Cohen's Kappa score of 0.88. These fine-grained failure modes are organized into 3 categories, (i) specification and system design failures, (ii) inter-agent misalignment, and (iii) task verification and termination. To support scalable evaluation, we integrate MASFT with LLM-as-a-Judge. We also explore if identified failures could be easily prevented by proposing two interventions: improved specification of agent roles and enhanced orchestration strategies. Our findings reveal that identified failures require more complex solutions, highlighting a clear roadmap for future research. We open-source our dataset and LLM annotator.
Using Natural Language Explanations to Rescale Human Judgments
The rise of large language models (LLMs) has brought a critical need for high-quality human-labeled data, particularly for processes like human feedback and evaluation. A common practice is to label data via consensus annotation over crowdworker judgments. However, annotators' judgments for subjective tasks can differ in many ways: they may have different qualitative judgments about an example, and they may map those to a labeling scheme in different ways. We show that these nuances can be captured by natural language explanations, and propose a method to rescale ordinal annotations and explanations using LLMs. Specifically, we feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric. These scores should reflect the annotators' underlying assessments of the example. The rubric can be designed or modified after annotation, and include distinctions that may not have been known when the original error taxonomy was devised. We explore our technique in the context of rating system outputs for a document-grounded question answering task, where LLMs achieve near-human performance. Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
More efficient manual review of automatically transcribed tabular data
Machine learning methods have proven useful in transcribing historical data. However, results from even highly accurate methods require manual verification and correction. Such manual review can be time-consuming and expensive, therefore the objective of this paper was to make it more efficient. Previously, we used machine learning to transcribe 2.3 million handwritten occupation codes from the Norwegian 1950 census with high accuracy (97%). We manually reviewed the 90,000 (3%) codes with the lowest model confidence. We allocated those 90,000 codes to human reviewers, who used our annotation tool to review the codes. To assess reviewer agreement, some codes were assigned to multiple reviewers. We then analyzed the review results to understand the relationship between accuracy improvements and effort. Additionally, we interviewed the reviewers to improve the workflow. The reviewers corrected 62.8% of the labels and agreed with the model label in 31.9% of cases. About 0.2% of the images could not be assigned a label, while for 5.1% the reviewers were uncertain, or they assigned an invalid label. 9,000 images were independently reviewed by multiple reviewers, resulting in an agreement of 86.43% and disagreement of 8.96%. We learned that our automatic transcription is biased towards the most frequent codes, with a higher degree of misclassification for the lowest frequency codes. Our interview findings show that the reviewers did internal quality control and found our custom tool well-suited. So, only one reviewer is needed, but they should report uncertainty.
Annotation Sensitivity: Training Data Collection Methods Affect Model Performance
When training data are collected from human annotators, the design of the annotation instrument, the instructions given to annotators, the characteristics of the annotators, and their interactions can impact training data. This study demonstrates that design choices made when creating an annotation instrument also impact the models trained on the resulting annotations. We introduce the term annotation sensitivity to refer to the impact of annotation data collection methods on the annotations themselves and on downstream model performance and predictions. We collect annotations of hate speech and offensive language in five experimental conditions of an annotation instrument, randomly assigning annotators to conditions. We then fine-tune BERT models on each of the five resulting datasets and evaluate model performance on a holdout portion of each condition. We find considerable differences between the conditions for 1) the share of hate speech/offensive language annotations, 2) model performance, 3) model predictions, and 4) model learning curves. Our results emphasize the crucial role played by the annotation instrument which has received little attention in the machine learning literature. We call for additional research into how and why the instrument impacts the annotations to inform the development of best practices in instrument design.
On the limits of cross-domain generalization in automated X-ray prediction
This large scale study focuses on quantifying what X-rays diagnostic prediction tasks generalize well across multiple different datasets. We present evidence that the issue of generalization is not due to a shift in the images but instead a shift in the labels. We study the cross-domain performance, agreement between models, and model representations. We find interesting discrepancies between performance and agreement where models which both achieve good performance disagree in their predictions as well as models which agree yet achieve poor performance. We also test for concept similarity by regularizing a network to group tasks across multiple datasets together and observe variation across the tasks. All code is made available online and data is publicly available: https://github.com/mlmed/torchxrayvision
IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages
Despite the considerable advancements in English LLMs, the progress in building comparable models for other languages has been hindered due to the scarcity of tailored resources. Our work aims to bridge this divide by introducing an expansive suite of resources specifically designed for the development of Indic LLMs, covering 22 languages, containing a total of 251B tokens and 74.8M instruction-response pairs. Recognizing the importance of both data quality and quantity, our approach combines highly curated manually verified data, unverified yet valuable data, and synthetic data. We build a clean, open-source pipeline for curating pre-training data from diverse sources, including websites, PDFs, and videos, incorporating best practices for crawling, cleaning, flagging, and deduplication. For instruction-fine tuning, we amalgamate existing Indic datasets, translate/transliterate English datasets into Indian languages, and utilize LLaMa2 and Mixtral models to create conversations grounded in articles from Indian Wikipedia and Wikihow. Additionally, we address toxicity alignment by generating toxic prompts for multiple scenarios and then generate non-toxic responses by feeding these toxic prompts to an aligned LLaMa2 model. We hope that the datasets, tools, and resources released as a part of this work will not only propel the research and development of Indic LLMs but also establish an open-source blueprint for extending such efforts to other languages. The data and other artifacts created as part of this work are released with permissive licenses.
TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking
Extracting entities and relations from unstructured text has attracted increasing attention in recent years but remains challenging, due to the intrinsic difficulty in identifying overlapping relations with shared entities. Prior works show that joint learning can result in a noticeable performance gain. However, they usually involve sequential interrelated steps and suffer from the problem of exposure bias. At training time, they predict with the ground truth conditions while at inference it has to make extraction from scratch. This discrepancy leads to error accumulation. To mitigate the issue, we propose in this paper a one-stage joint extraction model, namely, TPLinker, which is capable of discovering overlapping relations sharing one or both entities while immune from the exposure bias. TPLinker formulates joint extraction as a token pair linking problem and introduces a novel handshaking tagging scheme that aligns the boundary tokens of entity pairs under each relation type. Experiment results show that TPLinker performs significantly better on overlapping and multiple relation extraction, and achieves state-of-the-art performance on two public datasets.
ContractNLI: A Dataset for Document-level Natural Language Inference for Contracts
Reviewing contracts is a time-consuming procedure that incurs large expenses to companies and social inequality to those who cannot afford it. In this work, we propose "document-level natural language inference (NLI) for contracts", a novel, real-world application of NLI that addresses such problems. In this task, a system is given a set of hypotheses (such as "Some obligations of Agreement may survive termination.") and a contract, and it is asked to classify whether each hypothesis is "entailed by", "contradicting to" or "not mentioned by" (neutral to) the contract as well as identifying "evidence" for the decision as spans in the contract. We annotated and release the largest corpus to date consisting of 607 annotated contracts. We then show that existing models fail badly on our task and introduce a strong baseline, which (1) models evidence identification as multi-label classification over spans instead of trying to predict start and end tokens, and (2) employs more sophisticated context segmentation for dealing with long documents. We also show that linguistic characteristics of contracts, such as negations by exceptions, are contributing to the difficulty of this task and that there is much room for improvement.
COMMENTATOR: A Code-mixed Multilingual Text Annotation Framework
As the NLP community increasingly addresses challenges associated with multilingualism, robust annotation tools are essential to handle multilingual datasets efficiently. In this paper, we introduce a code-mixed multilingual text annotation framework, COMMENTATOR, specifically designed for annotating code-mixed text. The tool demonstrates its effectiveness in token-level and sentence-level language annotation tasks for Hinglish text. We perform robust qualitative human-based evaluations to showcase COMMENTATOR led to 5x faster annotations than the best baseline. Our code is publicly available at https://github.com/lingo-iitgn/commentator. The demonstration video is available at https://bit.ly/commentator_video.
OpenNER 1.0: Standardized Open-Access Named Entity Recognition Datasets in 50+ Languages
We present OpenNER 1.0, a standardized collection of openly available named entity recognition (NER) datasets. OpenNER contains 34 datasets spanning 51 languages, annotated in varying named entity ontologies. We correct annotation format issues, standardize the original datasets into a uniform representation, map entity type names to be more consistent across corpora, and provide the collection in a structure that enables research in multilingual and multi-ontology NER. We provide baseline models using three pretrained multilingual language models to compare the performance of recent models and facilitate future research in NER.
Computer Science Named Entity Recognition in the Open Research Knowledge Graph
Domain-specific named entity recognition (NER) on Computer Science (CS) scholarly articles is an information extraction task that is arguably more challenging for the various annotation aims that can beset the task and has been less studied than NER in the general domain. Given that significant progress has been made on NER, we believe that scholarly domain-specific NER will receive increasing attention in the years to come. Currently, progress on CS NER -- the focus of this work -- is hampered in part by its recency and the lack of a standardized annotation aim for scientific entities/terms. This work proposes a standardized task by defining a set of seven contribution-centric scholarly entities for CS NER viz., research problem, solution, resource, language, tool, method, and dataset. Following which, its main contributions are: combines existing CS NER resources that maintain their annotation focus on the set or subset of contribution-centric scholarly entities we consider; further, noting the need for big data to train neural NER models, this work additionally supplies thousands of contribution-centric entity annotations from article titles and abstracts, thus releasing a cumulative large novel resource for CS NER; and, finally, trains a sequence labeling CS NER model inspired after state-of-the-art neural architectures from the general domain NER task. Throughout the work, several practical considerations are made which can be useful to information technology designers of the digital libraries.
X-PARADE: Cross-Lingual Textual Entailment and Information Divergence across Paragraphs
Understanding when two pieces of text convey the same information is a goal touching many subproblems in NLP, including textual entailment and fact-checking. This problem becomes more complex when those two pieces of text are in different languages. Here, we introduce X-PARADE (Cross-lingual Paragraph-level Analysis of Divergences and Entailments), the first cross-lingual dataset of paragraph-level information divergences. Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language, indicating whether a given piece of information is the same, new, or new but can be inferred. This last notion establishes a link with cross-language NLI. Aligned paragraphs are sourced from Wikipedia pages in different languages, reflecting real information divergences observed in the wild. Armed with our dataset, we investigate a diverse set of approaches for this problem, including token alignment from machine translation, textual entailment methods that localize their decisions, and prompting LLMs. Our results show that these methods vary in their capability to handle inferable information, but they all fall short of human performance.
VisioFirm: Cross-Platform AI-assisted Annotation Tool for Computer Vision
AI models rely on annotated data to learn pattern and perform prediction. Annotation is usually a labor-intensive step that require associating labels ranging from a simple classification label to more complex tasks such as object detection, oriented bounding box estimation, and instance segmentation. Traditional tools often require extensive manual input, limiting scalability for large datasets. To address this, we introduce VisioFirm, an open-source web application designed to streamline image labeling through AI-assisted automation. VisioFirm integrates state-of-the-art foundation models into an interface with a filtering pipeline to reduce human-in-the-loop efforts. This hybrid approach employs CLIP combined with pre-trained detectors like Ultralytics models for common classes and zero-shot models such as Grounding DINO for custom labels, generating initial annotations with low-confidence thresholding to maximize recall. Through this framework, when tested on COCO-type of classes, initial prediction have been proven to be mostly correct though the users can refine these via interactive tools supporting bounding boxes, oriented bounding boxes, and polygons. Additionally, VisioFirm has on-the-fly segmentation powered by Segment Anything accelerated through WebGPU for browser-side efficiency. The tool supports multiple export formats (YOLO, COCO, Pascal VOC, CSV) and operates offline after model caching, enhancing accessibility. VisioFirm demonstrates up to 90\% reduction in manual effort through benchmarks on diverse datasets, while maintaining high annotation accuracy via clustering of connected CLIP-based disambiguate components and IoU-graph for redundant detection suppression. VisioFirm can be accessed from https://github.com/OschAI/VisioFirm{https://github.com/OschAI/VisioFirm}.
Automotive Perception Software Development: An Empirical Investigation into Data, Annotation, and Ecosystem Challenges
Software that contains machine learning algorithms is an integral part of automotive perception, for example, in driving automation systems. The development of such software, specifically the training and validation of the machine learning components, require large annotated datasets. An industry of data and annotation services has emerged to serve the development of such data-intensive automotive software components. Wide-spread difficulties to specify data and annotation needs challenge collaborations between OEMs (Original Equipment Manufacturers) and their suppliers of software components, data, and annotations. This paper investigates the reasons for these difficulties for practitioners in the Swedish automotive industry to arrive at clear specifications for data and annotations. The results from an interview study show that a lack of effective metrics for data quality aspects, ambiguities in the way of working, unclear definitions of annotation quality, and deficits in the business ecosystems are causes for the difficulty in deriving the specifications. We provide a list of recommendations that can mitigate challenges when deriving specifications and we propose future research opportunities to overcome these challenges. Our work contributes towards the on-going research on accountability of machine learning as applied to complex software systems, especially for high-stake applications such as automated driving.
Rethinking Human Evaluation Protocol for Text-to-Video Models: Enhancing Reliability,Reproducibility, and Practicality
Recent text-to-video (T2V) technology advancements, as demonstrated by models such as Gen2, Pika, and Sora, have significantly broadened its applicability and popularity. Despite these strides, evaluating these models poses substantial challenges. Primarily, due to the limitations inherent in automatic metrics, manual evaluation is often considered a superior method for assessing T2V generation. However, existing manual evaluation protocols face reproducibility, reliability, and practicality issues. To address these challenges, this paper introduces the Text-to-Video Human Evaluation (T2VHE) protocol, a comprehensive and standardized protocol for T2V models. The T2VHE protocol includes well-defined metrics, thorough annotator training, and an effective dynamic evaluation module. Experimental results demonstrate that this protocol not only ensures high-quality annotations but can also reduce evaluation costs by nearly 50%. We will open-source the entire setup of the T2VHE protocol, including the complete protocol workflow, the dynamic evaluation component details, and the annotation interface code. This will help communities establish more sophisticated human assessment protocols.
SubData: A Python Library to Collect and Combine Datasets for Evaluating LLM Alignment on Downstream Tasks
With the release of ever more capable large language models (LLMs), researchers in NLP and related disciplines have started to explore the usability of LLMs for a wide variety of different annotation tasks. Very recently, a lot of this attention has shifted to tasks that are subjective in nature. Given that the latest generations of LLMs have digested and encoded extensive knowledge about different human subpopulations and individuals, the hope is that these models can be trained, tuned or prompted to align with a wide range of different human perspectives. While researchers already evaluate the success of this alignment via surveys and tests, there is a lack of resources to evaluate the alignment on what oftentimes matters the most in NLP; the actual downstream tasks. To fill this gap we present SubData, a Python library that offers researchers working on topics related to subjectivity in annotation tasks a convenient way of collecting, combining and using a range of suitable datasets.
Learning Stance Embeddings from Signed Social Graphs
A key challenge in social network analysis is understanding the position, or stance, of people in the graph on a large set of topics. While past work has modeled (dis)agreement in social networks using signed graphs, these approaches have not modeled agreement patterns across a range of correlated topics. For instance, disagreement on one topic may make disagreement(or agreement) more likely for related topics. We propose the Stance Embeddings Model(SEM), which jointly learns embeddings for each user and topic in signed social graphs with distinct edge types for each topic. By jointly learning user and topic embeddings, SEM is able to perform cold-start topic stance detection, predicting the stance of a user on topics for which we have not observed their engagement. We demonstrate the effectiveness of SEM using two large-scale Twitter signed graph datasets we open-source. One dataset, TwitterSG, labels (dis)agreements using engagements between users via tweets to derive topic-informed, signed edges. The other, BirdwatchSG, leverages community reports on misinformation and misleading content. On TwitterSG and BirdwatchSG, SEM shows a 39% and 26% error reduction respectively against strong baselines.
CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis
The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author (N=1) to multi-author (up to N=5) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at \url{https://github.com/saranya-venkatraman/multi_llm_story_writing}.
HiNER: A Large Hindi Named Entity Recognition Dataset
Named Entity Recognition (NER) is a foundational NLP task that aims to provide class labels like Person, Location, Organisation, Time, and Number to words in free text. Named Entities can also be multi-word expressions where the additional I-O-B annotation information helps label them during the NER annotation process. While English and European languages have considerable annotated data for the NER task, Indian languages lack on that front -- both in terms of quantity and following annotation standards. This paper releases a significantly sized standard-abiding Hindi NER dataset containing 109,146 sentences and 2,220,856 tokens, annotated with 11 tags. We discuss the dataset statistics in all their essential detail and provide an in-depth analysis of the NER tag-set used with our data. The statistics of tag-set in our dataset show a healthy per-tag distribution, especially for prominent classes like Person, Location and Organisation. Since the proof of resource-effectiveness is in building models with the resource and testing the model on benchmark data and against the leader-board entries in shared tasks, we do the same with the aforesaid data. We use different language models to perform the sequence labelling task for NER and show the efficacy of our data by performing a comparative evaluation with models trained on another dataset available for the Hindi NER task. Our dataset helps achieve a weighted F1 score of 88.78 with all the tags and 92.22 when we collapse the tag-set, as discussed in the paper. To the best of our knowledge, no available dataset meets the standards of volume (amount) and variability (diversity), as far as Hindi NER is concerned. We fill this gap through this work, which we hope will significantly help NLP for Hindi. We release this dataset with our code and models at https://github.com/cfiltnlp/HiNER
A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature
We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine.
JointMatch: A Unified Approach for Diverse and Collaborative Pseudo-Labeling to Semi-Supervised Text Classification
Semi-supervised text classification (SSTC) has gained increasing attention due to its ability to leverage unlabeled data. However, existing approaches based on pseudo-labeling suffer from the issues of pseudo-label bias and error accumulation. In this paper, we propose JointMatch, a holistic approach for SSTC that addresses these challenges by unifying ideas from recent semi-supervised learning and the task of learning with noise. JointMatch adaptively adjusts classwise thresholds based on the learning status of different classes to mitigate model bias towards current easy classes. Additionally, JointMatch alleviates error accumulation by utilizing two differently initialized networks to teach each other in a cross-labeling manner. To maintain divergence between the two networks for mutual learning, we introduce a strategy that weighs more disagreement data while also allowing the utilization of high-quality agreement data for training. Experimental results on benchmark datasets demonstrate the superior performance of JointMatch, achieving a significant 5.13% improvement on average. Notably, JointMatch delivers impressive results even in the extremely-scarce-label setting, obtaining 86% accuracy on AG News with only 5 labels per class. We make our code available at https://github.com/HenryPengZou/JointMatch.
SynCED-EnDe 2025: A Synthetic and Curated English - German Dataset for Critical Error Detection in Machine Translation
Critical Error Detection (CED) in machine translation aims to determine whether a translation is safe to use or contains unacceptable deviations in meaning. While the WMT21 English-German CED dataset provided the first benchmark, it is limited in scale, label balance, domain coverage, and temporal freshness. We present SynCED-EnDe, a new resource consisting of 1,000 gold-labeled and 8,000 silver-labeled sentence pairs, balanced 50/50 between error and non-error cases. SynCED-EnDe draws from diverse 2024-2025 sources (StackExchange, GOV.UK) and introduces explicit error subclasses, structured trigger flags, and fine-grained auxiliary judgments (obviousness, severity, localization complexity, contextual dependency, adequacy deviation). These enrichments enable systematic analyses of error risk and intricacy beyond binary detection. The dataset is permanently hosted on GitHub and Hugging Face, accompanied by documentation, annotation guidelines, and baseline scripts. Benchmark experiments with XLM-R and related encoders show substantial performance gains over WMT21 due to balanced labels and refined annotations. We envision SynCED-EnDe as a community resource to advance safe deployment of MT in information retrieval and conversational assistants, particularly in emerging contexts such as wearable AI devices.
GlossLM: Multilingual Pretraining for Low-Resource Interlinear Glossing
Language documentation projects often involve the creation of annotated text in a format such as interlinear glossed text (IGT), which captures fine-grained morphosyntactic analyses in a morpheme-by-morpheme format. However, there are few existing resources providing large amounts of standardized, easily accessible IGT data, limiting their applicability to linguistic research, and making it difficult to use such data in NLP modeling. We compile the largest existing corpus of IGT data from a variety of sources, covering over 450k examples across 1.8k languages, to enable research on crosslingual transfer and IGT generation. We normalize much of our data to follow a standard set of labels across languages. Furthermore, we explore the task of automatically generating IGT in order to aid documentation projects. As many languages lack sufficient monolingual data, we pretrain a large multilingual model on our corpus. We demonstrate the utility of this model by finetuning it on monolingual corpora, outperforming SOTA models by up to 6.6%. We will make our pretrained model and dataset available through Hugging Face, as well as provide access through a web interface for use in language documentation efforts.
Labeling supervised fine-tuning data with the scaling law
This paper introduces a multi-stage manual annotation calibrated by the scaling law, offering a high-quality Supervised Fine-Tuning data acquisition method for environments with constrained resources like GPU poor, limited GPT access, and funding restrictions. We have preprocessed 58k authentic chat data and manually annotated 2.3k questions. After this, we conducted fine-tuning on Qwen models, ranging from 0.5B to 32B parameters. The optimal version improved 29.07 in F1 score. This confirms the viability of fine-tuning Large Language Model (LLM) for downstream Natural Language Processing (NLP) tasks. Our contributions are: 1) Created Supervised Fine-Tuning (SFT) training data in alpaca format, along with a set of Low-Rank Adaptation (LoRA) weights, and 2) Developed a method for acquiring high-quality data leveraging scaling law principle. The script, raw data with alpaca format and experiments track are open-sourced on Github (https://github.com/InternLM/HuixiangDou/tree/main/web/tools), HuggingFace (https://huggingface.co/tpoisonooo) and WandB (https://wandb.ai/tpoisonooo/huixiangdou-cr/table?nw=nwusertpoisonooo). The privacy of the data involved has been authorized by users. SFT data and license comes from ncnn contributors group.
From Instructions to Constraints: Language Model Alignment with Automatic Constraint Verification
User alignment is crucial for adapting general-purpose language models (LMs) to downstream tasks, but human annotations are often not available for all types of instructions, especially those with customized constraints. We observe that user instructions typically contain constraints. While assessing response quality in terms of the whole instruction is often costly, efficiently evaluating the satisfaction rate of constraints is feasible. We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments, and propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints. Specifically, ACT uses constraint verifiers, which are typically easy to implement in practice, to compute constraint satisfaction rate (CSR) of each response. It samples multiple responses for each prompt and collect preference labels based on their CSR automatically. Subsequently, ACT adapts the LM to the target task through a ranking-based learning process. Experiments on fine-grained entity typing, abstractive summarization, and temporal question answering show that ACT is able to enhance LMs' capability to adhere to different classes of constraints, thereby improving task performance. Further experiments show that the constraint-following capabilities are transferable.
Unlocking Science: Novel Dataset and Benchmark for Cross-Modality Scientific Information Extraction
Extracting key information from scientific papers has the potential to help researchers work more efficiently and accelerate the pace of scientific progress. Over the last few years, research on Scientific Information Extraction (SciIE) witnessed the release of several new systems and benchmarks. However, existing paper-focused datasets mostly focus only on specific parts of a manuscript (e.g., abstracts) and are single-modality (i.e., text- or table-only), due to complex processing and expensive annotations. Moreover, core information can be present in either text or tables or across both. To close this gap in data availability and enable cross-modality IE, while alleviating labeling costs, we propose a semi-supervised pipeline for annotating entities in text, as well as entities and relations in tables, in an iterative procedure. Based on this pipeline, we release novel resources for the scientific community, including a high-quality benchmark, a large-scale corpus, and a semi-supervised annotation pipeline. We further report the performance of state-of-the-art IE models on the proposed benchmark dataset, as a baseline. Lastly, we explore the potential capability of large language models such as ChatGPT for the current task. Our new dataset, results, and analysis validate the effectiveness and efficiency of our semi-supervised pipeline, and we discuss its remaining limitations.
FullAnno: A Data Engine for Enhancing Image Comprehension of MLLMs
Multimodal Large Language Models (MLLMs) have shown promise in a broad range of vision-language tasks with their strong reasoning and generalization capabilities. However, they heavily depend on high-quality data in the Supervised Fine-Tuning (SFT) phase. The existing approaches aim to curate high-quality data via GPT-4V, but they are not scalable due to the commercial nature of GPT-4V and the simplicity of the prompts used to instruct the model. To this end, we devised the FullAnno system, which is a data engine that can generate large-scale, high-quality, and fine-grained image annotations consisting of the category and position of objects, region descriptions, text information, as well as image dense captions. This engine is characterized by its cascade annotation process, which involves multiple expert models and employs rich prompts to instruct LLMs in generating dense image captions. We re-annotated the COCO and Visual Genome datasets using our FullAnno system, tripling the number of object annotations and increasing the length of the original image captions by a factor of 15. Experiments show that the regenerated annotation can significantly enhance the capabilities of LLaVA-v1.5 on several benchmarks. The re-annotated data are available at: https://arcana-project-page.github.io
Multi-annotator Deep Learning: A Probabilistic Framework for Classification
Solving complex classification tasks using deep neural networks typically requires large amounts of annotated data. However, corresponding class labels are noisy when provided by error-prone annotators, e.g., crowd workers. Training standard deep neural networks leads to subpar performances in such multi-annotator supervised learning settings. We address this issue by presenting a probabilistic training framework named multi-annotator deep learning (MaDL). A ground truth and an annotator performance model are jointly trained in an end-to-end learning approach. The ground truth model learns to predict instances' true class labels, while the annotator performance model infers probabilistic estimates of annotators' performances. A modular network architecture enables us to make varying assumptions regarding annotators' performances, e.g., an optional class or instance dependency. Further, we learn annotator embeddings to estimate annotators' densities within a latent space as proxies of their potentially correlated annotations. Together with a weighted loss function, we improve the learning from correlated annotation patterns. In a comprehensive evaluation, we examine three research questions about multi-annotator supervised learning. Our findings indicate MaDL's state-of-the-art performance and robustness against many correlated, spamming annotators.
AI Alignment at Your Discretion
In AI alignment, extensive latitude must be granted to annotators, either human or algorithmic, to judge which model outputs are `better' or `safer.' We refer to this latitude as alignment discretion. Such discretion remains largely unexamined, posing two risks: (i) annotators may use their power of discretion arbitrarily, and (ii) models may fail to mimic this discretion. To study this phenomenon, we draw on legal concepts of discretion that structure how decision-making authority is conferred and exercised, particularly in cases where principles conflict or their application is unclear or irrelevant. Extended to AI alignment, discretion is required when alignment principles and rules are (inevitably) conflicting or indecisive. We present a set of metrics to systematically analyze when and how discretion in AI alignment is exercised, such that both risks (i) and (ii) can be observed. Moreover, we distinguish between human and algorithmic discretion and analyze the discrepancy between them. By measuring both human and algorithmic discretion over safety alignment datasets, we reveal layers of discretion in the alignment process that were previously unaccounted for. Furthermore, we demonstrate how algorithms trained on these datasets develop their own forms of discretion in interpreting and applying these principles, which challenges the purpose of having any principles at all. Our paper presents the first step towards formalizing this core gap in current alignment processes, and we call on the community to further scrutinize and control alignment discretion.
AVerImaTeC: A Dataset for Automatic Verification of Image-Text Claims with Evidence from the Web
Textual claims are often accompanied by images to enhance their credibility and spread on social media, but this also raises concerns about the spread of misinformation. Existing datasets for automated verification of image-text claims remain limited, as they often consist of synthetic claims and lack evidence annotations to capture the reasoning behind the verdict. In this work, we introduce AVerImaTeC, a dataset consisting of 1,297 real-world image-text claims. Each claim is annotated with question-answer (QA) pairs containing evidence from the web, reflecting a decomposed reasoning regarding the verdict. We mitigate common challenges in fact-checking datasets such as contextual dependence, temporal leakage, and evidence insufficiency, via claim normalization, temporally constrained evidence annotation, and a two-stage sufficiency check. We assess the consistency of the annotation in AVerImaTeC via inter-annotator studies, achieving a kappa=0.742 on verdicts and 74.7% consistency on QA pairs. We also propose a novel evaluation method for evidence retrieval and conduct extensive experiments to establish baselines for verifying image-text claims using open-web evidence.
Annotation Guidelines for Corpus Novelties: Part 2 -- Alias Resolution Version 1.0
The Novelties corpus is a collection of novels (and parts of novels) annotated for Alias Resolution, among other tasks. This document describes the guidelines applied during the annotation process. It contains the instructions used by the annotators, as well as a number of examples retrieved from the annotated novels, and illustrating how canonical names should be defined, and which names should be considered as referring to the same entity.
GATE OpenING: A Comprehensive Benchmark for Judging Open-ended Interleaved Image-Text Generation
Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding and generation tasks. However, generating interleaved image-text content remains a challenge, which requires integrated multimodal understanding and generation abilities. While the progress in unified models offers new solutions, existing benchmarks are insufficient for evaluating these methods due to data size and diversity limitations. To bridge this gap, we introduce GATE OpenING (OpenING), a comprehensive benchmark comprising 5,400 high-quality human-annotated instances across 56 real-world tasks. OpenING covers diverse daily scenarios such as travel guide, design, and brainstorming, offering a robust platform for challenging interleaved generation methods. In addition, we present IntJudge, a judge model for evaluating open-ended multimodal generation methods. Trained with a novel data pipeline, our IntJudge achieves an agreement rate of 82. 42% with human judgments, outperforming GPT-based evaluators by 11.34%. Extensive experiments on OpenING reveal that current interleaved generation methods still have substantial room for improvement. Key findings on interleaved image-text generation are further presented to guide the development of next-generation models. The OpenING is open-sourced at https://opening.github.io.
Iterative Graph Alignment
By compressing diverse narratives, LLMs go beyond memorization, achieving intelligence by capturing generalizable causal relationships. However, they suffer from local 'representation gaps' due to insufficient training data diversity, limiting their real-world utility, especially in tasks requiring strict alignment to rules. Traditional alignment methods relying on heavy human annotations are inefficient and unscalable. Recent self-alignment techniques also fall short, as they often depend on self-selection based prompting and memorization-based learning. To address these issues, we introduce Iterative Graph Alignment (IGA), an annotation-free rule-based alignment algorithm. A teacher model (VLM) employs Iterative Graph Prompting (IGP) to create logical graphs and reference answers. The student model (LLM) identifies local knowledge gaps by attempting to align its responses with these references, collaborating with helper models to generate diverse answers. These aligned responses are then used for iterative supervised fine-tuning (SFT). Our evaluations across five rule-based scenarios demonstrate IGP's effectiveness, with a 73.12\% alignment improvement in Claude Sonnet 3.5, and Llama3-8B-Instruct achieving an 86.20\% improvement, outperforming Claude Sonnet 3.5 in rule-based alignment.
