new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

LexSemBridge: Fine-Grained Dense Representation Enhancement through Token-Aware Embedding Augmentation

As queries in retrieval-augmented generation (RAG) pipelines powered by large language models (LLMs) become increasingly complex and diverse, dense retrieval models have demonstrated strong performance in semantic matching. Nevertheless, they often struggle with fine-grained retrieval tasks, where precise keyword alignment and span-level localization are required, even in cases with high lexical overlap that would intuitively suggest easier retrieval. To systematically evaluate this limitation, we introduce two targeted tasks, keyword retrieval and part-of-passage retrieval, designed to simulate practical fine-grained scenarios. Motivated by these observations, we propose LexSemBridge, a unified framework that enhances dense query representations through fine-grained, input-aware vector modulation. LexSemBridge constructs latent enhancement vectors from input tokens using three paradigms: Statistical (SLR), Learned (LLR), and Contextual (CLR), and integrates them with dense embeddings via element-wise interaction. Theoretically, we show that this modulation preserves the semantic direction while selectively amplifying discriminative dimensions. LexSemBridge operates as a plug-in without modifying the backbone encoder and naturally extends to both text and vision modalities. Extensive experiments across semantic and fine-grained retrieval tasks validate the effectiveness and generality of our approach. All code and models are publicly available at https://github.com/Jasaxion/LexSemBridge/

  • 9 authors
·
Aug 25

Coreset Sampling from Open-Set for Fine-Grained Self-Supervised Learning

Deep learning in general domains has constantly been extended to domain-specific tasks requiring the recognition of fine-grained characteristics. However, real-world applications for fine-grained tasks suffer from two challenges: a high reliance on expert knowledge for annotation and necessity of a versatile model for various downstream tasks in a specific domain (e.g., prediction of categories, bounding boxes, or pixel-wise annotations). Fortunately, the recent self-supervised learning (SSL) is a promising approach to pretrain a model without annotations, serving as an effective initialization for any downstream tasks. Since SSL does not rely on the presence of annotation, in general, it utilizes the large-scale unlabeled dataset, referred to as an open-set. In this sense, we introduce a novel Open-Set Self-Supervised Learning problem under the assumption that a large-scale unlabeled open-set is available, as well as the fine-grained target dataset, during a pretraining phase. In our problem setup, it is crucial to consider the distribution mismatch between the open-set and target dataset. Hence, we propose SimCore algorithm to sample a coreset, the subset of an open-set that has a minimum distance to the target dataset in the latent space. We demonstrate that SimCore significantly improves representation learning performance through extensive experimental settings, including eleven fine-grained datasets and seven open-sets in various downstream tasks.

  • 3 authors
·
Mar 20, 2023

VidChain: Chain-of-Tasks with Metric-based Direct Preference Optimization for Dense Video Captioning

Despite the advancements of Video Large Language Models (VideoLLMs) in various tasks, they struggle with fine-grained temporal understanding, such as Dense Video Captioning (DVC). DVC is a complicated task of describing all events within a video while also temporally localizing them, which integrates multiple fine-grained tasks, including video segmentation, video captioning, and temporal video grounding. Previous VideoLLMs attempt to solve DVC in a single step, failing to utilize their reasoning capability. Moreover, previous training objectives for VideoLLMs do not fully reflect the evaluation metrics, therefore not providing supervision directly aligned to target tasks. To address such a problem, we propose a novel framework named VidChain comprised of Chain-of-Tasks (CoTasks) and Metric-based Direct Preference Optimization (M-DPO). CoTasks decompose a complex task into a sequence of sub-tasks, allowing VideoLLMs to leverage their reasoning capabilities more effectively. M-DPO aligns a VideoLLM with evaluation metrics, providing fine-grained supervision to each task that is well-aligned with metrics. Applied to two different VideoLLMs, VidChain consistently improves their fine-grained video understanding, thereby outperforming previous VideoLLMs on two different DVC benchmarks and also on the temporal video grounding task. Code is available at https://github.com/mlvlab/VidChain.

  • 5 authors
·
Jan 12

ICE-Bench: A Unified and Comprehensive Benchmark for Image Creating and Editing

Image generation has witnessed significant advancements in the past few years. However, evaluating the performance of image generation models remains a formidable challenge. In this paper, we propose ICE-Bench, a unified and comprehensive benchmark designed to rigorously assess image generation models. Its comprehensiveness could be summarized in the following key features: (1) Coarse-to-Fine Tasks: We systematically deconstruct image generation into four task categories: No-ref/Ref Image Creating/Editing, based on the presence or absence of source images and reference images. And further decompose them into 31 fine-grained tasks covering a broad spectrum of image generation requirements, culminating in a comprehensive benchmark. (2) Multi-dimensional Metrics: The evaluation framework assesses image generation capabilities across 6 dimensions: aesthetic quality, imaging quality, prompt following, source consistency, reference consistency, and controllability. 11 metrics are introduced to support the multi-dimensional evaluation. Notably, we introduce VLLM-QA, an innovative metric designed to assess the success of image editing by leveraging large models. (3) Hybrid Data: The data comes from real scenes and virtual generation, which effectively improves data diversity and alleviates the bias problem in model evaluation. Through ICE-Bench, we conduct a thorough analysis of existing generation models, revealing both the challenging nature of our benchmark and the gap between current model capabilities and real-world generation requirements. To foster further advancements in the field, we will open-source ICE-Bench, including its dataset, evaluation code, and models, thereby providing a valuable resource for the research community.

  • 7 authors
·
Mar 18

TimeAudio: Bridging Temporal Gaps in Large Audio-Language Models

Recent Large Audio-Language Models (LALMs) exhibit impressive capabilities in understanding audio content for conversational QA tasks. However, these models struggle to accurately understand timestamps for temporal localization (e.g., Temporal Audio Grounding) and are restricted to short audio perception, leading to constrained capabilities on fine-grained tasks. We identify three key aspects that limit their temporal localization and long audio understanding: (i) timestamp representation, (ii) architecture, and (iii) data. To address this, we introduce TimeAudio, a novel method that empowers LALMs to connect their understanding of audio content with precise temporal perception. Specifically, we incorporate unique temporal markers to improve time-sensitive reasoning and apply an absolute time-aware encoding that explicitly grounds the acoustic features with absolute time information. Moreover, to achieve end-to-end long audio understanding, we introduce a segment-level token merging module to substantially reduce audio token redundancy and enhance the efficiency of information extraction. Due to the lack of suitable datasets and evaluation metrics, we consolidate existing audio datasets into a new dataset focused on temporal tasks and establish a series of metrics to evaluate the fine-grained performance. Evaluations show strong performance across a variety of fine-grained tasks, such as dense captioning, temporal grounding, and timeline speech summarization, demonstrating TimeAudio's robust temporal localization and reasoning capabilities.

  • 5 authors
·
Nov 14

From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language Models

Multi-modal Large Language Models (MLLMs) have made significant strides in expanding the capabilities of Large Language Models (LLMs) through the incorporation of visual perception interfaces. Despite the emergence of exciting applications and the availability of diverse instruction tuning data, existing approaches often rely on CLIP or its variants as the visual branch, and merely extract features from the deep layers. However, these methods lack a comprehensive analysis of the visual encoders in MLLMs. In this paper, we conduct an extensive investigation into the effectiveness of different vision encoders within MLLMs. Our findings reveal that the shallow layer features of CLIP offer particular advantages for fine-grained tasks such as grounding and region understanding. Surprisingly, the vision-only model DINO, which is not pretrained with text-image alignment, demonstrates promising performance as a visual branch within MLLMs. By simply equipping it with an MLP layer for alignment, DINO surpasses CLIP in fine-grained related perception tasks. Building upon these observations, we propose a simple yet effective feature merging strategy, named COMM, that integrates CLIP and DINO with Multi-level features Merging, to enhance the visual capabilities of MLLMs. We evaluate COMM through comprehensive experiments on a wide range of benchmarks, including image captioning, visual question answering, visual grounding, and object hallucination. Experimental results demonstrate the superior performance of COMM compared to existing methods, showcasing its enhanced visual capabilities within MLLMs. Code will be made available at https://github.com/YuchenLiu98/COMM.

  • 7 authors
·
Oct 12, 2023

Taming Modality Entanglement in Continual Audio-Visual Segmentation

Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.

  • 8 authors
·
Oct 20 1

How to Evaluate the Generalization of Detection? A Benchmark for Comprehensive Open-Vocabulary Detection

Object detection (OD) in computer vision has made significant progress in recent years, transitioning from closed-set labels to open-vocabulary detection (OVD) based on large-scale vision-language pre-training (VLP). However, current evaluation methods and datasets are limited to testing generalization over object types and referral expressions, which do not provide a systematic, fine-grained, and accurate benchmark of OVD models' abilities. In this paper, we propose a new benchmark named OVDEval, which includes 9 sub-tasks and introduces evaluations on commonsense knowledge, attribute understanding, position understanding, object relation comprehension, and more. The dataset is meticulously created to provide hard negatives that challenge models' true understanding of visual and linguistic input. Additionally, we identify a problem with the popular Average Precision (AP) metric when benchmarking models on these fine-grained label datasets and propose a new metric called Non-Maximum Suppression Average Precision (NMS-AP) to address this issue. Extensive experimental results show that existing top OVD models all fail on the new tasks except for simple object types, demonstrating the value of the proposed dataset in pinpointing the weakness of current OVD models and guiding future research. Furthermore, the proposed NMS-AP metric is verified by experiments to provide a much more truthful evaluation of OVD models, whereas traditional AP metrics yield deceptive results. Data is available at https://github.com/om-ai-lab/OVDEval

  • 8 authors
·
Aug 25, 2023

CLIP meets DINO for Tuning Zero-Shot Classifier using Unlabeled Image Collections

In the era of foundation models, CLIP has emerged as a powerful tool for aligning text and visual modalities into a common embedding space. However, the alignment objective used to train CLIP often results in subpar visual features for fine-grained tasks. In contrast, SSL-pretrained models like DINO excel at extracting rich visual features due to their specialized training paradigm. Yet, these SSL models require an additional supervised linear probing step, which relies on fully labeled data which is often expensive and difficult to obtain at scale. In this paper, we propose a label-free prompt-tuning method that leverages the rich visual features of self-supervised learning models (DINO) and the broad textual knowledge of large language models (LLMs) to largely enhance CLIP-based image classification performance using unlabeled images. Our approach unfolds in three key steps: (1) We generate robust textual feature embeddings that more accurately represent object classes by leveraging class-specific descriptions from LLMs, enabling more effective zero-shot classification compared to CLIP's default name-specific prompts. (2) These textual embeddings are then used to produce pseudo-labels to train an alignment module that integrates the complementary strengths of LLM description-based textual embeddings and DINO's visual features. (3) Finally, we prompt-tune CLIP's vision encoder through DINO-assisted supervision using the trained alignment module. This three-step process allows us to harness the best of visual and textual foundation models, resulting in a powerful and efficient approach that surpasses state-of-the-art label-free classification methods. Notably, our framework, NoLA (No Labels Attached), achieves an average absolute gain of 3.6% over the state-of-the-art LaFter across 11 diverse image classification datasets.

  • 6 authors
·
Nov 28, 2024

E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding

Recent advances in Video Large Language Models (Video-LLMs) have demonstrated their great potential in general-purpose video understanding. To verify the significance of these models, a number of benchmarks have been proposed to diagnose their capabilities in different scenarios. However, existing benchmarks merely evaluate models through video-level question-answering, lacking fine-grained event-level assessment and task diversity. To fill this gap, we introduce E.T. Bench (Event-Level & Time-Sensitive Video Understanding Benchmark), a large-scale and high-quality benchmark for open-ended event-level video understanding. Categorized within a 3-level task taxonomy, E.T. Bench encompasses 7.3K samples under 12 tasks with 7K videos (251.4h total length) under 8 domains, providing comprehensive evaluations. We extensively evaluated 8 Image-LLMs and 12 Video-LLMs on our benchmark, and the results reveal that state-of-the-art models for coarse-level (video-level) understanding struggle to solve our fine-grained tasks, e.g., grounding event-of-interests within videos, largely due to the short video context length, improper time representations, and lack of multi-event training data. Focusing on these issues, we further propose a strong baseline model, E.T. Chat, together with an instruction-tuning dataset E.T. Instruct 164K tailored for fine-grained event-level understanding. Our simple but effective solution demonstrates superior performance in multiple scenarios.

  • 6 authors
·
Sep 26, 2024 2

VEU-Bench: Towards Comprehensive Understanding of Video Editing

Widely shared videos on the internet are often edited. Recently, although Video Large Language Models (Vid-LLMs) have made great progress in general video understanding tasks, their capabilities in video editing understanding (VEU) tasks remain unexplored. To address this gap, in this paper, we introduce VEU-Bench (Video Editing Understanding Benchmark), a comprehensive benchmark that categorizes video editing components across various dimensions, from intra-frame features like shot size to inter-shot attributes such as cut types and transitions. Unlike previous video editing understanding benchmarks that focus mainly on editing element classification, VEU-Bench encompasses 19 fine-grained tasks across three stages: recognition, reasoning, and judging. To enhance the annotation of VEU automatically, we built an annotation pipeline integrated with an ontology-based knowledge base. Through extensive experiments with 11 state-of-the-art Vid-LLMs, our findings reveal that current Vid-LLMs face significant challenges in VEU tasks, with some performing worse than random choice. To alleviate this issue, we develop Oscars, a VEU expert model fine-tuned on the curated VEU-Bench dataset. It outperforms existing open-source Vid-LLMs on VEU-Bench by over 28.3% in accuracy and achieves performance comparable to commercial models like GPT-4o. We also demonstrate that incorporating VEU data significantly enhances the performance of Vid-LLMs on general video understanding benchmarks, with an average improvement of 8.3% across nine reasoning tasks.

  • 10 authors
·
Apr 24

Prompting Forgetting: Unlearning in GANs via Textual Guidance

State-of-the-art generative models exhibit powerful image-generation capabilities, introducing various ethical and legal challenges to service providers hosting these models. Consequently, Content Removal Techniques (CRTs) have emerged as a growing area of research to control outputs without full-scale retraining. Recent work has explored the use of Machine Unlearning in generative models to address content removal. However, the focus of such research has been on diffusion models, and unlearning in Generative Adversarial Networks (GANs) has remained largely unexplored. We address this gap by proposing Text-to-Unlearn, a novel framework that selectively unlearns concepts from pre-trained GANs using only text prompts, enabling feature unlearning, identity unlearning, and fine-grained tasks like expression and multi-attribute removal in models trained on human faces. Leveraging natural language descriptions, our approach guides the unlearning process without requiring additional datasets or supervised fine-tuning, offering a scalable and efficient solution. To evaluate its effectiveness, we introduce an automatic unlearning assessment method adapted from state-of-the-art image-text alignment metrics, providing a comprehensive analysis of the unlearning methodology. To our knowledge, Text-to-Unlearn is the first cross-modal unlearning framework for GANs, representing a flexible and efficient advancement in managing generative model behavior.

EE-MLLM: A Data-Efficient and Compute-Efficient Multimodal Large Language Model

In the realm of multimodal research, numerous studies leverage substantial image-text pairs to conduct modal alignment learning, transforming Large Language Models (LLMs) into Multimodal LLMs and excelling in a variety of visual-language tasks. The prevailing methodologies primarily fall into two categories: self-attention-based and cross-attention-based methods. While self-attention-based methods offer superior data efficiency due to their simple MLP architecture, they often suffer from lower computational efficiency due to concatenating visual and textual tokens as input for LLM. Conversely, cross-attention-based methods, although less data-efficient due to additional learnable parameters, exhibit higher computational efficiency by avoiding long sequence input for LLM. To address these trade-offs, we introduce the Data-Efficient and Compute-Efficient Multimodal Large Language Model (EE-MLLM). Without introducing additional modules or learnable parameters, EE-MLLM achieves both data and compute efficiency. Specifically, we modify the original self-attention mechanism in MLLM to a composite attention mechanism. This mechanism has two key characteristics: 1) Eliminating the computational overhead of self-attention within visual tokens to achieve compute efficiency, and 2) Reusing the weights on each layer of LLM to facilitate effective modality alignment between vision and language for data efficiency. Experimental results demonstrate the effectiveness of EE-MLLM across a range of benchmarks, including general-purpose datasets like MMBench and SeedBench, as well as fine-grained tasks such as TextVQA and DocVQA.

  • 8 authors
·
Aug 21, 2024

Can General-Purpose Omnimodels Compete with Specialists? A Case Study in Medical Image Segmentation

The emergence of powerful, general-purpose omnimodels capable of processing diverse data modalities has raised a critical question: can these ``jack-of-all-trades'' systems perform on par with highly specialized models in knowledge-intensive domains? This work investigates this question within the high-stakes field of medical image segmentation. We conduct a comparative study analyzing the zero-shot performance of a state-of-the-art omnimodel (Gemini 2.5 Pro, the ``Nano Banana'' model) against domain-specific deep learning models on three distinct tasks: polyp (endoscopy), retinal vessel (fundus), and breast tumor segmentation (ultrasound). Our study focuses on performance at the extremes by curating subsets of the ``easiest'' and ``hardest'' cases based on the specialist models' accuracy. Our findings reveal a nuanced and task-dependent landscape. For polyp and breast tumor segmentation, specialist models excel on easy samples, but the omnimodel demonstrates greater robustness on hard samples where specialists fail catastrophically. Conversely, for the fine-grained task of retinal vessel segmentation, the specialist model maintains superior performance across both easy and hard cases. Intriguingly, qualitative analysis suggests omnimodels may possess higher sensitivity, identifying subtle anatomical features missed by human annotators. Our results indicate that while current omnimodels are not yet a universal replacement for specialists, their unique strengths suggest a potential complementary role with specialist models, particularly in enhancing robustness on challenging edge cases.

  • 3 authors
·
Aug 31

UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface

Generalist models have achieved remarkable success in both language and vision-language tasks, showcasing the potential of unified modeling. However, effectively integrating fine-grained perception tasks like detection and segmentation into these models remains a significant challenge. This is primarily because these tasks often rely heavily on task-specific designs and architectures that can complicate the modeling process. To address this challenge, we present \ours, a framework that Unifies Fine-grained visual perception tasks through an Open-ended language interface. By transforming all perception targets into the language space, \ours unifies object-level detection, pixel-level segmentation, and image-level vision-language tasks into a single model. Additionally, we introduce a novel embedding retrieval approach that relies solely on the language interface to support segmentation tasks. Our framework bridges the gap between fine-grained perception and vision-language tasks, significantly simplifying architectural design and training strategies while achieving comparable or superior performance to methods with intricate task-specific designs. After multi-task training on five standard visual perception datasets, \ours outperforms the previous state-of-the-art generalist models by 12.3 mAP on COCO instance segmentation and 3.3 mIoU on ADE20K semantic segmentation. Furthermore, our method seamlessly integrates with existing MLLMs, effectively combining fine-grained perception capabilities with their advanced language abilities, thereby enabling more challenging tasks such as reasoning segmentation. Code and models will be publicly available.

  • 8 authors
·
Mar 3 2

Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models

Video Large Language Models (Video-LLMs) have demonstrated remarkable capabilities in coarse-grained video understanding, however, they struggle with fine-grained temporal grounding. In this paper, we introduce Grounded-VideoLLM, a novel Video-LLM adept at perceiving and reasoning over specific video moments in a fine-grained manner. We identify that current Video-LLMs have limitations for fine-grained video understanding since they lack effective temporal modeling and timestamp representation. In light of this, we sharpen our model by incorporating (1) an additional temporal stream to encode the relationships between frames and (2) discrete temporal tokens enriched with specific time knowledge to represent timestamps. To optimize the training of Grounded-VideoLLM, we employ a multi-stage training scheme, beginning with simple video-captioning tasks and progressively introducing video temporal grounding tasks of increasing complexity. To further enhance Grounded-VideoLLM's temporal reasoning capability, we also curate a grounded VideoQA dataset by an automatic annotation pipeline. Extensive experiments demonstrate that Grounded-VideoLLM not only excels in fine-grained grounding tasks such as temporal sentence grounding, dense video captioning, and grounded VideoQA, but also shows great potential as a versatile video assistant for general video understanding.

  • 9 authors
·
Oct 4, 2024 2

ViLLA: Fine-Grained Vision-Language Representation Learning from Real-World Data

Vision-language models (VLMs), such as CLIP and ALIGN, are generally trained on datasets consisting of image-caption pairs obtained from the web. However, real-world multimodal datasets, such as healthcare data, are significantly more complex: each image (e.g. X-ray) is often paired with text (e.g. physician report) that describes many distinct attributes occurring in fine-grained regions of the image. We refer to these samples as exhibiting high pairwise complexity, since each image-text pair can be decomposed into a large number of region-attribute pairings. The extent to which VLMs can capture fine-grained relationships between image regions and textual attributes when trained on such data has not been previously evaluated. The first key contribution of this work is to demonstrate through systematic evaluations that as the pairwise complexity of the training dataset increases, standard VLMs struggle to learn region-attribute relationships, exhibiting performance degradations of up to 37% on retrieval tasks. In order to address this issue, we introduce ViLLA as our second key contribution. ViLLA, which is trained to capture fine-grained region-attribute relationships from complex datasets, involves two components: (a) a lightweight, self-supervised mapping model to decompose image-text samples into region-attribute pairs, and (b) a contrastive VLM to learn representations from generated region-attribute pairs. We demonstrate with experiments across four domains (synthetic, product, medical, and natural images) that ViLLA outperforms comparable VLMs on fine-grained reasoning tasks, such as zero-shot object detection (up to 3.6 AP50 points on COCO and 0.6 mAP points on LVIS) and retrieval (up to 14.2 R-Precision points).

  • 5 authors
·
Aug 22, 2023

Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model

The ability of large language models (LLMs) to process visual inputs has given rise to general-purpose vision systems, unifying various vision-language (VL) tasks by instruction tuning. However, due to the enormous diversity in input-output formats in the vision domain, existing general-purpose models fail to successfully integrate segmentation and multi-image inputs with coarse-level tasks into a single framework. In this work, we introduce VistaLLM, a powerful visual system that addresses coarse- and fine-grained VL tasks over single and multiple input images using a unified framework. VistaLLM utilizes an instruction-guided image tokenizer that filters global embeddings using task descriptions to extract compressed and refined features from numerous images. Moreover, VistaLLM employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences, significantly improving over previously used uniform sampling. To bolster the desired capability of VistaLLM, we curate CoinIt, a comprehensive coarse-to-fine instruction tuning dataset with 6.8M samples. We also address the lack of multi-image grounding datasets by introducing a novel task, AttCoSeg (Attribute-level Co-Segmentation), which boosts the model's reasoning and grounding capability over multiple input images. Extensive experiments on a wide range of V- and VL tasks demonstrate the effectiveness of VistaLLM by achieving consistent state-of-the-art performance over strong baselines across all downstream tasks. Our project page can be found at https://shramanpramanick.github.io/VistaLLM/.

  • 9 authors
·
Dec 19, 2023 1

VLM-FO1: Bridging the Gap Between High-Level Reasoning and Fine-Grained Perception in VLMs

Vision-Language Models (VLMs) excel at high-level scene understanding but falter on fine-grained perception tasks requiring precise localization. This failure stems from a fundamental mismatch, as generating exact numerical coordinates is a challenging task for language-centric architectures. In this paper, we introduce VLM-FO1, a novel framework that overcomes this limitation by reframing object-centric perception from a brittle coordinate generation problem into a robust feature retrieval task. Our method operates as a plug-and-play module that integrates with any pre-trained VLM. It leverages a Hybrid Fine-grained Region Encoder (HFRE), featuring a dual vision encoder, to generate powerful region tokens rich in both semantic and spatial detail. A token-based referencing system then enables the LLM to seamlessly reason about and ground language in these specific visual regions. Experiments show that VLM-FO1 achieves state-of-the-art performance across a diverse suite of benchmarks, demonstrating exceptional capabilities in object grounding, region generational understanding, and visual region reasoning. Crucially, our two-stage training strategy ensures that these perception gains are achieved without compromising the base model's general visual understanding capabilities. VLM-FO1 establishes an effective and flexible paradigm for building perception-aware VLMs, bridging the gap between high-level reasoning and fine-grained visual grounding.

omlab Om AI Lab
·
Sep 30 2

LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding

Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .

  • 8 authors
·
Jan 14

UniPose: Detecting Any Keypoints

This work proposes a unified framework called UniPose to detect keypoints of any articulated (e.g., human and animal), rigid, and soft objects via visual or textual prompts for fine-grained vision understanding and manipulation. Keypoint is a structure-aware, pixel-level, and compact representation of any object, especially articulated objects. Existing fine-grained promptable tasks mainly focus on object instance detection and segmentation but often fail to identify fine-grained granularity and structured information of image and instance, such as eyes, leg, paw, etc. Meanwhile, prompt-based keypoint detection is still under-explored. To bridge the gap, we make the first attempt to develop an end-to-end prompt-based keypoint detection framework called UniPose to detect keypoints of any objects. As keypoint detection tasks are unified in this framework, we can leverage 13 keypoint detection datasets with 338 keypoints across 1,237 categories over 400K instances to train a generic keypoint detection model. UniPose can effectively align text-to-keypoint and image-to-keypoint due to the mutual enhancement of textual and visual prompts based on the cross-modality contrastive learning optimization objectives. Our experimental results show that UniPose has strong fine-grained localization and generalization abilities across image styles, categories, and poses. Based on UniPose as a generalist keypoint detector, we hope it could serve fine-grained visual perception, understanding, and generation.

  • 4 authors
·
Oct 12, 2023

Disjoint Masking with Joint Distillation for Efficient Masked Image Modeling

Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.

  • 6 authors
·
Dec 31, 2022

Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment

Current multimodal large language models (MLLMs) struggle with fine-grained or precise understanding of visuals though they give comprehensive perception and reasoning in a spectrum of vision applications. Recent studies either develop tool-using or unify specific visual tasks into the autoregressive framework, often at the expense of overall multimodal performance. To address this issue and enhance MLLMs with visual tasks in a scalable fashion, we propose Task Preference Optimization (TPO), a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks. TPO introduces learnable task tokens that establish connections between multiple task-specific heads and the MLLM. By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance. Through multi-task co-training within TPO, we observe synergistic benefits that elevate individual task performance beyond what is achievable through single-task training methodologies. Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models. Additionally, MLLM-TPO demonstrates robust zero-shot capabilities across various tasks, performing comparably to state-of-the-art supervised models. The code will be released at https://github.com/OpenGVLab/TPO

  • 12 authors
·
Dec 26, 2024 2

CodeSense: a Real-World Benchmark and Dataset for Code Semantic Reasoning

Understanding and reasoning about code semantics is essential for enhancing code LLMs' abilities to solve real-world software engineering (SE) tasks. Although several code reasoning benchmarks exist, most rely on synthetic datasets or educational coding problems and focus on coarse-grained reasoning tasks such as input/output prediction, limiting their effectiveness in evaluating LLMs in practical SE contexts. To bridge this gap, we propose CodeSense, the first benchmark that makes available a spectrum of fine-grained code reasoning tasks concerned with the software engineering of real-world code. We collected Python, C and Java software projects from real-world repositories. We executed tests from these repositories, collected their execution traces, and constructed a ground truth dataset for fine-grained semantic reasoning tasks. We then performed comprehensive evaluations on state-of-the-art LLMs. Our results show a clear performance gap for the models to handle fine-grained reasoning tasks. Although prompting techniques such as chain-of-thought and in-context learning helped, the lack of code semantics in LLMs fundamentally limit models' capabilities of code reasoning. Besides dataset, benchmark and evaluation, our work produced an execution tracing framework and tool set that make it easy to collect ground truth for fine-grained SE reasoning tasks, offering a strong basis for future benchmark construction and model post training. Our code and data are located at https://codesense-bench.github.io/.

  • 7 authors
·
May 31

BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions

Automated software engineering has been greatly empowered by the recent advances in Large Language Models (LLMs) for programming. While current benchmarks have shown that LLMs can perform various software engineering tasks like human developers, the majority of their evaluations are limited to short and self-contained algorithmic tasks. Solving challenging and practical programming tasks requires the capability of utilizing diverse function calls as tools to efficiently implement functionalities like data analysis and web development. In addition, using multiple tools to solve a task needs compositional reasoning by accurately understanding complex instructions. Fulfilling both of these characteristics can pose a great challenge for LLMs. To assess how well LLMs can solve challenging and practical programming tasks, we introduce Bench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained programming tasks. To evaluate LLMs rigorously, each programming task encompasses 5.6 test cases with an average branch coverage of 99%. In addition, we propose a natural-language-oriented variant of Bench, Benchi, that automatically transforms the original docstrings into short instructions only with essential information. Our extensive evaluation of 60 LLMs shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%. The results underscore the need for further advancements in this area.

bigcode BigCode
·
Jun 22, 2024 8

Unified Generative and Discriminative Training for Multi-modal Large Language Models

In recent times, Vision-Language Models (VLMs) have been trained under two predominant paradigms. Generative training has enabled Multimodal Large Language Models (MLLMs) to tackle various complex tasks, yet issues such as hallucinations and weak object discrimination persist. Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval, yet struggles with complex scenarios requiring fine-grained semantic differentiation. This paper addresses these challenges by proposing a unified approach that integrates the strengths of both paradigms. Considering interleaved image-text sequences as the general format of input samples, we introduce a structure-induced training strategy that imposes semantic relationships between input samples and the MLLM's hidden state. This approach enhances the MLLM's ability to capture global semantics and distinguish fine-grained semantics. By leveraging dynamic sequence alignment within the Dynamic Time Warping framework and integrating a novel kernel for fine-grained semantic differentiation, our method effectively balances generative and discriminative tasks. Extensive experiments demonstrate the effectiveness of our approach, achieving state-of-the-art results in multiple generative tasks, especially those requiring cognitive and discrimination abilities. Additionally, our method surpasses discriminative benchmarks in interleaved and fine-grained retrieval tasks. By employing a retrieval-augmented generation strategy, our approach further enhances performance in some generative tasks within one model, offering a promising direction for future research in vision-language modeling.

  • 10 authors
·
Oct 31, 2024

MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams

Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently symbolic and abstract nature poses significant challenges for Multimodal Large Language Models (MLLMs). However, current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether MLLMs genuinely understand mathematical diagrams beyond superficial pattern recognition. To address this gap, we introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs. MATHGLANCE comprises 1.2K images and 1.6K carefully curated questions spanning four perception tasks: shape classification, object counting, relationship identification, and object grounding, covering diverse domains including plane geometry, solid geometry, and graphical representations. Our evaluation of MLLMs reveals that their ability to understand diagrams is notably limited, particularly in fine-grained grounding tasks. In response, we construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text pairs explicitly annotated with geometric primitives and precise spatial relationships. Training MLLM on GeoPeP leads to significant gains in perceptual accuracy, which in turn substantially improves mathematical reasoning. Our benchmark and dataset establish critical standards for evaluating and advancing multimodal mathematical understanding, providing valuable resources and insights to foster future MLLM research.

  • 8 authors
·
Mar 26

Asking like Socrates: Socrates helps VLMs understand remote sensing images

Recent multimodal reasoning models, inspired by DeepSeek-R1, have significantly advanced vision-language systems. However, in remote sensing (RS) tasks, we observe widespread pseudo reasoning: models narrate the process of reasoning rather than genuinely reason toward the correct answer based on visual evidence. We attribute this to the Glance Effect, where a single, coarse perception of large-scale RS imagery results in incomplete understanding and reasoning based on linguistic self-consistency instead of visual evidence. To address this, we propose RS-EoT (Remote Sensing Evidence-of-Thought), a language-driven, iterative visual evidence-seeking paradigm. To instill this paradigm, we propose SocraticAgent, a self-play multi-agent system that synthesizes reasoning traces via alternating cycles of reasoning and visual inspection. To enhance and generalize these patterns, we propose a two-stage progressive RL strategy: first, RL on fine-grained Grounding tasks to enhance RS-EoT capabilities, followed by RL on RS VQA to generalize to broader understanding scenarios. Experiments show RS-EoT achieves state-of-the-art performance on multiple RS VQA and grounding benchmarks. Analyses reveal clear iterative cycles of reasoning and evidence seeking, confirming RS-EoT mitigates the Glance Effect and enables genuine evidence-grounded reasoning. Our code, data, and models are available at https://geox-lab.github.io/Asking_like_Socrates

  • 12 authors
·
Nov 27 2

VideoVista: A Versatile Benchmark for Video Understanding and Reasoning

Despite significant breakthroughs in video analysis driven by the rapid development of large multimodal models (LMMs), there remains a lack of a versatile evaluation benchmark to comprehensively assess these models' performance in video understanding and reasoning. To address this, we present VideoVista, a video QA benchmark that integrates challenges across diverse content categories, durations, and abilities. Specifically, VideoVista comprises 25,000 questions derived from 3,400 videos spanning 14 categories (e.g., Howto, Film, and Entertainment) with durations ranging from a few seconds to over 10 minutes. Besides, it encompasses 19 types of understanding tasks (e.g., anomaly detection, interaction understanding) and 8 reasoning tasks (e.g., logical reasoning, causal reasoning). To achieve this, we present an automatic data construction framework, leveraging powerful GPT-4o alongside advanced analysis tools (e.g., video splitting, object segmenting, and tracking). We also utilize this framework to construct training data to enhance the capabilities of video-related LMMs (Video-LMMs). Through a comprehensive and quantitative evaluation of cutting-edge models, we reveal that: 1) Video-LMMs face difficulties in fine-grained video tasks involving temporal location, object tracking, and anomaly detection; 2) Video-LMMs present inferior logical and relation reasoning abilities; 3) Open-source Video-LMMs' performance is significantly lower than GPT-4o and Gemini-1.5, lagging by 20 points. This highlights the crucial role VideoVista will play in advancing LMMs that can accurately understand videos and perform precise reasoning.

  • 6 authors
·
Jun 17, 2024 1

Articulate-Anything: Automatic Modeling of Articulated Objects via a Vision-Language Foundation Model

Interactive 3D simulated objects are crucial in AR/VR, animations, and robotics, driving immersive experiences and advanced automation. However, creating these articulated objects requires extensive human effort and expertise, limiting their broader applications. To overcome this challenge, we present Articulate-Anything, a system that automates the articulation of diverse, complex objects from many input modalities, including text, images, and videos. Articulate-Anything leverages vision-language models (VLMs) to generate code that can be compiled into an interactable digital twin for use in standard 3D simulators. Our system exploits existing 3D asset datasets via a mesh retrieval mechanism, along with an actor-critic system that iteratively proposes, evaluates, and refines solutions for articulating the objects, self-correcting errors to achieve a robust outcome. Qualitative evaluations demonstrate Articulate-Anything's capability to articulate complex and even ambiguous object affordances by leveraging rich grounded inputs. In extensive quantitative experiments on the standard PartNet-Mobility dataset, Articulate-Anything substantially outperforms prior work, increasing the success rate from 8.7-11.6% to 75% and setting a new bar for state-of-the-art performance. We further showcase the utility of our system by generating 3D assets from in-the-wild video inputs, which are then used to train robotic policies for fine-grained manipulation tasks in simulation that go beyond basic pick and place. These policies are then transferred to a real robotic system.

  • 10 authors
·
Oct 3, 2024

ChatGPT as a Factual Inconsistency Evaluator for Text Summarization

The performance of text summarization has been greatly boosted by pre-trained language models. A main concern of existing methods is that most generated summaries are not factually inconsistent with their source documents. To alleviate the problem, many efforts have focused on developing effective factuality evaluation metrics based on natural language inference, question answering, and syntactic dependency et al. However, these approaches are limited by either their high computational complexity or the uncertainty introduced by multi-component pipelines, resulting in only partial agreement with human judgement. Most recently, large language models(LLMs) have shown excellent performance in not only text generation but also language comprehension. In this paper, we particularly explore ChatGPT's ability to evaluate factual inconsistency under a zero-shot setting by examining it on both coarse-grained and fine-grained evaluation tasks including binary entailment inference, summary ranking, and consistency rating. Experimental results indicate that ChatGPT generally outperforms previous evaluation metrics across the three tasks, indicating its great potential for factual inconsistency evaluation. However, a closer inspection of ChatGPT's output reveals certain limitations including its preference for more lexically similar candidates, false reasoning, and inadequate understanding of instructions.

  • 3 authors
·
Mar 27, 2023

A Vision-Language Foundation Model for Leaf Disease Identification

Leaf disease identification plays a pivotal role in smart agriculture. However, many existing studies still struggle to integrate image and textual modalities to compensate for each other's limitations. Furthermore, many of these approaches rely on pretraining with constrained datasets such as ImageNet, which lack domain-specific information. We propose SCOLD (Soft-target COntrastive learning for Leaf Disease identification), a context-aware vision-language foundation model tailored to address these challenges for agricultural tasks. SCOLD is developed using a diverse corpus of plant leaf images and corresponding symptom descriptions, comprising over 186,000 image-caption pairs aligned with 97 unique concepts. Through task-agnostic pretraining, SCOLD leverages contextual soft targets to mitigate overconfidence in contrastive learning by smoothing labels, thereby improving model generalization and robustness on fine-grained classification tasks. Experimental results demonstrate that SCOLD outperforms existing vision-language models such as OpenAI-CLIP-L, BioCLIP, and SigLIP2 across several benchmarks, including zero-shot and few-shot classification, image-text retrieval, and image classification, while maintaining a competitive parameter footprint. Ablation studies further highlight SCOLD's effectiveness in contrast to its counterparts. The proposed approach significantly advances the agricultural vision-language foundation model, offering strong performance with minimal or no supervised fine-tuning. This work lays a solid groundwork for future research on models trained with long-form and simplified contexts, tasks involving class ambiguity, and multi-modal systems for intelligent plant disease diagnostics. The code for this study is available at https://huggingface.co/enalis/scold

  • 3 authors
·
May 11

Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs

Multi-modal Large Language Models (MLLMs) have shown remarkable capabilities in many vision-language tasks. Nevertheless, most MLLMs still lack the Referential Comprehension (RC) ability to identify a specific object or area in images, limiting their application in fine-grained perception tasks. This paper proposes a novel method to enhance the RC capability for MLLMs. Our model represents the referring object in the image using the coordinates of its bounding box and converts the coordinates into texts in a specific format. This allows the model to treat the coordinates as natural language. Moreover, we construct the instruction tuning dataset with various designed RC tasks at a low cost by unleashing the potential of annotations in existing datasets. To further boost the RC ability of the model, we propose a self-consistent bootstrapping method that extends dense object annotations of a dataset into high-quality referring-expression-bounding-box pairs. The model is trained end-to-end with a parameter-efficient tuning framework that allows both modalities to benefit from multi-modal instruction tuning. This framework requires fewer trainable parameters and less training data. Experimental results on conventional vision-language and RC tasks demonstrate the superior performance of our method. For instance, our model exhibits a 12.0% absolute accuracy improvement over Instruct-BLIP on VSR and surpasses Kosmos-2 by 24.7% on RefCOCO_val under zero-shot settings. We also attain the top position on the leaderboard of MMBench. The models, datasets, and codes are publicly available at https://github.com/SY-Xuan/Pink

  • 4 authors
·
Oct 1, 2023

PLeaS -- Merging Models with Permutations and Least Squares

The democratization of machine learning systems has made the process of fine-tuning accessible to practitioners, leading to a wide range of open-source models fine-tuned on specialized tasks and datasets. Recent work has proposed to merge such models to combine their functionalities. However, prior approaches are usually restricted to models that are fine-tuned from the same base model. Furthermore, the final merged model is typically required to be of the same size as the original models. In this work, we propose a new two-step algorithm to merge models -- termed PLeaS -- which relaxes these constraints. First, leveraging the Permutation symmetries inherent in the two models, PLeaS partially matches nodes in each layer by maximizing alignment. Next, PLeaS computes the weights of the merged model as a layer-wise Least Squares solution to minimize the approximation error between the features of the merged model and the permuted features of the original models. PLeaS allows a practitioner to merge two models sharing the same architecture into a single performant model of a desired size, even when the two original models are fine-tuned from different base models. We also demonstrate how our method can be extended to address a challenging scenario where no data is available from the fine-tuning domains. We demonstrate our method to merge ResNet and ViT models trained with shared and different label spaces, and show improvement over the state-of-the-art merging methods of up to 15 percentage points for the same target compute while merging models trained on DomainNet and fine-grained classification tasks. Our code is open-sourced at https://github.com/SewoongLab/PLeaS-Merging .

  • 4 authors
·
Jul 2, 2024

FAIR1M: A Benchmark Dataset for Fine-grained Object Recognition in High-Resolution Remote Sensing Imagery

With the rapid development of deep learning, many deep learning-based approaches have made great achievements in object detection task. It is generally known that deep learning is a data-driven method. Data directly impact the performance of object detectors to some extent. Although existing datasets have included common objects in remote sensing images, they still have some limitations in terms of scale, categories, and images. Therefore, there is a strong requirement for establishing a large-scale benchmark on object detection in high-resolution remote sensing images. In this paper, we propose a novel benchmark dataset with more than 1 million instances and more than 15,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery which is named as FAIR1M. All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 sub-categories by oriented bounding boxes. Compared with existing detection datasets dedicated to object detection, the FAIR1M dataset has 4 particular characteristics: (1) it is much larger than other existing object detection datasets both in terms of the quantity of instances and the quantity of images, (2) it provides more rich fine-grained category information for objects in remote sensing images, (3) it contains geographic information such as latitude, longitude and resolution, (4) it provides better image quality owing to a careful data cleaning procedure. To establish a baseline for fine-grained object recognition, we propose a novel evaluation method and benchmark fine-grained object detection tasks and a visual classification task using several State-Of-The-Art (SOTA) deep learning-based models on our FAIR1M dataset. Experimental results strongly indicate that the FAIR1M dataset is closer to practical application and it is considerably more challenging than existing datasets.

  • 14 authors
·
Mar 9, 2021

Can MLLMs Guide Me Home? A Benchmark Study on Fine-Grained Visual Reasoning from Transit Maps

Multimodal large language models (MLLMs) have recently achieved significant progress in visual tasks, including semantic scene understanding and text-image alignment, with reasoning variants enhancing performance on complex tasks involving mathematics and logic. However, their capacity for reasoning tasks involving fine-grained visual understanding remains insufficiently evaluated. To address this gap, we introduce ReasonMap, a benchmark designed to assess the fine-grained visual understanding and spatial reasoning abilities of MLLMs. ReasonMap encompasses high-resolution transit maps from 30 cities across 13 countries and includes 1,008 question-answer pairs spanning two question types and three templates. Furthermore, we design a two-level evaluation pipeline that properly assesses answer correctness and quality. Comprehensive evaluations of 15 popular MLLMs, including both base and reasoning variants, reveal a counterintuitive pattern: among open-source models, base models outperform reasoning ones, while the opposite trend is observed in closed-source models. Additionally, performance generally degrades when visual inputs are masked, indicating that while MLLMs can leverage prior knowledge to answer some questions, fine-grained visual reasoning tasks still require genuine visual perception for strong performance. Our benchmark study offers new insights into visual reasoning and contributes to investigating the gap between open-source and closed-source models.

  • 8 authors
·
May 24 3

BIOCLIP: A Vision Foundation Model for the Tree of Life

Images of the natural world, collected by a variety of cameras, from drones to individual phones, are increasingly abundant sources of biological information. There is an explosion of computational methods and tools, particularly computer vision, for extracting biologically relevant information from images for science and conservation. Yet most of these are bespoke approaches designed for a specific task and are not easily adaptable or extendable to new questions, contexts, and datasets. A vision model for general organismal biology questions on images is of timely need. To approach this, we curate and release TreeOfLife-10M, the largest and most diverse ML-ready dataset of biology images. We then develop BioCLIP, a foundation model for the tree of life, leveraging the unique properties of biology captured by TreeOfLife-10M, namely the abundance and variety of images of plants, animals, and fungi, together with the availability of rich structured biological knowledge. We rigorously benchmark our approach on diverse fine-grained biology classification tasks, and find that BioCLIP consistently and substantially outperforms existing baselines (by 17% to 20% absolute). Intrinsic evaluation reveals that BioCLIP has learned a hierarchical representation conforming to the tree of life, shedding light on its strong generalizability. Our code, models and data will be made available at https://github.com/Imageomics/bioclip.

imageomics HDR Imageomics Institute
·
Nov 30, 2023

VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use

While vision-language models (VLMs) have demonstrated remarkable performance across various tasks combining textual and visual information, they continue to struggle with fine-grained visual perception tasks that require detailed pixel-level analysis. Effectively eliciting comprehensive reasoning from VLMs on such intricate visual elements remains an open challenge. In this paper, we present VipAct, an agent framework that enhances VLMs by integrating multi-agent collaboration and vision expert models, enabling more precise visual understanding and comprehensive reasoning. VipAct consists of an orchestrator agent, which manages task requirement analysis, planning, and coordination, along with specialized agents that handle specific tasks such as image captioning and vision expert models that provide high-precision perceptual information. This multi-agent approach allows VLMs to better perform fine-grained visual perception tasks by synergizing planning, reasoning, and tool use. We evaluate VipAct on benchmarks featuring a diverse set of visual perception tasks, with experimental results demonstrating significant performance improvements over state-of-the-art baselines across all tasks. Furthermore, comprehensive ablation studies reveal the critical role of multi-agent collaboration in eliciting more detailed System-2 reasoning and highlight the importance of image input for task planning. Additionally, our error analysis identifies patterns of VLMs' inherent limitations in visual perception, providing insights into potential future improvements. VipAct offers a flexible and extensible framework, paving the way for more advanced visual perception systems across various real-world applications.

  • 10 authors
·
Oct 21, 2024

Polarized Self-Attention: Towards High-quality Pixel-wise Regression

Pixel-wise regression is probably the most common problem in fine-grained computer vision tasks, such as estimating keypoint heatmaps and segmentation masks. These regression problems are very challenging particularly because they require, at low computation overheads, modeling long-range dependencies on high-resolution inputs/outputs to estimate the highly nonlinear pixel-wise semantics. While attention mechanisms in Deep Convolutional Neural Networks(DCNNs) has become popular for boosting long-range dependencies, element-specific attention, such as Nonlocal blocks, is highly complex and noise-sensitive to learn, and most of simplified attention hybrids try to reach the best compromise among multiple types of tasks. In this paper, we present the Polarized Self-Attention(PSA) block that incorporates two critical designs towards high-quality pixel-wise regression: (1) Polarized filtering: keeping high internal resolution in both channel and spatial attention computation while completely collapsing input tensors along their counterpart dimensions. (2) Enhancement: composing non-linearity that directly fits the output distribution of typical fine-grained regression, such as the 2D Gaussian distribution (keypoint heatmaps), or the 2D Binormial distribution (binary segmentation masks). PSA appears to have exhausted the representation capacity within its channel-only and spatial-only branches, such that there is only marginal metric differences between its sequential and parallel layouts. Experimental results show that PSA boosts standard baselines by 2-4 points, and boosts state-of-the-arts by 1-2 points on 2D pose estimation and semantic segmentation benchmarks.

  • 4 authors
·
Jul 1, 2021

Dataset Condensation with Contrastive Signals

Recent studies have demonstrated that gradient matching-based dataset synthesis, or dataset condensation (DC), methods can achieve state-of-the-art performance when applied to data-efficient learning tasks. However, in this study, we prove that the existing DC methods can perform worse than the random selection method when task-irrelevant information forms a significant part of the training dataset. We attribute this to the lack of participation of the contrastive signals between the classes resulting from the class-wise gradient matching strategy. To address this problem, we propose Dataset Condensation with Contrastive signals (DCC) by modifying the loss function to enable the DC methods to effectively capture the differences between classes. In addition, we analyze the new loss function in terms of training dynamics by tracking the kernel velocity. Furthermore, we introduce a bi-level warm-up strategy to stabilize the optimization. Our experimental results indicate that while the existing methods are ineffective for fine-grained image classification tasks, the proposed method can successfully generate informative synthetic datasets for the same tasks. Moreover, we demonstrate that the proposed method outperforms the baselines even on benchmark datasets such as SVHN, CIFAR-10, and CIFAR-100. Finally, we demonstrate the high applicability of the proposed method by applying it to continual learning tasks.

  • 5 authors
·
Feb 6, 2022

DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image Editing

Large-scale Text-to-Image (T2I) diffusion models have revolutionized image generation over the last few years. Although owning diverse and high-quality generation capabilities, translating these abilities to fine-grained image editing remains challenging. In this paper, we propose DiffEditor to rectify two weaknesses in existing diffusion-based image editing: (1) in complex scenarios, editing results often lack editing accuracy and exhibit unexpected artifacts; (2) lack of flexibility to harmonize editing operations, e.g., imagine new content. In our solution, we introduce image prompts in fine-grained image editing, cooperating with the text prompt to better describe the editing content. To increase the flexibility while maintaining content consistency, we locally combine stochastic differential equation (SDE) into the ordinary differential equation (ODE) sampling. In addition, we incorporate regional score-based gradient guidance and a time travel strategy into the diffusion sampling, further improving the editing quality. Extensive experiments demonstrate that our method can efficiently achieve state-of-the-art performance on various fine-grained image editing tasks, including editing within a single image (e.g., object moving, resizing, and content dragging) and across images (e.g., appearance replacing and object pasting). Our source code is released at https://github.com/MC-E/DragonDiffusion.

  • 5 authors
·
Feb 4, 2024 1

PVC: Progressive Visual Token Compression for Unified Image and Video Processing in Large Vision-Language Models

Large Vision-Language Models (VLMs) have been extended to understand both images and videos. Visual token compression is leveraged to reduce the considerable token length of visual inputs. To meet the needs of different tasks, existing high-performance models usually process images and videos separately with different token compression strategies, limiting the capabilities of combining images and videos. To this end, we extend each image into a "static" video and introduce a unified token compression strategy called Progressive Visual Token Compression (PVC), where the tokens of each frame are progressively encoded and adaptively compressed to supplement the information not extracted from previous frames. Video tokens are efficiently compressed with exploiting the inherent temporal redundancy. Images are repeated as static videos, and the spatial details can be gradually supplemented in multiple frames. PVC unifies the token compressing of images and videos. With a limited number of tokens per frame (64 tokens by default), spatial details and temporal changes can still be preserved. Experiments show that our model achieves state-of-the-art performance across various video understanding benchmarks, including long video tasks and fine-grained short video tasks. Meanwhile, our unified token compression strategy incurs no performance loss on image benchmarks, particularly in detail-sensitive tasks.

  • 10 authors
·
Dec 12, 2024

Learning with Unmasked Tokens Drives Stronger Vision Learners

Masked image modeling (MIM) has become a leading self-supervised learning strategy. MIMs such as Masked Autoencoder (MAE) learn strong representations by randomly masking input tokens for the encoder to process, with the decoder reconstructing the masked tokens to the input. However, MIM pre-trained encoders often exhibit a limited attention span, attributed to MIM's sole focus on regressing masked tokens only, which may impede the encoder's broader context learning. To tackle the limitation, we improve MIM by explicitly incorporating unmasked tokens into the training process. Specifically, our method enables the encoder to learn from broader context supervision, allowing unmasked tokens to experience broader contexts while the decoder reconstructs masked tokens. Thus, the encoded unmasked tokens are equipped with extensive contextual information, empowering masked tokens to leverage the enhanced unmasked tokens for MIM. As a result, our simple remedy trains more discriminative representations revealed by achieving 84.2% top-1 accuracy with ViT-B on ImageNet-1K with 0.6%p gain. We attribute the success to the enhanced pre-training method, as evidenced by the singular value spectrum and attention analyses. Finally, our models achieve significant performance gains at the downstream semantic segmentation and fine-grained visual classification tasks; and on diverse robust evaluation metrics. Code is available at https://github.com/naver-ai/lut

naver-ai NAVER AI Lab
·
Oct 20, 2023

Learning from Suboptimal Data in Continuous Control via Auto-Regressive Soft Q-Network

Reinforcement learning (RL) for continuous control often requires large amounts of online interaction data. Value-based RL methods can mitigate this burden by offering relatively high sample efficiency. Some studies further enhance sample efficiency by incorporating offline demonstration data to "kick-start" training, achieving promising results in continuous control. However, they typically compute the Q-function independently for each action dimension, neglecting interdependencies and making it harder to identify optimal actions when learning from suboptimal data, such as non-expert demonstration and online-collected data during the training process. To address these issues, we propose Auto-Regressive Soft Q-learning (ARSQ), a value-based RL algorithm that models Q-values in a coarse-to-fine, auto-regressive manner. First, ARSQ decomposes the continuous action space into discrete spaces in a coarse-to-fine hierarchy, enhancing sample efficiency for fine-grained continuous control tasks. Next, it auto-regressively predicts dimensional action advantages within each decision step, enabling more effective decision-making in continuous control tasks. We evaluate ARSQ on two continuous control benchmarks, RLBench and D4RL, integrating demonstration data into online training. On D4RL, which includes non-expert demonstrations, ARSQ achieves an average 1.62times performance improvement over SOTA value-based baseline. On RLBench, which incorporates expert demonstrations, ARSQ surpasses various baselines, demonstrating its effectiveness in learning from suboptimal online-collected data. Project page is at https://sites.google.com/view/ar-soft-q

  • 5 authors
·
Jan 31

seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World Models

Current self-supervised algorithms commonly rely on transformations such as data augmentation and masking to learn visual representations. This is achieved by enforcing invariance or equivariance with respect to these transformations after encoding two views of an image. This dominant two-view paradigm often limits the flexibility of learned representations for downstream adaptation by creating performance trade-offs between high-level invariance-demanding tasks such as image classification and more fine-grained equivariance-related tasks. In this work, we proposes seq-JEPA, a world modeling framework that introduces architectural inductive biases into joint-embedding predictive architectures to resolve this trade-off. Without relying on dual equivariance predictors or loss terms, seq-JEPA simultaneously learns two architecturally segregated representations: one equivariant to specified transformations and another invariant to them. To do so, our model processes short sequences of different views (observations) of inputs. Each encoded view is concatenated with an embedding of the relative transformation (action) that produces the next observation in the sequence. These view-action pairs are passed through a transformer encoder that outputs an aggregate representation. A predictor head then conditions this aggregate representation on the upcoming action to predict the representation of the next observation. Empirically, seq-JEPA demonstrates strong performance on both equivariant and invariant benchmarks without sacrificing one for the other. Furthermore, it excels at tasks that inherently require aggregating a sequence of observations, such as path integration across actions and predictive learning across eye movements.

  • 3 authors
·
May 6

HQ-CLIP: Leveraging Large Vision-Language Models to Create High-Quality Image-Text Datasets and CLIP Models

Large-scale but noisy image-text pair data have paved the way for the success of Contrastive Language-Image Pretraining (CLIP). As the foundation vision encoder, CLIP in turn serves as the cornerstone for most large vision-language models (LVLMs). This interdependence naturally raises an interesting question: Can we reciprocally leverage LVLMs to enhance the quality of image-text pair data, thereby opening the possibility of a self-reinforcing cycle for continuous improvement? In this work, we take a significant step toward this vision by introducing an LVLM-driven data refinement pipeline. Our framework leverages LVLMs to process images and their raw alt-text, generating four complementary textual formulas: long positive descriptions, long negative descriptions, short positive tags, and short negative tags. Applying this pipeline to the curated DFN-Large dataset yields VLM-150M, a refined dataset enriched with multi-grained annotations. Based on this dataset, we further propose a training paradigm that extends conventional contrastive learning by incorporating negative descriptions and short tags as additional supervised signals. The resulting model, namely HQ-CLIP, demonstrates remarkable improvements across diverse benchmarks. Within a comparable training data scale, our approach achieves state-of-the-art performance in zero-shot classification, cross-modal retrieval, and fine-grained visual understanding tasks. In retrieval benchmarks, HQ-CLIP even surpasses standard CLIP models trained on the DFN-2B dataset, which contains 10times more training data than ours. All code, data, and models are available at https://zxwei.site/hqclip.

  • 7 authors
·
Jul 30 1

X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs

Recent advancements in Multimodal Large Language Models (MLLMs) have revolutionized the field of vision-language understanding by integrating visual perception capabilities into Large Language Models (LLMs). The prevailing trend in this field involves the utilization of a vision encoder derived from vision-language contrastive learning (CL), showing expertise in capturing overall representations while facing difficulties in capturing detailed local patterns. In this work, we focus on enhancing the visual representations for MLLMs by combining high-frequency and detailed visual representations, obtained through masked image modeling (MIM), with semantically-enriched low-frequency representations captured by CL. To achieve this goal, we introduce X-Former which is a lightweight transformer module designed to exploit the complementary strengths of CL and MIM through an innovative interaction mechanism. Specifically, X-Former first bootstraps vision-language representation learning and multimodal-to-multimodal generative learning from two frozen vision encoders, i.e., CLIP-ViT (CL-based) and MAE-ViT (MIM-based). It further bootstraps vision-to-language generative learning from a frozen LLM to ensure visual features from X-Former can be interpreted by the LLM. To demonstrate the effectiveness of our approach, we assess its performance on tasks demanding detailed visual understanding. Extensive evaluations indicate that X-Former excels in visual reasoning tasks involving both structural and semantic categories in the GQA dataset. Assessment on fine-grained visual perception benchmark further confirms its superior capabilities in visual understanding.

  • 8 authors
·
Jul 18, 2024

UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction

Autonomous agents that navigate Graphical User Interfaces (GUIs) to automate tasks like document editing and file management can greatly enhance computer workflows. While existing research focuses on online settings, desktop environments, critical for many professional and everyday tasks, remain underexplored due to data collection challenges and licensing issues. We introduce UI-Vision, the first comprehensive, license-permissive benchmark for offline, fine-grained evaluation of computer use agents in real-world desktop environments. Unlike online benchmarks, UI-Vision provides: (i) dense, high-quality annotations of human demonstrations, including bounding boxes, UI labels, and action trajectories (clicks, drags, and keyboard inputs) across 83 software applications, and (ii) three fine-to-coarse grained tasks-Element Grounding, Layout Grounding, and Action Prediction-with well-defined metrics to rigorously evaluate agents' performance in desktop environments. Our evaluation reveals critical limitations in state-of-the-art models like UI-TARS-72B, including issues with understanding professional software, spatial reasoning, and complex actions like drag-and-drop. These findings highlight the challenges in developing fully autonomous computer use agents. By releasing UI-Vision as open-source, we aim to advance the development of more capable agents for real-world desktop tasks.

  • 14 authors
·
Mar 19

CordViP: Correspondence-based Visuomotor Policy for Dexterous Manipulation in Real-World

Achieving human-level dexterity in robots is a key objective in the field of robotic manipulation. Recent advancements in 3D-based imitation learning have shown promising results, providing an effective pathway to achieve this goal. However, obtaining high-quality 3D representations presents two key problems: (1) the quality of point clouds captured by a single-view camera is significantly affected by factors such as camera resolution, positioning, and occlusions caused by the dexterous hand; (2) the global point clouds lack crucial contact information and spatial correspondences, which are necessary for fine-grained dexterous manipulation tasks. To eliminate these limitations, we propose CordViP, a novel framework that constructs and learns correspondences by leveraging the robust 6D pose estimation of objects and robot proprioception. Specifically, we first introduce the interaction-aware point clouds, which establish correspondences between the object and the hand. These point clouds are then used for our pre-training policy, where we also incorporate object-centric contact maps and hand-arm coordination information, effectively capturing both spatial and temporal dynamics. Our method demonstrates exceptional dexterous manipulation capabilities with an average success rate of 90\% in four real-world tasks, surpassing other baselines by a large margin. Experimental results also highlight the superior generalization and robustness of CordViP to different objects, viewpoints, and scenarios. Code and videos are available on https://aureleopku.github.io/CordViP.

  • 11 authors
·
Feb 12

Right Side Up? Disentangling Orientation Understanding in MLLMs with Fine-grained Multi-axis Perception Tasks

Object orientation understanding represents a fundamental challenge in visual perception critical for applications like robotic manipulation and augmented reality. Current vision-language benchmarks fail to isolate this capability, often conflating it with positional relationships and general scene understanding. We introduce DORI (Discriminative Orientation Reasoning Intelligence), a comprehensive benchmark establishing object orientation perception as a primary evaluation target. DORI assesses four dimensions of orientation comprehension: frontal alignment, rotational transformations, relative directional relationships, and canonical orientation understanding. Through carefully curated tasks from 11 datasets spanning 67 object categories across synthetic and real-world scenarios, DORI provides insights on how multi-modal systems understand object orientations. Our evaluation of 15 state-of-the-art vision-language models reveals critical limitations: even the best models achieve only 54.2% accuracy on coarse tasks and 33.0% on granular orientation judgments, with performance deteriorating for tasks requiring reference frame shifts or compound rotations. These findings demonstrate the need for dedicated orientation representation mechanisms, as models show systematic inability to perform precise angular estimations, track orientation changes across viewpoints, and understand compound rotations - suggesting limitations in their internal 3D spatial representations. As the first diagnostic framework specifically designed for orientation awareness in multimodal systems, DORI offers implications for improving robotic control, 3D scene reconstruction, and human-AI interaction in physical environments. DORI data: https://huggingface.co/datasets/appledora/DORI-Benchmark

  • 7 authors
·
May 27 2

Fine-grained Audible Video Description

We explore a new task for audio-visual-language modeling called fine-grained audible video description (FAVD). It aims to provide detailed textual descriptions for the given audible videos, including the appearance and spatial locations of each object, the actions of moving objects, and the sounds in videos. Existing visual-language modeling tasks often concentrate on visual cues in videos while undervaluing the language and audio modalities. On the other hand, FAVD requires not only audio-visual-language modeling skills but also paragraph-level language generation abilities. We construct the first fine-grained audible video description benchmark (FAVDBench) to facilitate this research. For each video clip, we first provide a one-sentence summary of the video, ie, the caption, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end. The descriptions are provided in both English and Chinese. We create two new metrics for this task: an EntityScore to gauge the completeness of entities in the visual descriptions, and an AudioScore to assess the audio descriptions. As a preliminary approach to this task, we propose an audio-visual-language transformer that extends existing video captioning model with an additional audio branch. We combine the masked language modeling and auto-regressive language modeling losses to optimize our model so that it can produce paragraph-level descriptions. We illustrate the efficiency of our model in audio-visual-language modeling by evaluating it against the proposed benchmark using both conventional captioning metrics and our proposed metrics. We further put our benchmark to the test in video generation models, demonstrating that employing fine-grained video descriptions can create more intricate videos than using captions.

  • 12 authors
·
Mar 27, 2023

Fine-Grained Visual Prompting

Vision-Language Models (VLMs), such as CLIP, have demonstrated impressive zero-shot transfer capabilities in image-level visual perception. However, these models have shown limited performance in instance-level tasks that demand precise localization and recognition. Previous works have suggested that incorporating visual prompts, such as colorful boxes or circles, can improve the ability of models to recognize objects of interest. Nonetheless, compared to language prompting, visual prompting designs are rarely explored. Existing approaches, which employ coarse visual cues such as colorful boxes or circles, often result in sub-optimal performance due to the inclusion of irrelevant and noisy pixels. In this paper, we carefully study the visual prompting designs by exploring more fine-grained markings, such as segmentation masks and their variations. In addition, we introduce a new zero-shot framework that leverages pixel-level annotations acquired from a generalist segmentation model for fine-grained visual prompting. Consequently, our investigation reveals that a straightforward application of blur outside the target mask, referred to as the Blur Reverse Mask, exhibits exceptional effectiveness. This proposed prompting strategy leverages the precise mask annotations to reduce focus on weakly related regions while retaining spatial coherence between the target and the surrounding background. Our Fine-Grained Visual Prompting (FGVP) demonstrates superior performance in zero-shot comprehension of referring expressions on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks. It outperforms prior methods by an average margin of 3.0% to 4.6%, with a maximum improvement of 12.5% on the RefCOCO+ testA subset. Code is available at https://github.com/ylingfeng/FGVP.

  • 5 authors
·
Jun 7, 2023

BitStack: Fine-Grained Size Control for Compressed Large Language Models in Variable Memory Environments

Large language models (LLMs) have revolutionized numerous applications, yet their deployment remains challenged by memory constraints on local devices. While scaling laws have enhanced LLM capabilities, the primary bottleneck has shifted from capability to availability, emphasizing the need for efficient memory management. Traditional compression methods, such as quantization, often require predefined compression ratios and separate compression processes for each setting, complicating deployment in variable memory environments. In this paper, we introduce BitStack, a novel, training-free weight compression approach that enables megabyte-level trade-offs between memory usage and model performance. By leveraging weight decomposition, BitStack can dynamically adjust the model size with minimal transmission between running memory and storage devices. Our approach iteratively decomposes weight matrices while considering the significance of each parameter, resulting in an approximately 1-bit per parameter residual block in each decomposition iteration. These blocks are sorted and stacked in storage as basic transmission units, with different quantities loaded based on current memory availability. Extensive experiments across a wide range of tasks demonstrate that, despite offering fine-grained size control, BitStack consistently matches or surpasses strong quantization baselines, particularly at extreme compression ratios. To the best of our knowledge, this is the first decomposition-based method that effectively bridges the gap to practical compression techniques like quantization. Code is available at https://github.com/xinghaow99/BitStack.

  • 6 authors
·
Oct 31, 2024 6

Fine-grained Audio-Visual Joint Representations for Multimodal Large Language Models

Audio-visual large language models (LLM) have drawn significant attention, yet the fine-grained combination of both input streams is rather under-explored, which is challenging but necessary for LLMs to understand general video inputs. To this end, a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal LLMs is proposed in this paper, which extends a text-based LLM to simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level. To fuse the audio and visual feature streams into joint representations and to align the joint space with the LLM input embedding space, we propose a causal Q-Former structure with a causal attention module to enhance the capture of causal relations of the audio-visual frames across time. An audio-visual evaluation benchmark (AVEB) is also proposed which comprises six representative single-modal tasks with five cross-modal tasks reflecting audio-visual co-reasoning abilities. While achieving competitive single-modal performance on audio, speech and image tasks in AVEB, FAVOR achieved over 20% accuracy improvements on the video question-answering task when fine-grained information or temporal causal reasoning is required. FAVOR, in addition, demonstrated remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other multimodal LLMs. An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.

  • 9 authors
·
Oct 9, 2023

Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement

The rapid development of large language models (LLMs), like ChatGPT, has resulted in the widespread presence of LLM-generated content on social media platforms, raising concerns about misinformation, data biases, and privacy violations, which can undermine trust in online discourse. While detecting LLM-generated content is crucial for mitigating these risks, current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration. To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content. This approach introduces two novel tasks: LLM Role Recognition (LLM-RR), a multi-class classification task that identifies specific roles of LLM in content generation, and LLM Influence Measurement (LLM-IM), a regression task that quantifies the extent of LLM involvement in content creation. To support these tasks, we propose LLMDetect, a benchmark designed to evaluate detectors' performance on these new tasks. LLMDetect includes the Hybrid News Detection Corpus (HNDC) for training detectors, as well as DetectEval, a comprehensive evaluation suite that considers five distinct cross-context variations and two multi-intensity variations within the same LLM role. This allows for a thorough assessment of detectors' generalization and robustness across diverse contexts. Our empirical validation of 10 baseline detection methods demonstrates that fine-tuned PLM-based models consistently outperform others on both tasks, while advanced LLMs face challenges in accurately detecting their own generated content. Our experimental results and analysis offer insights for developing more effective detection models for LLM-generated content. This research enhances the understanding of LLM-generated content and establishes a foundation for more nuanced detection methodologies.

  • 5 authors
·
Oct 18, 2024

Fine-grained Contract NER using instruction based model

Lately, instruction-based techniques have made significant strides in improving performance in few-shot learning scenarios. They achieve this by bridging the gap between pre-trained language models and fine-tuning for specific downstream tasks. Despite these advancements, the performance of Large Language Models (LLMs) in information extraction tasks like Named Entity Recognition (NER), using prompts or instructions, still falls short of supervised baselines. The reason for this performance gap can be attributed to the fundamental disparity between NER and LLMs. NER is inherently a sequence labeling task, where the model must assign entity-type labels to individual tokens within a sentence. In contrast, LLMs are designed as a text generation task. This distinction between semantic labeling and text generation leads to subpar performance. In this paper, we transform the NER task into a text-generation task that can be readily adapted by LLMs. This involves enhancing source sentences with task-specific instructions and answer choices, allowing for the identification of entities and their types within natural language. We harness the strength of LLMs by integrating supervised learning within them. The goal of this combined strategy is to boost the performance of LLMs in extraction tasks like NER while simultaneously addressing hallucination issues often observed in LLM-generated content. A novel corpus Contract NER comprising seven frequently observed contract categories, encompassing named entities associated with 18 distinct legal entity types is released along with our baseline models. Our models and dataset are available to the community for future research * .

  • 3 authors
·
Jan 24, 2024

MathOPEval: A Fine-grained Evaluation Benchmark for Visual Operations of MLLMs in Mathematical Reasoning

Recent progress in Multi-modal Large Language Models (MLLMs) has enabled step-by-step multi-modal mathematical reasoning by performing visual operations based on the textual instructions. A promising approach uses code as an intermediate representation to precisely express and manipulate the images in the reasoning steps. However, existing evaluations focus mainly on text-only reasoning outputs, leaving the MLLM's ability to perform accurate visual operations via code largely unexplored. This work takes a first step toward addressing that gap by evaluating MLLM's code-based capabilities in multi-modal mathematical reasoning.Specifically, our framework focuses on two key evaluation aspects: (1) Multi-modal Code Generation (MCG) evaluates the model's ability to accurately understand and construct visualizations from scratch. (2) Multi-modal Code Editing (MCE) assesses the model's capacity for fine-grained operations, which include three types: Deletion, Modification and Annotation. To evaluate the above tasks, we incorporate a dataset that covers the five most popular types of mathematical figures, including geometric diagrams, function plots, and three types of statistical charts, to provide a comprehensive and effective measurement of existing MLLMs. Our experimental evaluation involves nine mainstream MLLMs, and the results reveal that existing models still lag significantly behind human performance in performing fine-grained visual operations.

  • 8 authors
·
Jul 24

ActionArt: Advancing Multimodal Large Models for Fine-Grained Human-Centric Video Understanding

Fine-grained understanding of human actions and poses in videos is essential for human-centric AI applications. In this work, we introduce ActionArt, a fine-grained video-caption dataset designed to advance research in human-centric multimodal understanding. Our dataset comprises thousands of videos capturing a broad spectrum of human actions, human-object interactions, and diverse scenarios, each accompanied by detailed annotations that meticulously label every limb movement. We develop eight sub-tasks to evaluate the fine-grained understanding capabilities of existing large multimodal models across different dimensions. Experimental results indicate that, while current large multimodal models perform commendably on various tasks, they often fall short in achieving fine-grained understanding. We attribute this limitation to the scarcity of meticulously annotated data, which is both costly and difficult to scale manually. Since manual annotations are costly and hard to scale, we propose proxy tasks to enhance the model perception ability in both spatial and temporal dimensions. These proxy tasks are carefully crafted to be driven by data automatically generated from existing MLLMs, thereby reducing the reliance on costly manual labels. Experimental results show that the proposed proxy tasks significantly narrow the gap toward the performance achieved with manually annotated fine-grained data.

  • 7 authors
·
Apr 25