Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCuriosity-Driven Exploration via Latent Bayesian Surprise
The human intrinsic desire to pursue knowledge, also known as curiosity, is considered essential in the process of skill acquisition. With the aid of artificial curiosity, we could equip current techniques for control, such as Reinforcement Learning, with more natural exploration capabilities. A promising approach in this respect has consisted of using Bayesian surprise on model parameters, i.e. a metric for the difference between prior and posterior beliefs, to favour exploration. In this contribution, we propose to apply Bayesian surprise in a latent space representing the agent's current understanding of the dynamics of the system, drastically reducing the computational costs. We extensively evaluate our method by measuring the agent's performance in terms of environment exploration, for continuous tasks, and looking at the game scores achieved, for video games. Our model is computationally cheap and compares positively with current state-of-the-art methods on several problems. We also investigate the effects caused by stochasticity in the environment, which is often a failure case for curiosity-driven agents. In this regime, the results suggest that our approach is resilient to stochastic transitions.
Curiosity-driven Exploration by Self-supervised Prediction
In many real-world scenarios, rewards extrinsic to the agent are extremely sparse, or absent altogether. In such cases, curiosity can serve as an intrinsic reward signal to enable the agent to explore its environment and learn skills that might be useful later in its life. We formulate curiosity as the error in an agent's ability to predict the consequence of its own actions in a visual feature space learned by a self-supervised inverse dynamics model. Our formulation scales to high-dimensional continuous state spaces like images, bypasses the difficulties of directly predicting pixels, and, critically, ignores the aspects of the environment that cannot affect the agent. The proposed approach is evaluated in two environments: VizDoom and Super Mario Bros. Three broad settings are investigated: 1) sparse extrinsic reward, where curiosity allows for far fewer interactions with the environment to reach the goal; 2) exploration with no extrinsic reward, where curiosity pushes the agent to explore more efficiently; and 3) generalization to unseen scenarios (e.g. new levels of the same game) where the knowledge gained from earlier experience helps the agent explore new places much faster than starting from scratch. Demo video and code available at https://pathak22.github.io/noreward-rl/
GeoExplorer: Active Geo-localization with Curiosity-Driven Exploration
Active Geo-localization (AGL) is the task of localizing a goal, represented in various modalities (e.g., aerial images, ground-level images, or text), within a predefined search area. Current methods approach AGL as a goal-reaching reinforcement learning (RL) problem with a distance-based reward. They localize the goal by implicitly learning to minimize the relative distance from it. However, when distance estimation becomes challenging or when encountering unseen targets and environments, the agent exhibits reduced robustness and generalization ability due to the less reliable exploration strategy learned during training. In this paper, we propose GeoExplorer, an AGL agent that incorporates curiosity-driven exploration through intrinsic rewards. Unlike distance-based rewards, our curiosity-driven reward is goal-agnostic, enabling robust, diverse, and contextually relevant exploration based on effective environment modeling. These capabilities have been proven through extensive experiments across four AGL benchmarks, demonstrating the effectiveness and generalization ability of GeoExplorer in diverse settings, particularly in localizing unfamiliar targets and environments.
Curiosity-Driven Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but often at the cost of reduced output diversity. This trade-off between diversity and alignment quality remains a significant challenge. Drawing inspiration from curiosity-driven exploration in reinforcement learning, we introduce curiosity-driven RLHF (CD-RLHF), a framework that incorporates intrinsic rewards for novel states, alongside traditional sparse extrinsic rewards, to optimize both output diversity and alignment quality. We demonstrate the effectiveness of CD-RLHF through extensive experiments on a range of tasks, including text summarization and instruction following. Our approach achieves significant gains in diversity on multiple diversity-oriented metrics while maintaining alignment with human preferences comparable to standard RLHF. We make our code publicly available at https://github.com/ernie-research/CD-RLHF.
Curiosity-driven Red-teaming for Large Language Models
Large language models (LLMs) hold great potential for many natural language applications but risk generating incorrect or toxic content. To probe when an LLM generates unwanted content, the current paradigm is to recruit a red team of human testers to design input prompts (i.e., test cases) that elicit undesirable responses from LLMs. However, relying solely on human testers is expensive and time-consuming. Recent works automate red teaming by training a separate red team LLM with reinforcement learning (RL) to generate test cases that maximize the chance of eliciting undesirable responses from the target LLM. However, current RL methods are only able to generate a small number of effective test cases resulting in a low coverage of the span of prompts that elicit undesirable responses from the target LLM. To overcome this limitation, we draw a connection between the problem of increasing the coverage of generated test cases and the well-studied approach of curiosity-driven exploration that optimizes for novelty. Our method of curiosity-driven red teaming (CRT) achieves greater coverage of test cases while mantaining or increasing their effectiveness compared to existing methods. Our method, CRT successfully provokes toxic responses from LLaMA2 model that has been heavily fine-tuned using human preferences to avoid toxic outputs. Code is available at https://github.com/Improbable-AI/curiosity_redteam
Optimistic Curiosity Exploration and Conservative Exploitation with Linear Reward Shaping
In this work, we study the simple yet universally applicable case of reward shaping in value-based Deep Reinforcement Learning (DRL). We show that reward shifting in the form of the linear transformation is equivalent to changing the initialization of the Q-function in function approximation. Based on such an equivalence, we bring the key insight that a positive reward shifting leads to conservative exploitation, while a negative reward shifting leads to curiosity-driven exploration. Accordingly, conservative exploitation improves offline RL value estimation, and optimistic value estimation improves exploration for online RL. We validate our insight on a range of RL tasks and show its improvement over baselines: (1) In offline RL, the conservative exploitation leads to improved performance based on off-the-shelf algorithms; (2) In online continuous control, multiple value functions with different shifting constants can be used to tackle the exploration-exploitation dilemma for better sample efficiency; (3) In discrete control tasks, a negative reward shifting yields an improvement over the curiosity-based exploration method.
InDRiVE: Intrinsic Disagreement based Reinforcement for Vehicle Exploration through Curiosity Driven Generalized World Model
Model-based Reinforcement Learning (MBRL) has emerged as a promising paradigm for autonomous driving, where data efficiency and robustness are critical. Yet, existing solutions often rely on carefully crafted, task specific extrinsic rewards, limiting generalization to new tasks or environments. In this paper, we propose InDRiVE (Intrinsic Disagreement based Reinforcement for Vehicle Exploration), a method that leverages purely intrinsic, disagreement based rewards within a Dreamer based MBRL framework. By training an ensemble of world models, the agent actively explores high uncertainty regions of environments without any task specific feedback. This approach yields a task agnostic latent representation, allowing for rapid zero shot or few shot fine tuning on downstream driving tasks such as lane following and collision avoidance. Experimental results in both seen and unseen environments demonstrate that InDRiVE achieves higher success rates and fewer infractions compared to DreamerV2 and DreamerV3 baselines despite using significantly fewer training steps. Our findings highlight the effectiveness of purely intrinsic exploration for learning robust vehicle control behaviors, paving the way for more scalable and adaptable autonomous driving systems.
Pixel Reasoner: Incentivizing Pixel-Space Reasoning with Curiosity-Driven Reinforcement Learning
Chain-of-thought reasoning has significantly improved the performance of Large Language Models (LLMs) across various domains. However, this reasoning process has been confined exclusively to textual space, limiting its effectiveness in visually intensive tasks. To address this limitation, we introduce the concept of reasoning in the pixel-space. Within this novel framework, Vision-Language Models (VLMs) are equipped with a suite of visual reasoning operations, such as zoom-in and select-frame. These operations enable VLMs to directly inspect, interrogate, and infer from visual evidences, thereby enhancing reasoning fidelity for visual tasks. Cultivating such pixel-space reasoning capabilities in VLMs presents notable challenges, including the model's initially imbalanced competence and its reluctance to adopt the newly introduced pixel-space operations. We address these challenges through a two-phase training approach. The first phase employs instruction tuning on synthesized reasoning traces to familiarize the model with the novel visual operations. Following this, a reinforcement learning (RL) phase leverages a curiosity-driven reward scheme to balance exploration between pixel-space reasoning and textual reasoning. With these visual operations, VLMs can interact with complex visual inputs, such as information-rich images or videos to proactively gather necessary information. We demonstrate that this approach significantly improves VLM performance across diverse visual reasoning benchmarks. Our 7B model, \model, achieves 84\% on V* bench, 74\% on TallyQA-Complex, and 84\% on InfographicsVQA, marking the highest accuracy achieved by any open-source model to date. These results highlight the importance of pixel-space reasoning and the effectiveness of our framework.
Touch-based Curiosity for Sparse-Reward Tasks
Robots in many real-world settings have access to force/torque sensors in their gripper and tactile sensing is often necessary in tasks that involve contact-rich motion. In this work, we leverage surprise from mismatches in touch feedback to guide exploration in hard sparse-reward reinforcement learning tasks. Our approach, Touch-based Curiosity (ToC), learns what visible objects interactions are supposed to "feel" like. We encourage exploration by rewarding interactions where the expectation and the experience don't match. In our proposed method, an initial task-independent exploration phase is followed by an on-task learning phase, in which the original interactions are relabeled with on-task rewards. We test our approach on a range of touch-intensive robot arm tasks (e.g. pushing objects, opening doors), which we also release as part of this work. Across multiple experiments in a simulated setting, we demonstrate that our method is able to learn these difficult tasks through sparse reward and curiosity alone. We compare our cross-modal approach to single-modality (touch- or vision-only) approaches as well as other curiosity-based methods and find that our method performs better and is more sample-efficient.
VCA: Video Curious Agent for Long Video Understanding
Long video understanding poses unique challenges due to their temporal complexity and low information density. Recent works address this task by sampling numerous frames or incorporating auxiliary tools using LLMs, both of which result in high computational costs. In this work, we introduce a curiosity-driven video agent with self-exploration capability, dubbed as VCA. Built upon VLMs, VCA autonomously navigates video segments and efficiently builds a comprehensive understanding of complex video sequences. Instead of directly sampling frames, VCA employs a tree-search structure to explore video segments and collect frames. Rather than relying on external feedback or reward, VCA leverages VLM's self-generated intrinsic reward to guide its exploration, enabling it to capture the most crucial information for reasoning. Experimental results on multiple long video benchmarks demonstrate our approach's superior effectiveness and efficiency.
Deep Reinforcement Learning with Hybrid Intrinsic Reward Model
Intrinsic reward shaping has emerged as a prevalent approach to solving hard-exploration and sparse-rewards environments in reinforcement learning (RL). While single intrinsic rewards, such as curiosity-driven or novelty-based methods, have shown effectiveness, they often limit the diversity and efficiency of exploration. Moreover, the potential and principle of combining multiple intrinsic rewards remains insufficiently explored. To address this gap, we introduce HIRE (Hybrid Intrinsic REward), a flexible and elegant framework for creating hybrid intrinsic rewards through deliberate fusion strategies. With HIRE, we conduct a systematic analysis of the application of hybrid intrinsic rewards in both general and unsupervised RL across multiple benchmarks. Extensive experiments demonstrate that HIRE can significantly enhance exploration efficiency and diversity, as well as skill acquisition in complex and dynamic settings.
AgentEvolver: Towards Efficient Self-Evolving Agent System
Autonomous agents powered by large language models (LLMs) have the potential to significantly enhance human productivity by reasoning, using tools, and executing complex tasks in diverse environments. However, current approaches to developing such agents remain costly and inefficient, as they typically require manually constructed task datasets and reinforcement learning (RL) pipelines with extensive random exploration. These limitations lead to prohibitively high data-construction costs, low exploration efficiency, and poor sample utilization. To address these challenges, we present AgentEvolver, a self-evolving agent system that leverages the semantic understanding and reasoning capabilities of LLMs to drive autonomous agent learning. AgentEvolver introduces three synergistic mechanisms: (i) self-questioning, which enables curiosity-driven task generation in novel environments, reducing dependence on handcrafted datasets; (ii) self-navigating, which improves exploration efficiency through experience reuse and hybrid policy guidance; and (iii) self-attributing, which enhances sample efficiency by assigning differentiated rewards to trajectory states and actions based on their contribution. By integrating these mechanisms into a unified framework, AgentEvolver enables scalable, cost-effective, and continual improvement of agent capabilities. Preliminary experiments indicate that AgentEvolver achieves more efficient exploration, better sample utilization, and faster adaptation compared to traditional RL-based baselines.
Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious Exploration
Curiosity-based reward schemes can present powerful exploration mechanisms which facilitate the discovery of solutions for complex, sparse or long-horizon tasks. However, as the agent learns to reach previously unexplored spaces and the objective adapts to reward new areas, many behaviours emerge only to disappear due to being overwritten by the constantly shifting objective. We argue that merely using curiosity for fast environment exploration or as a bonus reward for a specific task does not harness the full potential of this technique and misses useful skills. Instead, we propose to shift the focus towards retaining the behaviours which emerge during curiosity-based learning. We posit that these self-discovered behaviours serve as valuable skills in an agent's repertoire to solve related tasks. Our experiments demonstrate the continuous shift in behaviour throughout training and the benefits of a simple policy snapshot method to reuse discovered behaviour for transfer tasks.
Developmental Curiosity and Social Interaction in Virtual Agents
Infants explore their complex physical and social environment in an organized way. To gain insight into what intrinsic motivations may help structure this exploration, we create a virtual infant agent and place it in a developmentally-inspired 3D environment with no external rewards. The environment has a virtual caregiver agent with the capability to interact contingently with the infant agent in ways that resemble play. We test intrinsic reward functions that are similar to motivations that have been proposed to drive exploration in humans: surprise, uncertainty, novelty, and learning progress. These generic reward functions lead the infant agent to explore its environment and discover the contingencies that are embedded into the caregiver agent. The reward functions that are proxies for novelty and uncertainty are the most successful in generating diverse experiences and activating the environment contingencies. We also find that learning a world model in the presence of an attentive caregiver helps the infant agent learn how to predict scenarios with challenging social and physical dynamics. Taken together, our findings provide insight into how curiosity-like intrinsic rewards and contingent social interaction lead to dynamic social behavior and the creation of a robust predictive world model.
ScreenExplorer: Training a Vision-Language Model for Diverse Exploration in Open GUI World
The rapid progress of large language models (LLMs) has sparked growing interest in building Artificial General Intelligence (AGI) within Graphical User Interface (GUI) environments. However, existing GUI agents based on LLMs or vision-language models (VLMs) often fail to generalize to novel environments and rely heavily on manually curated, diverse datasets. To overcome these limitations, we introduce ScreenExplorer, a VLM trained via Group Relative Policy Optimization(GRPO) in real, dynamic, and open-ended GUI environments. Innovatively, we introduced a world-model-based curiosity reward function to help the agent overcome the cold-start phase of exploration. Additionally, distilling experience streams further enhances the model's exploration capabilities. Our training framework enhances model exploration in open GUI environments, with trained models showing better environmental adaptation and sustained exploration compared to static deployment models. Our findings offer a scalable pathway toward AGI systems with self-improving capabilities in complex interactive settings.
Intelligent Go-Explore: Standing on the Shoulders of Giant Foundation Models
Go-Explore is a powerful family of algorithms designed to solve hard-exploration problems, built on the principle of archiving discovered states, and iteratively returning to and exploring from the most promising states. This approach has led to superhuman performance across a wide variety of challenging problems including Atari games and robotic control, but requires manually designing heuristics to guide exploration, which is time-consuming and infeasible in general. To resolve this, we propose Intelligent Go-Explore (IGE) which greatly extends the scope of the original Go-Explore by replacing these heuristics with the intelligence and internalized human notions of interestingness captured by giant foundation models (FMs). This provides IGE with a human-like ability to instinctively identify how interesting or promising any new state is (e.g. discovering new objects, locations, or behaviors), even in complex environments where heuristics are hard to define. Moreover, IGE offers the exciting and previously impossible opportunity to recognize and capitalize on serendipitous discoveries that cannot be predicted ahead of time. We evaluate IGE on a range of language-based tasks that require search and exploration. In Game of 24, a multistep mathematical reasoning problem, IGE reaches 100% success rate 70.8% faster than the best classic graph search baseline. Next, in BabyAI-Text, a challenging partially observable gridworld, IGE exceeds the previous SOTA with orders of magnitude fewer online samples. Finally, in TextWorld, we show the unique ability of IGE to succeed in settings requiring long-horizon exploration where prior SOTA FM agents like Reflexion completely fail. Overall, IGE combines the tremendous strengths of FMs and the powerful Go-Explore algorithm, opening up a new frontier of research into creating more generally capable agents with impressive exploration capabilities.
KwaiAgents: Generalized Information-seeking Agent System with Large Language Models
Driven by curiosity, humans have continually sought to explore and understand the world around them, leading to the invention of various tools to satiate this inquisitiveness. Despite not having the capacity to process and memorize vast amounts of information in their brains, humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world, enabling them to find answers efficiently. The recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities, allowing them to exhibit powerful abilities even with a constrained parameter count. In this paper, we introduce KwaiAgents, a generalized information-seeking agent system based on LLMs. Within KwaiAgents, we propose an agent system that employs LLMs as its cognitive core, which is capable of understanding a user's query, behavior guidelines, and referencing external documents. The agent can also update and retrieve information from its internal memory, plan and execute actions using a time-aware search-browse toolkit, and ultimately provide a comprehensive response. We further investigate the system's performance when powered by LLMs less advanced than GPT-4, and introduce the Meta-Agent Tuning (MAT) framework, designed to ensure even an open-sourced 7B or 13B model performs well among many agent systems. We exploit both benchmark and human evaluations to systematically validate these capabilities. Extensive experiments show the superiority of our agent system compared to other autonomous agents and highlight the enhanced generalized agent-abilities of our fine-tuned LLMs.
Guiding Pretraining in Reinforcement Learning with Large Language Models
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped reward function. Intrinsically motivated exploration methods address this limitation by rewarding agents for visiting novel states or transitions, but these methods offer limited benefits in large environments where most discovered novelty is irrelevant for downstream tasks. We describe a method that uses background knowledge from text corpora to shape exploration. This method, called ELLM (Exploring with LLMs) rewards an agent for achieving goals suggested by a language model prompted with a description of the agent's current state. By leveraging large-scale language model pretraining, ELLM guides agents toward human-meaningful and plausibly useful behaviors without requiring a human in the loop. We evaluate ELLM in the Crafter game environment and the Housekeep robotic simulator, showing that ELLM-trained agents have better coverage of common-sense behaviors during pretraining and usually match or improve performance on a range of downstream tasks.
Representation-Based Exploration for Language Models: From Test-Time to Post-Training
Reinforcement learning (RL) promises to expand the capabilities of language models, but it is unclear if current RL techniques promote the discovery of novel behaviors, or simply sharpen those already present in the base model. In this paper, we investigate the value of deliberate exploration -- explicitly incentivizing the model to discover novel and diverse behaviors -- and aim to understand how the knowledge in pre-trained models can guide this search. Our main finding is that exploration with a simple, principled, representation-based bonus derived from the pre-trained language model's hidden states significantly improves diversity and pass@k rates -- both for post-training, and in a novel inference-time scaling setting we introduce. For inference-time, exploration with representation-based diversity improves efficiency, consistently improving pass@k rates across a variety of models and reasoning tasks. For example, for Qwen-2.5-14b-Instruct we obtain over 50% improvement in verifier efficiency on almost all tasks. For post-training, we show that integrating this exploration strategy into an RL pipeline improves reasoning performance over that of the initial model and over standard RL post-training. For example, on AIME 2024, our post-trained Qwen-2.5-7b-Instruct's pass@80 matches the pass@256 of GRPO on the same model, demonstrating a 3x improvement in test-time sample efficiency. Overall, our findings suggest that deliberate exploration -- with the right notion of diversity -- is a practical path toward discovery of new behaviors beyond sharpening.
Efficient Exploration for LLMs
We present evidence of substantial benefit from efficient exploration in gathering human feedback to improve large language models. In our experiments, an agent sequentially generates queries while fitting a reward model to the feedback received. Our best-performing agent generates queries using double Thompson sampling, with uncertainty represented by an epistemic neural network. Our results demonstrate that efficient exploration enables high levels of performance with far fewer queries. Further, both uncertainty estimation and the choice of exploration scheme play critical roles.
Learning in Sparse Rewards settings through Quality-Diversity algorithms
In the Reinforcement Learning (RL) framework, the learning is guided through a reward signal. This means that in situations of sparse rewards the agent has to focus on exploration, in order to discover which action, or set of actions leads to the reward. RL agents usually struggle with this. Exploration is the focus of Quality-Diversity (QD) methods. In this thesis, we approach the problem of sparse rewards with these algorithms, and in particular with Novelty Search (NS). This is a method that only focuses on the diversity of the possible policies behaviors. The first part of the thesis focuses on learning a representation of the space in which the diversity of the policies is evaluated. In this regard, we propose the TAXONS algorithm, a method that learns a low-dimensional representation of the search space through an AutoEncoder. While effective, TAXONS still requires information on when to capture the observation used to learn said space. For this, we study multiple ways, and in particular the signature transform, to encode information about the whole trajectory of observations. The thesis continues with the introduction of the SERENE algorithm, a method that can efficiently focus on the interesting parts of the search space. This method separates the exploration of the search space from the exploitation of the reward through a two-alternating-steps approach. The exploration is performed through NS. Any discovered reward is then locally exploited through emitters. The third and final contribution combines TAXONS and SERENE into a single approach: STAX. Throughout this thesis, we introduce methods that lower the amount of prior information needed in sparse rewards settings. These contributions are a promising step towards the development of methods that can autonomously explore and find high-performance policies in a variety of sparse rewards settings.
Sparse Reward Exploration via Novelty Search and Emitters
Reward-based optimization algorithms require both exploration, to find rewards, and exploitation, to maximize performance. The need for efficient exploration is even more significant in sparse reward settings, in which performance feedback is given sparingly, thus rendering it unsuitable for guiding the search process. In this work, we introduce the SparsE Reward Exploration via Novelty and Emitters (SERENE) algorithm, capable of efficiently exploring a search space, as well as optimizing rewards found in potentially disparate areas. Contrary to existing emitters-based approaches, SERENE separates the search space exploration and reward exploitation into two alternating processes. The first process performs exploration through Novelty Search, a divergent search algorithm. The second one exploits discovered reward areas through emitters, i.e. local instances of population-based optimization algorithms. A meta-scheduler allocates a global computational budget by alternating between the two processes, ensuring the discovery and efficient exploitation of disjoint reward areas. SERENE returns both a collection of diverse solutions covering the search space and a collection of high-performing solutions for each distinct reward area. We evaluate SERENE on various sparse reward environments and show it compares favorably to existing baselines.
Is Exploration All You Need? Effective Exploration Characteristics for Transfer in Reinforcement Learning
In deep reinforcement learning (RL) research, there has been a concerted effort to design more efficient and productive exploration methods while solving sparse-reward problems. These exploration methods often share common principles (e.g., improving diversity) and implementation details (e.g., intrinsic reward). Prior work found that non-stationary Markov decision processes (MDPs) require exploration to efficiently adapt to changes in the environment with online transfer learning. However, the relationship between specific exploration characteristics and effective transfer learning in deep RL has not been characterized. In this work, we seek to understand the relationships between salient exploration characteristics and improved performance and efficiency in transfer learning. We test eleven popular exploration algorithms on a variety of transfer types -- or ``novelties'' -- to identify the characteristics that positively affect online transfer learning. Our analysis shows that some characteristics correlate with improved performance and efficiency across a wide range of transfer tasks, while others only improve transfer performance with respect to specific environment changes. From our analysis, make recommendations about which exploration algorithm characteristics are best suited to specific transfer situations.
MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization
Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
Exploration by Random Distribution Distillation
Exploration remains a critical challenge in online reinforcement learning, as an agent must effectively explore unknown environments to achieve high returns. Currently, the main exploration algorithms are primarily count-based methods and curiosity-based methods, with prediction-error methods being a prominent example. In this paper, we propose a novel method called Random Distribution Distillation (RDD), which samples the output of a target network from a normal distribution. RDD facilitates a more extensive exploration by explicitly treating the difference between the prediction network and the target network as an intrinsic reward. Furthermore, by introducing randomness into the output of the target network for a given state and modeling it as a sample from a normal distribution, intrinsic rewards are bounded by two key components: a pseudo-count term ensuring proper exploration decay and a discrepancy term accounting for predictor convergence. We demonstrate that RDD effectively unifies both count-based and prediction-error approaches. It retains the advantages of prediction-error methods in high-dimensional spaces, while also implementing an intrinsic reward decay mode akin to the pseudo-count method. In the experimental section, RDD is compared with more advanced methods in a series of environments. Both theoretical analysis and experimental results confirm the effectiveness of our approach in improving online exploration for reinforcement learning tasks.
Knowledge-Aware Iterative Retrieval for Multi-Agent Systems
We introduce a novel large language model (LLM)-driven agent framework, which iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge. A defining feature of the system is its decoupling of external sources from an internal knowledge cache that is progressively updated to guide both query generation and evidence selection. This design mitigates bias-reinforcement loops and enables dynamic, trackable search exploration paths, thereby optimizing the trade-off between exploring diverse information and maintaining accuracy through autonomous agent decision-making. Our approach is evaluated on a broad range of open-domain question answering benchmarks, including multi-step tasks that mirror real-world scenarios where integrating information from multiple sources is critical, especially given the vulnerabilities of LLMs that lack explicit reasoning or planning capabilities. The results show that the proposed system not only outperforms single-step baselines regardless of task difficulty but also, compared to conventional iterative retrieval methods, demonstrates pronounced advantages in complex tasks through precise evidence-based reasoning and enhanced efficiency. The proposed system supports both competitive and collaborative sharing of updated context, enabling multi-agent extension. The benefits of multi-agent configurations become especially prominent as task difficulty increases. The number of convergence steps scales with task difficulty, suggesting cost-effective scalability.
Cell-Free Latent Go-Explore
In this paper, we introduce Latent Go-Explore (LGE), a simple and general approach based on the Go-Explore paradigm for exploration in reinforcement learning (RL). Go-Explore was initially introduced with a strong domain knowledge constraint for partitioning the state space into cells. However, in most real-world scenarios, drawing domain knowledge from raw observations is complex and tedious. If the cell partitioning is not informative enough, Go-Explore can completely fail to explore the environment. We argue that the Go-Explore approach can be generalized to any environment without domain knowledge and without cells by exploiting a learned latent representation. Thus, we show that LGE can be flexibly combined with any strategy for learning a latent representation. Our results indicate that LGE, although simpler than Go-Explore, is more robust and outperforms state-of-the-art algorithms in terms of pure exploration on multiple hard-exploration environments including Montezuma's Revenge. The LGE implementation is available as open-source at https://github.com/qgallouedec/lge.
A Single Goal is All You Need: Skills and Exploration Emerge from Contrastive RL without Rewards, Demonstrations, or Subgoals
In this paper, we present empirical evidence of skills and directed exploration emerging from a simple RL algorithm long before any successful trials are observed. For example, in a manipulation task, the agent is given a single observation of the goal state and learns skills, first for moving its end-effector, then for pushing the block, and finally for picking up and placing the block. These skills emerge before the agent has ever successfully placed the block at the goal location and without the aid of any reward functions, demonstrations, or manually-specified distance metrics. Once the agent has learned to reach the goal state reliably, exploration is reduced. Implementing our method involves a simple modification of prior work and does not require density estimates, ensembles, or any additional hyperparameters. Intuitively, the proposed method seems like it should be terrible at exploration, and we lack a clear theoretical understanding of why it works so effectively, though our experiments provide some hints.
Reinforcement Learning on Web Interfaces Using Workflow-Guided Exploration
Reinforcement learning (RL) agents improve through trial-and-error, but when reward is sparse and the agent cannot discover successful action sequences, learning stagnates. This has been a notable problem in training deep RL agents to perform web-based tasks, such as booking flights or replying to emails, where a single mistake can ruin the entire sequence of actions. A common remedy is to "warm-start" the agent by pre-training it to mimic expert demonstrations, but this is prone to overfitting. Instead, we propose to constrain exploration using demonstrations. From each demonstration, we induce high-level "workflows" which constrain the allowable actions at each time step to be similar to those in the demonstration (e.g., "Step 1: click on a textbox; Step 2: enter some text"). Our exploration policy then learns to identify successful workflows and samples actions that satisfy these workflows. Workflows prune out bad exploration directions and accelerate the agent's ability to discover rewards. We use our approach to train a novel neural policy designed to handle the semi-structured nature of websites, and evaluate on a suite of web tasks, including the recent World of Bits benchmark. We achieve new state-of-the-art results, and show that workflow-guided exploration improves sample efficiency over behavioral cloning by more than 100x.
Can large language models explore in-context?
We investigate the extent to which contemporary Large Language Models (LLMs) can engage in exploration, a core capability in reinforcement learning and decision making. We focus on native performance of existing LLMs, without training interventions. We deploy LLMs as agents in simple multi-armed bandit environments, specifying the environment description and interaction history entirely in-context, i.e., within the LLM prompt. We experiment with GPT-3.5, GPT-4, and Llama2, using a variety of prompt designs, and find that the models do not robustly engage in exploration without substantial interventions: i) Across all of our experiments, only one configuration resulted in satisfactory exploratory behavior: GPT-4 with chain-of-thought reasoning and an externally summarized interaction history, presented as sufficient statistics; ii) All other configurations did not result in robust exploratory behavior, including those with chain-of-thought reasoning but unsummarized history. Although these findings can be interpreted positively, they suggest that external summarization -- which may not be possible in more complex settings -- is important for obtaining desirable behavior from LLM agents. We conclude that non-trivial algorithmic interventions, such as fine-tuning or dataset curation, may be required to empower LLM-based decision making agents in complex settings.
Exploitation Is All You Need... for Exploration
Ensuring sufficient exploration is a central challenge when training meta-reinforcement learning (meta-RL) agents to solve novel environments. Conventional solutions to the exploration-exploitation dilemma inject explicit incentives such as randomization, uncertainty bonuses, or intrinsic rewards to encourage exploration. In this work, we hypothesize that an agent trained solely to maximize a greedy (exploitation-only) objective can nonetheless exhibit emergent exploratory behavior, provided three conditions are met: (1) Recurring Environmental Structure, where the environment features repeatable regularities that allow past experience to inform future choices; (2) Agent Memory, enabling the agent to retain and utilize historical interaction data; and (3) Long-Horizon Credit Assignment, where learning propagates returns over a time frame sufficient for the delayed benefits of exploration to inform current decisions. Through experiments in stochastic multi-armed bandits and temporally extended gridworlds, we observe that, when both structure and memory are present, a policy trained on a strictly greedy objective exhibits information-seeking exploratory behavior. We further demonstrate, through controlled ablations, that emergent exploration vanishes if either environmental structure or agent memory is absent (Conditions 1 & 2). Surprisingly, removing long-horizon credit assignment (Condition 3) does not always prevent emergent exploration-a result we attribute to the pseudo-Thompson Sampling effect. These findings suggest that, under the right prerequisites, exploration and exploitation need not be treated as orthogonal objectives but can emerge from a unified reward-maximization process.
Beneficial Reasoning Behaviors in Agentic Search and Effective Post-training to Obtain Them
Agentic search leverages LLMs to solve complex user information needs by executing a multi-step process of planning, searching, and synthesizing information to provide answers. This paradigm introduces unique challenges for LLMs' agentic reasoning capabilities when interacting with search systems. In this paper, we propose an LLM-based pipeline to study effective reasoning behavior patterns in agentic search by analyzing agentic search trajectories. Using this pipeline, we identify four beneficial reasoning behaviors: Information Verification, Authority Evaluation, Adaptive Search, and Error Recovery. Based on these findings, we propose a technique called Behavior Priming to train agentic search models. It synthesizes trajectories that exhibit these four behaviors and integrates them into the agentic search model through SFT, followed by standard reinforcement learning. Experiments on Qwen3-1.7B and Llama3.2-3B-Instruct across three web benchmarks and seven multi-hop QA benchmarks demonstrate that behavior priming 1) yields significant performance gains compared to training with direct RL, and 2) outperforms other SFT-then-RL baselines, such as those SFT on randomly selected trajectories or on trajectories with merely correct outcomes. Crucially, we demonstrate that the reasoning behaviors, rather than the correctness of the final answer, is the critical factor for achieving strong performance in RL: SFT on trajectories with reasoning behaviors but incorrect answers leads to comparable performance with SFT on those with reasoning behaviors and correct answers. Our analysis further reveals that the introduced reasoning behaviors endow models with more effective exploration (higher pass@k and entropy) and test-time scaling (longer trajectories) capabilities, providing a strong foundation for RL. Our code are avalible at https://github.com/cxcscmu/Behavior_Priming_For_Agentic_Search.
Knowledge is reward: Learning optimal exploration by predictive reward cashing
There is a strong link between the general concept of intelligence and the ability to collect and use information. The theory of Bayes-adaptive exploration offers an attractive optimality framework for training machines to perform complex information gathering tasks. However, the computational complexity of the resulting optimal control problem has limited the diffusion of the theory to mainstream deep AI research. In this paper we exploit the inherent mathematical structure of Bayes-adaptive problems in order to dramatically simplify the problem by making the reward structure denser while simultaneously decoupling the learning of exploitation and exploration policies. The key to this simplification comes from the novel concept of cross-value (i.e. the value of being in an environment while acting optimally according to another), which we use to quantify the value of currently available information. This results in a new denser reward structure that "cashes in" all future rewards that can be predicted from the current information state. In a set of experiments we show that the approach makes it possible to learn challenging information gathering tasks without the use of shaping and heuristic bonuses in situations where the standard RL algorithms fail.
Q-Probe: A Lightweight Approach to Reward Maximization for Language Models
We present an approach called Q-probing to adapt a pre-trained language model to maximize a task-specific reward function. At a high level, Q-probing sits between heavier approaches such as finetuning and lighter approaches such as few shot prompting, but can also be combined with either. The idea is to learn a simple linear function on a model's embedding space that can be used to reweight candidate completions. We theoretically show that this sampling procedure is equivalent to a KL-constrained maximization of the Q-probe as the number of samples increases. To train the Q-probes we consider either reward modeling or a class of novel direct policy learning objectives based on importance weighted policy gradients. With this technique, we see gains in domains with ground-truth rewards (code generation) as well as implicit rewards defined by preference data, even outperforming finetuning in data-limited regimes. Moreover, a Q-probe can be trained on top of an API since it only assumes access to sampling and embeddings. Code: https://github.com/likenneth/q_probe .
Rapid Exploration for Open-World Navigation with Latent Goal Models
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments. At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images. We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration. Trained on a large offline dataset of prior experience, the model acquires a representation of visual goals that is robust to task-irrelevant distractors. We demonstrate our method on a mobile ground robot in open-world exploration scenarios. Given an image of a goal that is up to 80 meters away, our method leverages its representation to explore and discover the goal in under 20 minutes, even amidst previously-unseen obstacles and weather conditions. Please check out the project website for videos of our experiments and information about the real-world dataset used at https://sites.google.com/view/recon-robot.
Discovering and Exploiting Sparse Rewards in a Learned Behavior Space
Learning optimal policies in sparse rewards settings is difficult as the learning agent has little to no feedback on the quality of its actions. In these situations, a good strategy is to focus on exploration, hopefully leading to the discovery of a reward signal to improve on. A learning algorithm capable of dealing with this kind of settings has to be able to (1) explore possible agent behaviors and (2) exploit any possible discovered reward. Efficient exploration algorithms have been proposed that require to define a behavior space, that associates to an agent its resulting behavior in a space that is known to be worth exploring. The need to define this space is a limitation of these algorithms. In this work, we introduce STAX, an algorithm designed to learn a behavior space on-the-fly and to explore it while efficiently optimizing any reward discovered. It does so by separating the exploration and learning of the behavior space from the exploitation of the reward through an alternating two-steps process. In the first step, STAX builds a repertoire of diverse policies while learning a low-dimensional representation of the high-dimensional observations generated during the policies evaluation. In the exploitation step, emitters are used to optimize the performance of the discovered rewarding solutions. Experiments conducted on three different sparse reward environments show that STAX performs comparably to existing baselines while requiring much less prior information about the task as it autonomously builds the behavior space.
IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction
Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.
When Greedy Wins: Emergent Exploitation Bias in Meta-Bandit LLM Training
While Large Language Models (LLMs) hold promise to become autonomous agents, they often explore suboptimally in sequential decision-making. Recent work has sought to enhance this capability via supervised fine-tuning (SFT) or reinforcement learning (RL), improving regret on the classic multi-armed bandit task. However, it remains unclear how these learning methods shape exploration strategies and how well they generalize. We investigate both paradigms by training LLMs with SFT on expert trajectories and RL with a range of tailored reward signals including a strategic, regret-shaped reward to reduce variance, and an algorithmic reward that enables oracle imitation. The resulting agents outperform pre-trained models and achieve performance comparable to Upper Confidence Bound (UCB) and Thompson Sampling, with robust generalization to 6x longer horizons and across bandit families. Behavioral analysis reveals that gains often stem from more sophisticated but greedier exploitation: RL/SFT agents are more prone to early catastrophic failure than pre-trained models, prematurely abandoning exploration. Furthermore, agents trained to imitate UCB learn to outperform their teacher by adopting more exploitative variants. Our findings clarify when each training paradigm is preferable and advocate tailored reward design and evaluation beyond average regret to promote robust exploratory behavior.
Language Guided Exploration for RL Agents in Text Environments
Real-world sequential decision making is characterized by sparse rewards and large decision spaces, posing significant difficulty for experiential learning systems like tabula rasa reinforcement learning (RL) agents. Large Language Models (LLMs), with a wealth of world knowledge, can help RL agents learn quickly and adapt to distribution shifts. In this work, we introduce Language Guided Exploration (LGE) framework, which uses a pre-trained language model (called GUIDE ) to provide decision-level guidance to an RL agent (called EXPLORER). We observe that on ScienceWorld (Wang et al.,2022), a challenging text environment, LGE outperforms vanilla RL agents significantly and also outperforms other sophisticated methods like Behaviour Cloning and Text Decision Transformer.
Reasoning with Exploration: An Entropy Perspective
Balancing exploration and exploitation is a central goal in reinforcement learning (RL). Despite recent advances in enhancing language model (LM) reasoning, most methods lean toward exploitation, and increasingly encounter performance plateaus. In this work, we revisit entropy -- a signal of exploration in RL -- and examine its relationship to exploratory reasoning in LMs. Through empirical analysis, we uncover strong positive correlations between high-entropy regions and three types of exploratory reasoning actions: (1) pivotal tokens that determine or connect logical steps, (2) reflective actions such as self-verification and correction, and (3) rare behaviors under-explored by the base LMs. Motivated by this, we introduce a minimal modification to standard RL with only one line of code: augmenting the advantage function with an entropy-based term. Unlike traditional maximum-entropy methods which encourage exploration by promoting uncertainty, we encourage exploration by promoting longer and deeper reasoning chains. Notably, our method achieves significant gains on the Pass@K metric -- an upper-bound estimator of LM reasoning capabilities -- even when evaluated with extremely large K values, pushing the boundaries of LM reasoning.
Large Language Models Think Too Fast To Explore Effectively
Large Language Models have emerged many intellectual capacities. While numerous benchmarks assess their intelligence, limited attention has been given to their ability to explore, an essential capacity for discovering new information and adapting to novel environments in both natural and artificial systems. The extent to which LLMs can effectively explore, particularly in open-ended tasks, remains unclear. This study investigates whether LLMs can surpass humans in exploration during an open-ended task, using Little Alchemy 2 as a paradigm, where agents combine elements to discover new ones. Results show most LLMs underperform compared to humans, except for the o1 model, with those traditional LLMs relying primarily on uncertainty driven strategies, unlike humans who balance uncertainty and empowerment. Representational analysis of the models with Sparse Autoencoders revealed that uncertainty and choices are represented at earlier transformer blocks, while empowerment values are processed later, causing LLMs to think too fast and make premature decisions, hindering effective exploration. These findings shed light on the limitations of LLM exploration and suggest directions for improving their adaptability.
Deep Research: A Systematic Survey
Large language models (LLMs) have rapidly evolved from text generators into powerful problem solvers. Yet, many open tasks demand critical thinking, multi-source, and verifiable outputs, which are beyond single-shot prompting or standard retrieval-augmented generation. Recently, numerous studies have explored Deep Research (DR), which aims to combine the reasoning capabilities of LLMs with external tools, such as search engines, thereby empowering LLMs to act as research agents capable of completing complex, open-ended tasks. This survey presents a comprehensive and systematic overview of deep research systems, including a clear roadmap, foundational components, practical implementation techniques, important challenges, and future directions. Specifically, our main contributions are as follows: (i) we formalize a three-stage roadmap and distinguish deep research from related paradigms; (ii) we introduce four key components: query planning, information acquisition, memory management, and answer generation, each paired with fine-grained sub-taxonomies; (iii) we summarize optimization techniques, including prompting, supervised fine-tuning, and agentic reinforcement learning; and (iv) we consolidate evaluation criteria and open challenges, aiming to guide and facilitate future development. As the field of deep research continues to evolve rapidly, we are committed to continuously updating this survey to reflect the latest progress in this area.
Effective Diversity in Population Based Reinforcement Learning
Exploration is a key problem in reinforcement learning, since agents can only learn from data they acquire in the environment. With that in mind, maintaining a population of agents is an attractive method, as it allows data be collected with a diverse set of behaviors. This behavioral diversity is often boosted via multi-objective loss functions. However, those approaches typically leverage mean field updates based on pairwise distances, which makes them susceptible to cycling behaviors and increased redundancy. In addition, explicitly boosting diversity often has a detrimental impact on optimizing already fruitful behaviors for rewards. As such, the reward-diversity trade off typically relies on heuristics. Finally, such methods require behavioral representations, often handcrafted and domain specific. In this paper, we introduce an approach to optimize all members of a population simultaneously. Rather than using pairwise distance, we measure the volume of the entire population in a behavioral manifold, defined by task-agnostic behavioral embeddings. In addition, our algorithm Diversity via Determinants (DvD), adapts the degree of diversity during training using online learning techniques. We introduce both evolutionary and gradient-based instantiations of DvD and show they effectively improve exploration without reducing performance when better exploration is not required.
Diversifying Robot Locomotion Behaviors with Extrinsic Behavioral Curiosity
Imitation learning (IL) has shown promise in robot locomotion but is often limited to learning a single expert policy, constraining behavior diversity and robustness in unpredictable real-world scenarios. To address this, we introduce Quality Diversity Inverse Reinforcement Learning (QD-IRL), a novel framework that integrates quality-diversity optimization with IRL methods, enabling agents to learn diverse behaviors from limited demonstrations. This work introduces Extrinsic Behavioral Curiosity (EBC), which allows agents to receive additional curiosity rewards from an external critic based on how novel the behaviors are with respect to a large behavioral archive. To validate the effectiveness of EBC in exploring diverse locomotion behaviors, we evaluate our method on multiple robot locomotion tasks. EBC improves the performance of QD-IRL instances with GAIL, VAIL, and DiffAIL across all included environments by up to 185%, 42%, and 150%, even surpassing expert performance by 20% in Humanoid. Furthermore, we demonstrate that EBC is applicable to Gradient-Arborescence-based Quality Diversity Reinforcement Learning (QD-RL) algorithms, where it substantially improves performance and provides a generic technique for diverse robot locomotion. The source code of this work is provided at https://github.com/vanzll/EBC.
EXPLORER: Exploration-guided Reasoning for Textual Reinforcement Learning
Text-based games (TBGs) have emerged as an important collection of NLP tasks, requiring reinforcement learning (RL) agents to combine natural language understanding with reasoning. A key challenge for agents attempting to solve such tasks is to generalize across multiple games and demonstrate good performance on both seen and unseen objects. Purely deep-RL-based approaches may perform well on seen objects; however, they fail to showcase the same performance on unseen objects. Commonsense-infused deep-RL agents may work better on unseen data; unfortunately, their policies are often not interpretable or easily transferable. To tackle these issues, in this paper, we present EXPLORER which is an exploration-guided reasoning agent for textual reinforcement learning. EXPLORER is neurosymbolic in nature, as it relies on a neural module for exploration and a symbolic module for exploitation. It can also learn generalized symbolic policies and perform well over unseen data. Our experiments show that EXPLORER outperforms the baseline agents on Text-World cooking (TW-Cooking) and Text-World Commonsense (TWC) games.
Bring Your Own KG: Self-Supervised Program Synthesis for Zero-Shot KGQA
We present BYOKG, a universal question-answering (QA) system that can operate on any knowledge graph (KG), requires no human-annotated training data, and can be ready to use within a day -- attributes that are out-of-scope for current KGQA systems. BYOKG draws inspiration from the remarkable ability of humans to comprehend information present in an unseen KG through exploration -- starting at random nodes, inspecting the labels of adjacent nodes and edges, and combining them with their prior world knowledge. In BYOKG, exploration leverages an LLM-backed symbolic agent that generates a diverse set of query-program exemplars, which are then used to ground a retrieval-augmented reasoning procedure to predict programs for arbitrary questions. BYOKG is effective over both small- and large-scale graphs, showing dramatic gains in QA accuracy over a zero-shot baseline of 27.89 and 58.02 F1 on GrailQA and MetaQA, respectively. On GrailQA, we further show that our unsupervised BYOKG outperforms a supervised in-context learning method, demonstrating the effectiveness of exploration. Lastly, we find that performance of BYOKG reliably improves with continued exploration as well as improvements in the base LLM, notably outperforming a state-of-the-art fine-tuned model by 7.08 F1 on a sub-sampled zero-shot split of GrailQA.
Learning Goal-Oriented Language-Guided Navigation with Self-Improving Demonstrations at Scale
Goal-oriented language-guided navigation requires robust exploration capabilities for agents to navigate to specified goals in unknown environments without step-by-step instructions. Existing methods tend to exclusively utilize shortest-path trajectories, lacking effective exploration priors for training navigation agents. To address the above challenges, we present SID, a goal-oriented language-guided navigation learning approach with Self-Improving Demonstrations. Specifically, SID learns an initial agent on the shortest-path data sampled from environments and then leverages this agent to generate novel exploration trajectories. The novel rollouts provide demonstrations with stronger exploration strategies to train a better agent, which in turn produces higher-quality agent demonstrations for the next round of training. We show that this iterative self-improving pipeline readily scales to new environments, and the resulting demonstrations can be transferred across a variety of language-guided navigation tasks, elevating the performance ceiling in diverse goal-oriented navigation tasks. Extensive experiments demonstrate that SID significantly boosts the exploration capabilities and generalization of navigation agents. The resulting agent achieves new state-of-the-art performance on goal-oriented language-guided navigation tasks, including REVERIE, SOON, notably achieving a 50.9% success rate on the unseen validation splits of SOON, surpassing the prior leading approaches by a margin of 13.9%.
Improving Intrinsic Exploration by Creating Stationary Objectives
Exploration bonuses in reinforcement learning guide long-horizon exploration by defining custom intrinsic objectives. Several exploration objectives like count-based bonuses, pseudo-counts, and state-entropy maximization are non-stationary and hence are difficult to optimize for the agent. While this issue is generally known, it is usually omitted and solutions remain under-explored. The key contribution of our work lies in transforming the original non-stationary rewards into stationary rewards through an augmented state representation. For this purpose, we introduce the Stationary Objectives For Exploration (SOFE) framework. SOFE requires identifying sufficient statistics for different exploration bonuses and finding an efficient encoding of these statistics to use as input to a deep network. SOFE is based on proposing state augmentations that expand the state space but hold the promise of simplifying the optimization of the agent's objective. We show that SOFE improves the performance of several exploration objectives, including count-based bonuses, pseudo-counts, and state-entropy maximization. Moreover, SOFE outperforms prior methods that attempt to stabilize the optimization of intrinsic objectives. We demonstrate the efficacy of SOFE in hard-exploration problems, including sparse-reward tasks, pixel-based observations, 3D navigation, and procedurally generated environments.
MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search
Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the novel task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent chemistry literature show that our method consistently outperforms strong baselines.
Go-Explore: a New Approach for Hard-Exploration Problems
A grand challenge in reinforcement learning is intelligent exploration, especially when rewards are sparse or deceptive. Two Atari games serve as benchmarks for such hard-exploration domains: Montezuma's Revenge and Pitfall. On both games, current RL algorithms perform poorly, even those with intrinsic motivation, which is the dominant method to improve performance on hard-exploration domains. To address this shortfall, we introduce a new algorithm called Go-Explore. It exploits the following principles: (1) remember previously visited states, (2) first return to a promising state (without exploration), then explore from it, and (3) solve simulated environments through any available means (including by introducing determinism), then robustify via imitation learning. The combined effect of these principles is a dramatic performance improvement on hard-exploration problems. On Montezuma's Revenge, Go-Explore scores a mean of over 43k points, almost 4 times the previous state of the art. Go-Explore can also harness human-provided domain knowledge and, when augmented with it, scores a mean of over 650k points on Montezuma's Revenge. Its max performance of nearly 18 million surpasses the human world record, meeting even the strictest definition of "superhuman" performance. On Pitfall, Go-Explore with domain knowledge is the first algorithm to score above zero. Its mean score of almost 60k points exceeds expert human performance. Because Go-Explore produces high-performing demonstrations automatically and cheaply, it also outperforms imitation learning work where humans provide solution demonstrations. Go-Explore opens up many new research directions into improving it and weaving its insights into current RL algorithms. It may also enable progress on previously unsolvable hard-exploration problems in many domains, especially those that harness a simulator during training (e.g. robotics).
Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.
Representation Learning with Multi-Step Inverse Kinematics: An Efficient and Optimal Approach to Rich-Observation RL
We study the design of sample-efficient algorithms for reinforcement learning in the presence of rich, high-dimensional observations, formalized via the Block MDP problem. Existing algorithms suffer from either 1) computational intractability, 2) strong statistical assumptions that are not necessarily satisfied in practice, or 3) suboptimal sample complexity. We address these issues by providing the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level, with minimal statistical assumptions. Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics, a learning objective in which the aim is to predict the learner's own action from the current observation and observations in the (potentially distant) future. MusIK is simple and flexible, and can efficiently take advantage of general-purpose function approximation. Our analysis leverages several new techniques tailored to non-optimistic exploration algorithms, which we anticipate will find broader use.
Intrinsically-Motivated Humans and Agents in Open-World Exploration
What drives exploration? Understanding intrinsic motivation is a long-standing challenge in both cognitive science and artificial intelligence; numerous objectives have been proposed and used to train agents, yet there remains a gap between human and agent exploration. We directly compare adults, children, and AI agents in a complex open-ended environment, Crafter, and study how common intrinsic objectives: Entropy, Information Gain, and Empowerment, relate to their behavior. We find that only Entropy and Empowerment are consistently positively correlated with human exploration progress, indicating that these objectives may better inform intrinsic reward design for agents. Furthermore, across agents and humans we observe that Entropy initially increases rapidly, then plateaus, while Empowerment increases continuously, suggesting that state diversity may provide more signal in early exploration, while advanced exploration should prioritize control. Finally, we find preliminary evidence that private speech utterances, and particularly goal verbalizations, may aid exploration in children. Our data is available at https://github.com/alyd/humans_in_crafter_data.
Open-Ended Learning Leads to Generally Capable Agents
In this work we create agents that can perform well beyond a single, individual task, that exhibit much wider generalisation of behaviour to a massive, rich space of challenges. We define a universe of tasks within an environment domain and demonstrate the ability to train agents that are generally capable across this vast space and beyond. The environment is natively multi-agent, spanning the continuum of competitive, cooperative, and independent games, which are situated within procedurally generated physical 3D worlds. The resulting space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning progress of an agent is an open research problem. We propose an iterative notion of improvement between successive generations of agents, rather than seeking to maximise a singular objective, allowing us to quantify progress despite tasks being incomparable in terms of achievable rewards. We show that through constructing an open-ended learning process, which dynamically changes the training task distributions and training objectives such that the agent never stops learning, we achieve consistent learning of new behaviours. The resulting agent is able to score reward in every one of our humanly solvable evaluation levels, with behaviour generalising to many held-out points in the universe of tasks. Examples of this zero-shot generalisation include good performance on Hide and Seek, Capture the Flag, and Tag. Through analysis and hand-authored probe tasks we characterise the behaviour of our agent, and find interesting emergent heuristic behaviours such as trial-and-error experimentation, simple tool use, option switching, and cooperation. Finally, we demonstrate that the general capabilities of this agent could unlock larger scale transfer of behaviour through cheap finetuning.
InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization
The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.
Action abstractions for amortized sampling
As trajectories sampled by policies used by reinforcement learning (RL) and generative flow networks (GFlowNets) grow longer, credit assignment and exploration become more challenging, and the long planning horizon hinders mode discovery and generalization. The challenge is particularly pronounced in entropy-seeking RL methods, such as generative flow networks, where the agent must learn to sample from a structured distribution and discover multiple high-reward states, each of which take many steps to reach. To tackle this challenge, we propose an approach to incorporate the discovery of action abstractions, or high-level actions, into the policy optimization process. Our approach involves iteratively extracting action subsequences commonly used across many high-reward trajectories and `chunking' them into a single action that is added to the action space. In empirical evaluation on synthetic and real-world environments, our approach demonstrates improved sample efficiency performance in discovering diverse high-reward objects, especially on harder exploration problems. We also observe that the abstracted high-order actions are interpretable, capturing the latent structure of the reward landscape of the action space. This work provides a cognitively motivated approach to action abstraction in RL and is the first demonstration of hierarchical planning in amortized sequential sampling.
Navigation with Large Language Models: Semantic Guesswork as a Heuristic for Planning
Navigation in unfamiliar environments presents a major challenge for robots: while mapping and planning techniques can be used to build up a representation of the world, quickly discovering a path to a desired goal in unfamiliar settings with such methods often requires lengthy mapping and exploration. Humans can rapidly navigate new environments, particularly indoor environments that are laid out logically, by leveraging semantics -- e.g., a kitchen often adjoins a living room, an exit sign indicates the way out, and so forth. Language models can provide robots with such knowledge, but directly using language models to instruct a robot how to reach some destination can also be impractical: while language models might produce a narrative about how to reach some goal, because they are not grounded in real-world observations, this narrative might be arbitrarily wrong. Therefore, in this paper we study how the ``semantic guesswork'' produced by language models can be utilized as a guiding heuristic for planning algorithms. Our method, Language Frontier Guide (LFG), uses the language model to bias exploration of novel real-world environments by incorporating the semantic knowledge stored in language models as a search heuristic for planning with either topological or metric maps. We evaluate LFG in challenging real-world environments and simulated benchmarks, outperforming uninformed exploration and other ways of using language models.
OpenWebVoyager: Building Multimodal Web Agents via Iterative Real-World Exploration, Feedback and Optimization
The rapid development of large language and multimodal models has sparked significant interest in using proprietary models, such as GPT-4o, to develop autonomous agents capable of handling real-world scenarios like web navigation. Although recent open-source efforts have tried to equip agents with the ability to explore environments and continuously improve over time, they are building text-only agents in synthetic environments where the reward signals are clearly defined. Such agents struggle to generalize to realistic settings that require multimodal perception abilities and lack ground-truth signals. In this paper, we introduce an open-source framework designed to facilitate the development of multimodal web agent that can autonomously conduct real-world exploration and improve itself. We first train the base model with imitation learning to gain the basic abilities. We then let the agent explore the open web and collect feedback on its trajectories. After that, it further improves its policy by learning from well-performing trajectories judged by another general-purpose model. This exploration-feedback-optimization cycle can continue for several iterations. Experimental results show that our web agent successfully improves itself after each iteration, demonstrating strong performance across multiple test sets.
AIDE: AI-Driven Exploration in the Space of Code
Machine learning, the foundation of modern artificial intelligence, has driven innovations that have fundamentally transformed the world. Yet, behind advancements lies a complex and often tedious process requiring labor and compute intensive iteration and experimentation. Engineers and scientists developing machine learning models spend much of their time on trial-and-error tasks instead of conceptualizing innovative solutions or research hypotheses. To address this challenge, we introduce AI-Driven Exploration (AIDE), a machine learning engineering agent powered by large language models (LLMs). AIDE frames machine learning engineering as a code optimization problem, and formulates trial-and-error as a tree search in the space of potential solutions. By strategically reusing and refining promising solutions, AIDE effectively trades computational resources for enhanced performance, achieving state-of-the-art results on multiple machine learning engineering benchmarks, including our Kaggle evaluations, OpenAI MLE-Bench and METRs RE-Bench.
Policy Guided Tree Search for Enhanced LLM Reasoning
Despite their remarkable capabilities, large language models often struggle with tasks requiring complex reasoning and planning. While existing approaches like Chain-of-Thought prompting and tree search techniques show promise, they are limited by their reliance on predefined heuristics and computationally expensive exploration strategies. We propose Policy-Guided Tree Search (PGTS), a framework that combines reinforcement learning with structured tree exploration to efficiently navigate reasoning paths. Our key innovation is a learned policy that dynamically decides between expanding, branching, backtracking, or terminating exploration, eliminating the need for manual heuristics or exhaustive search. Experiments across mathematical reasoning, logical deduction, and planning benchmarks demonstrate that PGTS achieves superior reasoning performance while significantly reducing computational costs compared to existing methods. These results establish PGTS as a scalable and effective solution for tackling complex reasoning tasks with LLMs.
Sample Efficient Myopic Exploration Through Multitask Reinforcement Learning with Diverse Tasks
Multitask Reinforcement Learning (MTRL) approaches have gained increasing attention for its wide applications in many important Reinforcement Learning (RL) tasks. However, while recent advancements in MTRL theory have focused on the improved statistical efficiency by assuming a shared structure across tasks, exploration--a crucial aspect of RL--has been largely overlooked. This paper addresses this gap by showing that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design like epsilon-greedy that are inefficient in general can be sample-efficient for MTRL. To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL. It may also shed light on the enigmatic success of the wide applications of myopic exploration in practice. To validate the role of diversity, we conduct experiments on synthetic robotic control environments, where the diverse task set aligns with the task selection by automatic curriculum learning, which is empirically shown to improve sample-efficiency.
Sample Efficient Reinforcement Learning via Model-Ensemble Exploration and Exploitation
Model-based deep reinforcement learning has achieved success in various domains that require high sample efficiencies, such as Go and robotics. However, there are some remaining issues, such as planning efficient explorations to learn more accurate dynamic models, evaluating the uncertainty of the learned models, and more rational utilization of models. To mitigate these issues, we present MEEE, a model-ensemble method that consists of optimistic exploration and weighted exploitation. During exploration, unlike prior methods directly selecting the optimal action that maximizes the expected accumulative return, our agent first generates a set of action candidates and then seeks out the optimal action that takes both expected return and future observation novelty into account. During exploitation, different discounted weights are assigned to imagined transition tuples according to their model uncertainty respectively, which will prevent model predictive error propagation in agent training. Experiments on several challenging continuous control benchmark tasks demonstrated that our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
Hierarchical Reinforcement Learning for Modeling User Novelty-Seeking Intent in Recommender Systems
Recommending novel content, which expands user horizons by introducing them to new interests, has been shown to improve users' long-term experience on recommendation platforms chen2021values. Users however are not constantly looking to explore novel content. It is therefore crucial to understand their novelty-seeking intent and adjust the recommendation policy accordingly. Most existing literature models a user's propensity to choose novel content or to prefer a more diverse set of recommendations at individual interactions. Hierarchical structure, on the other hand, exists in a user's novelty-seeking intent, which is manifested as a static and intrinsic user preference for seeking novelty along with a dynamic session-based propensity. To this end, we propose a novel hierarchical reinforcement learning-based method to model the hierarchical user novelty-seeking intent, and to adapt the recommendation policy accordingly based on the extracted user novelty-seeking propensity. We further incorporate diversity and novelty-related measurement in the reward function of the hierarchical RL (HRL) agent to encourage user exploration chen2021values. We demonstrate the benefits of explicitly modeling hierarchical user novelty-seeking intent in recommendations through extensive experiments on simulated and real-world datasets. In particular, we demonstrate that the effectiveness of our proposed hierarchical RL-based method lies in its ability to capture such hierarchically-structured intent. As a result, the proposed HRL model achieves superior performance on several public datasets, compared with state-of-art baselines.
First Return, Entropy-Eliciting Explore
Reinforcement Learning from Verifiable Rewards (RLVR) improves the reasoning abilities of Large Language Models (LLMs) but it struggles with unstable exploration. We propose FR3E (First Return, Entropy-Eliciting Explore), a structured exploration framework that identifies high-uncertainty decision points in reasoning trajectories and performs targeted rollouts to construct semantically grounded intermediate feedback. Our method provides targeted guidance without relying on dense supervision. Empirical results on mathematical reasoning benchmarks(AIME24) show that FR3E promotes more stable training, produces longer and more coherent responses, and increases the proportion of fully correct trajectories. These results highlight the framework's effectiveness in improving LLM reasoning through more robust and structured exploration.
Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging
Augmenting large language models (LLMs) with external retrieval has become a standard method to address their inherent knowledge cutoff limitations. However, traditional retrieval-augmented generation methods employ static, pre-inference retrieval strategies, making them inadequate for complex tasks involving ambiguous, multi-step, or evolving information needs. Recent advances in test-time scaling techniques have demonstrated significant potential in enabling LLMs to dynamically interact with external tools, motivating the shift toward adaptive inference-time retrieval. Inspired by Information Foraging Theory (IFT), we propose InForage, a reinforcement learning framework that formalizes retrieval-augmented reasoning as a dynamic information-seeking process. Unlike existing approaches, InForage explicitly rewards intermediate retrieval quality, encouraging LLMs to iteratively gather and integrate information through adaptive search behaviors. To facilitate training, we construct a human-guided dataset capturing iterative search and reasoning trajectories for complex, real-world web tasks. Extensive evaluations across general question answering, multi-hop reasoning tasks, and a newly developed real-time web QA dataset demonstrate InForage's superior performance over baseline methods. These results highlight InForage's effectiveness in building robust, adaptive, and efficient reasoning agents.
EVOLvE: Evaluating and Optimizing LLMs For Exploration
Despite their success in many domains, large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty. This is crucial as many real-world applications, ranging from personalized recommendations to healthcare interventions, demand that LLMs not only predict but also actively learn to make optimal decisions through exploration. In this work, we measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications. We develop a comprehensive suite of environments, including both context-free and contextual bandits with varying task difficulties, to benchmark LLMs' performance. Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs: by providing explicit algorithm-guided support during inference; and through algorithm distillation via in-context demonstrations and fine-tuning, using synthetic data generated from these algorithms. Impressively, these techniques allow us to achieve superior exploration performance with smaller models, surpassing larger models on various tasks. We conducted an extensive ablation study to shed light on various factors, such as task difficulty and data representation, that influence the efficiency of LLM exploration. Additionally, we conduct a rigorous analysis of the LLM's exploration efficiency using the concept of regret, linking its ability to explore to the model size and underlying algorithm.
Diversity-Incentivized Exploration for Versatile Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a crucial paradigm for incentivizing reasoning capabilities in Large Language Models (LLMs). Due to vast state-action spaces and reward sparsity in reasoning tasks, existing methods often struggle with deficient exploration and poor sample efficiency. In the paper, we propose DIVER (Diversity-Incentivized Exploration for VersatilE Reasoning), an innovative framework that highlights the pivotal role of global sequence-level diversity to incentivize deep exploration for versatile reasoning. We first conduct a primary empirical study to reveal a strong positive correlation between global diversity and reasoning capacity. Building on this insight, we introduce global diversity incentives as an intrinsic reward to promote deep exploration in a semantically structured space. Incorporating the intrinsic reward, we develop a potential-based reward shaping mechanism to preserve optimal policy invariance and design simple heuristics to mitigate possible reward hacking. Experimental results show that DIVER outperforms competitive RLVR baselines with various exploration strategies on both in-domain and out-of-domain tasks, excelling in both Pass@1 and Pass@k evaluations. Our code is available at https://github.com/NJU-RL/DIVER.
WebExplorer: Explore and Evolve for Training Long-Horizon Web Agents
The paradigm of Large Language Models (LLMs) has increasingly shifted toward agentic applications, where web browsing capabilities are fundamental for retrieving information from diverse online sources. However, existing open-source web agents either demonstrate limited information-seeking abilities on complex tasks or lack transparent implementations. In this work, we identify that the key challenge lies in the scarcity of challenging data for information seeking. To address this limitation, we introduce WebExplorer: a systematic data generation approach using model-based exploration and iterative, long-to-short query evolution. This method creates challenging query-answer pairs that require multi-step reasoning and complex web navigation. By leveraging our curated high-quality dataset, we successfully develop advanced web agent WebExplorer-8B through supervised fine-tuning followed by reinforcement learning. Our model supports 128K context length and up to 100 tool calling turns, enabling long-horizon problem solving. Across diverse information-seeking benchmarks, WebExplorer-8B achieves the state-of-the-art performance at its scale. Notably, as an 8B-sized model, WebExplorer-8B is able to effectively search over an average of 16 turns after RL training, achieving higher accuracy than WebSailor-72B on BrowseComp-en/zh and attaining the best performance among models up to 100B parameters on WebWalkerQA and FRAMES. Beyond these information-seeking tasks, our model also achieves strong generalization on the HLE benchmark even though it is only trained on knowledge-intensive QA data. These results highlight our approach as a practical path toward long-horizon web agents.
Accelerating exploration and representation learning with offline pre-training
Sequential decision-making agents struggle with long horizon tasks, since solving them requires multi-step reasoning. Most reinforcement learning (RL) algorithms address this challenge by improved credit assignment, introducing memory capability, altering the agent's intrinsic motivation (i.e. exploration) or its worldview (i.e. knowledge representation). Many of these components could be learned from offline data. In this work, we follow the hypothesis that exploration and representation learning can be improved by separately learning two different models from a single offline dataset. We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward separately from a single collection of human demonstrations can significantly improve the sample efficiency on the challenging NetHack benchmark. We also ablate various components of our experimental setting and highlight crucial insights.
REX: Rapid Exploration and eXploitation for AI Agents
In this paper, we propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX. Existing AutoGPT-style techniques have inherent limitations, such as a heavy reliance on precise descriptions for decision-making, and the lack of a systematic approach to leverage try-and-fail procedures akin to traditional Reinforcement Learning (RL). REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance. This approach has the advantage of enabling the utilization of offline behaviors from logs and allowing seamless integration with existing foundation models while it does not require any model fine-tuning. Through comparative analysis with existing methods such as Chain-of-Thoughts(CoT) and Reasoning viA Planning(RAP), REX-based methods demonstrate comparable performance and, in certain cases, even surpass the results achieved by these existing techniques. Notably, REX-based methods exhibit remarkable reductions in execution time, enhancing their practical applicability across a diverse set of scenarios.
From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
Sampling Through the Lens of Sequential Decision Making
Sampling is ubiquitous in machine learning methodologies. Due to the growth of large datasets and model complexity, we want to learn and adapt the sampling process while training a representation. Towards achieving this grand goal, a variety of sampling techniques have been proposed. However, most of them either use a fixed sampling scheme or adjust the sampling scheme based on simple heuristics. They cannot choose the best sample for model training in different stages. Inspired by "Think, Fast and Slow" (System 1 and System 2) in cognitive science, we propose a reward-guided sampling strategy called Adaptive Sample with Reward (ASR) to tackle this challenge. To the best of our knowledge, this is the first work utilizing reinforcement learning (RL) to address the sampling problem in representation learning. Our approach optimally adjusts the sampling process to achieve optimal performance. We explore geographical relationships among samples by distance-based sampling to maximize overall cumulative reward. We apply ASR to the long-standing sampling problems in similarity-based loss functions. Empirical results in information retrieval and clustering demonstrate ASR's superb performance across different datasets. We also discuss an engrossing phenomenon which we name as "ASR gravity well" in experiments.
Digits that are not: Generating new types through deep neural nets
For an artificial creative agent, an essential driver of the search for novelty is a value function which is often provided by the system designer or users. We argue that an important barrier for progress in creativity research is the inability of these systems to develop their own notion of value for novelty. We propose a notion of knowledge-driven creativity that circumvent the need for an externally imposed value function, allowing the system to explore based on what it has learned from a set of referential objects. The concept is illustrated by a specific knowledge model provided by a deep generative autoencoder. Using the described system, we train a knowledge model on a set of digit images and we use the same model to build coherent sets of new digits that do not belong to known digit types.
Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses
Large language model (LLM) powered chatbots are primarily text-based today, and impose a large interactional cognitive load, especially for exploratory or sensemaking tasks such as planning a trip or learning about a new city. Because the interaction is textual, users have little scaffolding in the way of structure, informational "scent", or ability to specify high-level preferences or goals. We introduce ExploreLLM that allows users to structure thoughts, help explore different options, navigate through the choices and recommendations, and to more easily steer models to generate more personalized responses. We conduct a user study and show that users find it helpful to use ExploreLLM for exploratory or planning tasks, because it provides a useful schema-like structure to the task, and guides users in planning. The study also suggests that users can more easily personalize responses with high-level preferences with ExploreLLM. Together, ExploreLLM points to a future where users interact with LLMs beyond the form of chatbots, and instead designed to support complex user tasks with a tighter integration between natural language and graphical user interfaces.
Let it Calm: Exploratory Annealed Decoding for Verifiable Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) is a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs), yet its success hinges on effective exploration. An ideal exploration strategy must navigate two fundamental challenges: it must preserve sample quality while also ensuring training stability. While standard fixed-temperature sampling is simple, it struggles to balance these competing demands, as high temperatures degrade sample quality and low temperatures limit discovery. In this work, we propose a simpler and more effective strategy, Exploratory Annealed Decoding (EAD), grounded in the insight that exploration is most impactful on early tokens which define a sequence's semantic direction. EAD implements an intuitive **explore-at-the-beginning, exploit-at-the-end** strategy by annealing the sampling temperature from high to low during generation. This dynamic schedule encourages meaningful, high-level diversity at the start, then gradually lowers the temperature to preserve sample quality and keep the sampling distribution close to the target policy, which is essential for stable training. We demonstrate that EAD is a lightweight, plug-and-play method that significantly improves sample efficiency, consistently outperforming fixed-temperature sampling across various RLVR algorithms and model sizes. Our work suggests that aligning exploration with the natural dynamics of sequential generation offers a robust path to improving LLM reasoning.
Darwin Godel Machine: Open-Ended Evolution of Self-Improving Agents
Today's AI systems have human-designed, fixed architectures and cannot autonomously and continuously improve themselves. The advance of AI could itself be automated. If done safely, that would accelerate AI development and allow us to reap its benefits much sooner. Meta-learning can automate the discovery of novel algorithms, but is limited by first-order improvements and the human design of a suitable search space. The G\"odel machine proposed a theoretical alternative: a self-improving AI that repeatedly modifies itself in a provably beneficial manner. Unfortunately, proving that most changes are net beneficial is impossible in practice. We introduce the Darwin G\"odel Machine (DGM), a self-improving system that iteratively modifies its own code (thereby also improving its ability to modify its own codebase) and empirically validates each change using coding benchmarks. Inspired by Darwinian evolution and open-endedness research, the DGM maintains an archive of generated coding agents. It grows the archive by sampling an agent from it and using a foundation model to create a new, interesting, version of the sampled agent. This open-ended exploration forms a growing tree of diverse, high-quality agents and allows the parallel exploration of many different paths through the search space. Empirically, the DGM automatically improves its coding capabilities (e.g., better code editing tools, long-context window management, peer-review mechanisms), increasing performance on SWE-bench from 20.0% to 50.0%, and on Polyglot from 14.2% to 30.7%. Furthermore, the DGM significantly outperforms baselines without self-improvement or open-ended exploration. All experiments were done with safety precautions (e.g., sandboxing, human oversight). The DGM is a significant step toward self-improving AI, capable of gathering its own stepping stones along paths that unfold into endless innovation.
VOGUE: Guiding Exploration with Visual Uncertainty Improves Multimodal Reasoning
Reinforcement learning with verifiable rewards (RLVR) improves reasoning in large language models (LLMs) but struggles with exploration, an issue that still persists for multimodal LLMs (MLLMs). Current methods treat the visual input as a fixed, deterministic condition, overlooking a critical source of ambiguity and struggling to build policies robust to plausible visual variations. We introduce VOGUE (Visual Uncertainty Guided Exploration), a novel method that shifts exploration from the output (text) to the input (visual) space. By treating the image as a stochastic context, VOGUE quantifies the policy's sensitivity to visual perturbations using the symmetric KL divergence between a "raw" and "noisy" branch, creating a direct signal for uncertainty-aware exploration. This signal shapes the learning objective via an uncertainty-proportional bonus, which, combined with a token-entropy bonus and an annealed sampling schedule, effectively balances exploration and exploitation. Implemented within GRPO on two model scales (Qwen2.5-VL-3B/7B), VOGUE boosts pass@1 accuracy by an average of 2.6% on three visual math benchmarks and 3.7% on three general-domain reasoning benchmarks, while simultaneously increasing pass@4 performance and mitigating the exploration decay commonly observed in RL fine-tuning. Our work shows that grounding exploration in the inherent uncertainty of visual inputs is an effective strategy for improving multimodal reasoning.
LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities
The success of Large Language Models (LLMs) has sparked interest in various agentic applications. A key hypothesis is that LLMs, leveraging common sense and Chain-of-Thought (CoT) reasoning, can effectively explore and efficiently solve complex domains. However, LLM agents have been found to suffer from sub-optimal exploration and the knowing-doing gap, the inability to effectively act on knowledge present in the model. In this work, we systematically study why LLMs perform sub-optimally in decision-making scenarios. In particular, we closely examine three prevalent failure modes: greediness, frequency bias, and the knowing-doing gap. We propose mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL) on self-generated CoT rationales. Our experiments across multi-armed bandits, contextual bandits, and Tic-tac-toe, demonstrate that RL fine-tuning enhances the decision-making abilities of LLMs by increasing exploration and narrowing the knowing-doing gap. Finally, we study both classic exploration mechanisms, such as epsilon-greedy, and LLM-specific approaches, such as self-correction and self-consistency, to enable more effective fine-tuning of LLMs for decision-making.
PRInTS: Reward Modeling for Long-Horizon Information Seeking
Information-seeking is a core capability for AI agents, requiring them to gather and reason over tool-generated information across long trajectories. However, such multi-step information-seeking tasks remain challenging for agents backed by language models. While process reward models (PRMs) can guide agents by ranking candidate steps at test-time, existing PRMs, designed for short reasoning with binary judgment, cannot capture richer dimensions of information-seeking steps, such as tool interactions and reasoning over tool outputs, nor handle the rapidly growing context in long-horizon tasks. To address these limitations, we introduce PRInTS, a generative PRM trained with dual capabilities: (1) dense scoring based on the PRM's reasoning across multiple step quality dimensions (e.g., interpretation of tool outputs, tool call informativeness) and (2) trajectory summarization that compresses the growing context while preserving essential information for step evaluation. Extensive evaluations across FRAMES, GAIA (levels 1-3), and WebWalkerQA (easy-hard) benchmarks on multiple models, along with ablations, reveal that best-of-n sampling with PRInTS enhances information-seeking abilities of open-source models as well as specialized agents, matching or surpassing the performance of frontier models with a much smaller backbone agent and outperforming other strong reward modeling baselines.
ExploRLLM: Guiding Exploration in Reinforcement Learning with Large Language Models
In image-based robot manipulation tasks with large observation and action spaces, reinforcement learning struggles with low sample efficiency, slow training speed, and uncertain convergence. As an alternative, large pre-trained foundation models have shown promise in robotic manipulation, particularly in zero-shot and few-shot applications. However, using these models directly is unreliable due to limited reasoning capabilities and challenges in understanding physical and spatial contexts. This paper introduces ExploRLLM, a novel approach that leverages the inductive bias of foundation models (e.g. Large Language Models) to guide exploration in reinforcement learning. We also exploit these foundation models to reformulate the action and observation spaces to enhance the training efficiency in reinforcement learning. Our experiments demonstrate that guided exploration enables much quicker convergence than training without it. Additionally, we validate that ExploRLLM outperforms vanilla foundation model baselines and that the policy trained in simulation can be applied in real-world settings without additional training.
Pre-trained knowledge elevates large language models beyond traditional chemical reaction optimizers
Modern optimization in experimental chemistry employs algorithmic search through black-box parameter spaces. Here we demonstrate that pre-trained knowledge in large language models (LLMs) fundamentally changes this paradigm. Using six fully enumerated categorical reaction datasets (768 - 5,684 experiments), we benchmark LLM-guided optimization (LLM-GO) against Bayesian optimization (BO) and random sampling. Frontier LLMs consistently match or exceed BO performance across five single-objective datasets, with advantages growing as parameter complexity increases and high-performing conditions become scarce (<5% of space). BO retains superiority only for explicit multi-objective trade-offs. To understand these contrasting behaviors, we introduce a topology-agnostic information theory framework quantifying sampling diversity throughout optimization campaigns. This analysis reveals that LLMs maintain systematically higher exploration entropy than BO across all datasets while achieving superior performance, with advantages most pronounced in solution-scarce parameter spaces where high-entropy exploration typically fails - suggesting that pre-trained domain knowledge enables more effective navigation of chemical parameter space rather than replacing structured exploration strategies. To enable transparent benchmarking and community validation, we release Iron Mind (https://gomes.andrew.cmu.edu/iron-mind), a no-code platform for side-by-side evaluation of human, algorithmic, and LLM optimization campaigns with public leaderboards and complete trajectories. Our findings establish that LLM-GO excels precisely where traditional methods struggle: complex categorical spaces requiring domain understanding rather than mathematical optimization.
Representation-Driven Reinforcement Learning
We present a representation-driven framework for reinforcement learning. By representing policies as estimates of their expected values, we leverage techniques from contextual bandits to guide exploration and exploitation. Particularly, embedding a policy network into a linear feature space allows us to reframe the exploration-exploitation problem as a representation-exploitation problem, where good policy representations enable optimal exploration. We demonstrate the effectiveness of this framework through its application to evolutionary and policy gradient-based approaches, leading to significantly improved performance compared to traditional methods. Our framework provides a new perspective on reinforcement learning, highlighting the importance of policy representation in determining optimal exploration-exploitation strategies.
Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes
I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems.
Training a Generally Curious Agent
Efficient exploration is essential for intelligent systems interacting with their environment, but existing language models often fall short in scenarios that require strategic information gathering. In this paper, we present PAPRIKA, a fine-tuning approach that enables language models to develop general decision-making capabilities that are not confined to particular environments. By training on synthetic interaction data from different tasks that require diverse strategies, PAPRIKA teaches models to explore and adapt their behavior on a new task based on environment feedback in-context without more gradient updates. Experimental results show that models fine-tuned with PAPRIKA can effectively transfer their learned decision-making capabilities to entirely unseen tasks without additional training. Unlike traditional training, our approach's primary bottleneck lies in sampling useful interaction data instead of model updates. To improve sample efficiency, we propose a curriculum learning strategy that prioritizes sampling trajectories from tasks with high learning potential. These results suggest a promising path towards AI systems that can autonomously solve novel sequential decision-making problems that require interactions with the external world.
Navigating the Unknown: A Chat-Based Collaborative Interface for Personalized Exploratory Tasks
The rise of large language models (LLMs) has revolutionized user interactions with knowledge-based systems, enabling chatbots to synthesize vast amounts of information and assist with complex, exploratory tasks. However, LLM-based chatbots often struggle to provide personalized support, particularly when users start with vague queries or lack sufficient contextual information. This paper introduces the Collaborative Assistant for Personalized Exploration (CARE), a system designed to enhance personalization in exploratory tasks by combining a multi-agent LLM framework with a structured user interface. CARE's interface consists of a Chat Panel, Solution Panel, and Needs Panel, enabling iterative query refinement and dynamic solution generation. The multi-agent framework collaborates to identify both explicit and implicit user needs, delivering tailored, actionable solutions. In a within-subject user study with 22 participants, CARE was consistently preferred over a baseline LLM chatbot, with users praising its ability to reduce cognitive load, inspire creativity, and provide more tailored solutions. Our findings highlight CARE's potential to transform LLM-based systems from passive information retrievers to proactive partners in personalized problem-solving and exploration.
ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search
Large language models (LLMs) have demonstrated powerful decision-making and planning capabilities in solving complicated real-world problems. LLM-based autonomous agents can interact with diverse tools (e.g., functional APIs) and generate solution plans that execute a series of API function calls in a step-by-step manner. The multitude of candidate API function calls significantly expands the action space, amplifying the critical need for efficient action space navigation. However, existing methods either struggle with unidirectional exploration in expansive action spaces, trapped into a locally optimal solution, or suffer from exhaustively traversing all potential actions, causing inefficient navigation. To address these issues, we propose ToolChain*, an efficient tree search-based planning algorithm for LLM-based agents. It formulates the entire action space as a decision tree, where each node represents a possible API function call involved in a solution plan. By incorporating the A* search algorithm with task-specific cost function design, it efficiently prunes high-cost branches that may involve incorrect actions, identifying the most low-cost valid path as the solution. Extensive experiments on multiple tool-use and reasoning tasks demonstrate that ToolChain* efficiently balances exploration and exploitation within an expansive action space. It outperforms state-of-the-art baselines on planning and reasoning tasks by 3.1% and 3.5% on average while requiring 7.35x and 2.31x less time, respectively.
From Trial-and-Error to Improvement: A Systematic Analysis of LLM Exploration Mechanisms in RLVR
Reinforcement learning with verifiable rewards (RLVR) has emerged as a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs). Unlike traditional RL approaches, RLVR leverages rule-based feedback to guide LLMs in generating and refining complex reasoning chains -- a process critically dependent on effective exploration strategies. While prior work has demonstrated RLVR's empirical success, the fundamental mechanisms governing LLMs' exploration behaviors remain underexplored. This technical report presents a systematic investigation of exploration capacities in RLVR, covering four main aspects: (1) exploration space shaping, where we develop quantitative metrics to characterize LLMs' capability boundaries; (2) entropy-performance exchange, analyzed across training stages, individual instances, and token-level patterns; and (3) RL performance optimization, examining methods to effectively translate exploration gains into measurable improvements. By unifying previously identified insights with new empirical evidence, this work aims to provide a foundational framework for advancing RLVR systems.
Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
REX-RAG: Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation
Reinforcement learning (RL) is emerging as a powerful paradigm for enabling large language models (LLMs) to perform complex reasoning tasks. Recent advances indicate that integrating RL with retrieval-augmented generation (RAG) allows LLMs to dynamically incorporate external knowledge, leading to more informed and robust decision making. However, we identify a critical challenge during policy-driven trajectory sampling: LLMs are frequently trapped in unproductive reasoning paths, which we refer to as "dead ends", committing to overconfident yet incorrect conclusions. This severely hampers exploration and undermines effective policy optimization. To address this challenge, we propose REX-RAG (Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation), a novel framework that explores alternative reasoning paths while maintaining rigorous policy learning through principled distributional corrections. Our approach introduces two key innovations: (1) Mixed Sampling Strategy, which combines a novel probe sampling method with exploratory prompts to escape dead ends; and (2) Policy Correction Mechanism, which employs importance sampling to correct distribution shifts induced by mixed sampling, thereby mitigating gradient estimation bias. We evaluate it on seven question-answering benchmarks, and the experimental results show that REX-RAG achieves average performance gains of 5.1% on Qwen2.5-3B and 3.6% on Qwen2.5-7B over strong baselines, demonstrating competitive results across multiple datasets. The code is publicly available at https://github.com/MiliLab/REX-RAG.
Beyond Relevance: An Adaptive Exploration-Based Framework for Personalized Recommendations
Recommender systems must balance personalization, diversity, and robustness to cold-start scenarios to remain effective in dynamic content environments. This paper introduces an adaptive, exploration-based recommendation framework that adjusts to evolving user preferences and content distributions to promote diversity and novelty without compromising relevance. The system represents items using sentence-transformer embeddings and organizes them into semantically coherent clusters through an online algorithm with adaptive thresholding. A user-controlled exploration mechanism enhances diversity by selectively sampling from under-explored clusters. Experiments on the MovieLens dataset show that enabling exploration reduces intra-list similarity from 0.34 to 0.26 and increases unexpectedness to 0.73, outperforming collaborative filtering and popularity-based baselines. A/B testing with 300 simulated users reveals a strong link between interaction history and preference for diversity, with 72.7% of long-term users favoring exploratory recommendations. Computational analysis confirms that clustering and recommendation processes scale linearly with the number of clusters. These results demonstrate that adaptive exploration effectively mitigates over-specialization while preserving personalization and efficiency.
UltraHorizon: Benchmarking Agent Capabilities in Ultra Long-Horizon Scenarios
Autonomous agents have recently achieved remarkable progress across diverse domains, yet most evaluations focus on short-horizon, fully observable tasks. In contrast, many critical real-world tasks, such as large-scale software development, commercial investment, and scientific discovery, unfold in long-horizon and partially observable scenarios where success hinges on sustained reasoning, planning, memory management, and tool use. Existing benchmarks rarely capture these long-horizon challenges, leaving a gap in systematic evaluation. To bridge this gap, we introduce UltraHorizon a novel benchmark that measures the foundational capabilities essential for complex real-world challenges. We use exploration as a unifying task across three distinct environments to validate these core competencies. Agents are designed in long-horizon discovery tasks where they must iteratively uncover hidden rules through sustained reasoning, planning, memory and tools management, and interaction with environments. Under the heaviest scale setting, trajectories average 200k+ tokens and 400+ tool calls, whereas in standard configurations they still exceed 35k tokens and involve more than 60 tool calls on average. Our extensive experiments reveal that LLM-agents consistently underperform in these settings, whereas human participants achieve higher scores, underscoring a persistent gap in agents' long-horizon abilities. We also observe that simple scaling fails in our task. To better illustrate the failure of agents, we conduct an in-depth analysis of collected trajectories. We identify eight types of errors and attribute them to two primary causes: in-context locking and functional fundamental capability gaps. https://github.com/StarDewXXX/UltraHorizon{Our code will be available here.}
Ignore the KL Penalty! Boosting Exploration on Critical Tokens to Enhance RL Fine-Tuning
The ability to achieve long-term goals is a key challenge in the current development of large language models (LLMs). To address this, pre-trained LLMs can be fine-tuned with reinforcement learning (RL) to explore solutions that optimize a given goal. However, exploration with LLMs is difficult, as a balance has to be struck between discovering new solutions and staying close enough to the pre-trained model, so as not to degrade basic capabilities. This is typically controlled with a Kullback-Leibler (KL) penalty. In this paper, we investigate the exploration dynamics of a small language model on a simple arithmetic task. We show how varying degrees of pre-training influence exploration and demonstrate the importance of "critical tokens" which have a dramatic impact on the final outcome. Consequently, we introduce a simple modification to the KL penalty that favors exploration on critical tokens, increasing the efficiency of the RL fine-tuning stage.
Deep Laplacian-based Options for Temporally-Extended Exploration
Selecting exploratory actions that generate a rich stream of experience for better learning is a fundamental challenge in reinforcement learning (RL). An approach to tackle this problem consists in selecting actions according to specific policies for an extended period of time, also known as options. A recent line of work to derive such exploratory options builds upon the eigenfunctions of the graph Laplacian. Importantly, until now these methods have been mostly limited to tabular domains where (1) the graph Laplacian matrix was either given or could be fully estimated, (2) performing eigendecomposition on this matrix was computationally tractable, and (3) value functions could be learned exactly. Additionally, these methods required a separate option discovery phase. These assumptions are fundamentally not scalable. In this paper we address these limitations and show how recent results for directly approximating the eigenfunctions of the Laplacian can be leveraged to truly scale up options-based exploration. To do so, we introduce a fully online deep RL algorithm for discovering Laplacian-based options and evaluate our approach on a variety of pixel-based tasks. We compare to several state-of-the-art exploration methods and show that our approach is effective, general, and especially promising in non-stationary settings.
IR2: Implicit Rendezvous for Robotic Exploration Teams under Sparse Intermittent Connectivity
Information sharing is critical in time-sensitive and realistic multi-robot exploration, especially for smaller robotic teams in large-scale environments where connectivity may be sparse and intermittent. Existing methods often overlook such communication constraints by assuming unrealistic global connectivity. Other works account for communication constraints (by maintaining close proximity or line of sight during information exchange), but are often inefficient. For instance, preplanned rendezvous approaches typically involve unnecessary detours resulting from poorly timed rendezvous, while pursuit-based approaches often result in short-sighted decisions due to their greedy nature. We present IR2, a deep reinforcement learning approach to information sharing for multi-robot exploration. Leveraging attention-based neural networks trained via reinforcement and curriculum learning, IR2 allows robots to effectively reason about the longer-term trade-offs between disconnecting for solo exploration and reconnecting for information sharing. In addition, we propose a hierarchical graph formulation to maintain a sparse yet informative graph, enabling our approach to scale to large-scale environments. We present simulation results in three large-scale Gazebo environments, which show that our approach yields 6.6-34.1% shorter exploration paths when compared to state-of-the-art baselines, and lastly deploy our learned policy on hardware. Our simulation training and testing code is available at https://ir2-explore.github.io.
WebSailor-V2: Bridging the Chasm to Proprietary Agents via Synthetic Data and Scalable Reinforcement Learning
Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all open-source agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
Asking Before Action: Gather Information in Embodied Decision Making with Language Models
With strong capabilities of reasoning and a generic understanding of the world, Large Language Models (LLMs) have shown great potential in building versatile embodied decision making agents capable of performing diverse tasks. However, when deployed to unfamiliar environments, we show that LLM agents face challenges in efficiently gathering necessary information, leading to suboptimal performance. On the other hand, in unfamiliar scenarios, human individuals often seek additional information from their peers before taking action, leveraging external knowledge to avoid unnecessary trial and error. Building upon this intuition, we propose Asking Before Action (ABA), a method that empowers the agent to proactively query external sources for pertinent information using natural language during their interactions in the environment. In this way, the agent is able to enhance its efficiency and performance by mitigating wasteful steps and circumventing the difficulties associated with exploration in unfamiliar environments. We empirically evaluate our method on an embodied decision making benchmark, ALFWorld, and demonstrate that despite modest modifications in prompts, our method exceeds baseline LLM agents by more than 40%. Further experiments on two variants of ALFWorld illustrate that by imitation learning, ABA effectively retains and reuses queried and known information in subsequent tasks, mitigating the need for repetitive inquiries. Both qualitative and quantitative results exhibit remarkable performance on tasks that previous methods struggle to solve.
WebLeaper: Empowering Efficiency and Efficacy in WebAgent via Enabling Info-Rich Seeking
Large Language Model (LLM)-based agents have emerged as a transformative approach for open-ended problem solving, with information seeking (IS) being a core capability that enables autonomous reasoning and decision-making. While prior research has largely focused on improving retrieval depth, we observe that current IS agents often suffer from low search efficiency, which in turn constrains overall performance. A key factor underlying this inefficiency is the sparsity of target entities in training tasks, which limits opportunities for agents to learn and generalize efficient search behaviors. To address these challenges, we propose WebLeaper, a framework for constructing high-coverage IS tasks and generating efficient solution trajectories. We formulate IS as a tree-structured reasoning problem, enabling a substantially larger set of target entities to be embedded within a constrained context. Leveraging curated Wikipedia tables, we propose three variants for synthesizing IS tasks, Basic, Union, and Reverse-Union, to systematically increase both IS efficiency and efficacy. Finally, we curate training trajectories by retaining only those that are simultaneously accurate and efficient, ensuring that the model is optimized for both correctness and search performance. Extensive experiments on both basic and comprehensive settings, conducted on five IS benchmarks, BrowserComp, GAIA, xbench-DeepSearch, WideSearch, and Seal-0, demonstrate that our method consistently achieves improvements in both effectiveness and efficiency over strong baselines.
Fast Rates for Maximum Entropy Exploration
We address the challenge of exploration in reinforcement learning (RL) when the agent operates in an unknown environment with sparse or no rewards. In this work, we study the maximum entropy exploration problem of two different types. The first type is visitation entropy maximization previously considered by Hazan et al.(2019) in the discounted setting. For this type of exploration, we propose a game-theoretic algorithm that has mathcal{O}(H^3S^2A/varepsilon^2) sample complexity thus improving the varepsilon-dependence upon existing results, where S is a number of states, A is a number of actions, H is an episode length, and varepsilon is a desired accuracy. The second type of entropy we study is the trajectory entropy. This objective function is closely related to the entropy-regularized MDPs, and we propose a simple algorithm that has a sample complexity of order mathcal{O}(poly(S,A,H)/varepsilon). Interestingly, it is the first theoretical result in RL literature that establishes the potential statistical advantage of regularized MDPs for exploration. Finally, we apply developed regularization techniques to reduce sample complexity of visitation entropy maximization to mathcal{O}(H^2SA/varepsilon^2), yielding a statistical separation between maximum entropy exploration and reward-free exploration.
EAGER: Asking and Answering Questions for Automatic Reward Shaping in Language-guided RL
Reinforcement learning (RL) in long horizon and sparse reward tasks is notoriously difficult and requires a lot of training steps. A standard solution to speed up the process is to leverage additional reward signals, shaping it to better guide the learning process. In the context of language-conditioned RL, the abstraction and generalisation properties of the language input provide opportunities for more efficient ways of shaping the reward. In this paper, we leverage this idea and propose an automated reward shaping method where the agent extracts auxiliary objectives from the general language goal. These auxiliary objectives use a question generation (QG) and question answering (QA) system: they consist of questions leading the agent to try to reconstruct partial information about the global goal using its own trajectory. When it succeeds, it receives an intrinsic reward proportional to its confidence in its answer. This incentivizes the agent to generate trajectories which unambiguously explain various aspects of the general language goal. Our experimental study shows that this approach, which does not require engineer intervention to design the auxiliary objectives, improves sample efficiency by effectively directing exploration.
Unsupervised Learning and Exploration of Reachable Outcome Space
Performing Reinforcement Learning in sparse rewards settings, with very little prior knowledge, is a challenging problem since there is no signal to properly guide the learning process. In such situations, a good search strategy is fundamental. At the same time, not having to adapt the algorithm to every single problem is very desirable. Here we introduce TAXONS, a Task Agnostic eXploration of Outcome spaces through Novelty and Surprise algorithm. Based on a population-based divergent-search approach, it learns a set of diverse policies directly from high-dimensional observations, without any task-specific information. TAXONS builds a repertoire of policies while training an autoencoder on the high-dimensional observation of the final state of the system to build a low-dimensional outcome space. The learned outcome space, combined with the reconstruction error, is used to drive the search for new policies. Results show that TAXONS can find a diverse set of controllers, covering a good part of the ground-truth outcome space, while having no information about such space.
ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose Self-Explanation Policy Optimization (ExPO)-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
Algorithm Discovery With LLMs: Evolutionary Search Meets Reinforcement Learning
Discovering efficient algorithms for solving complex problems has been an outstanding challenge in mathematics and computer science, requiring substantial human expertise over the years. Recent advancements in evolutionary search with large language models (LLMs) have shown promise in accelerating the discovery of algorithms across various domains, particularly in mathematics and optimization. However, existing approaches treat the LLM as a static generator, missing the opportunity to update the model with the signal obtained from evolutionary exploration. In this work, we propose to augment LLM-based evolutionary search by continuously refining the search operator - the LLM - through reinforcement learning (RL) fine-tuning. Our method leverages evolutionary search as an exploration strategy to discover improved algorithms, while RL optimizes the LLM policy based on these discoveries. Our experiments on three combinatorial optimization tasks - bin packing, traveling salesman, and the flatpack problem - show that combining RL and evolutionary search improves discovery efficiency of improved algorithms, showcasing the potential of RL-enhanced evolutionary strategies to assist computer scientists and mathematicians for more efficient algorithm design.
WebSailor: Navigating Super-human Reasoning for Web Agent
Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all opensource agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
FLEX: an Adaptive Exploration Algorithm for Nonlinear Systems
Model-based reinforcement learning is a powerful tool, but collecting data to fit an accurate model of the system can be costly. Exploring an unknown environment in a sample-efficient manner is hence of great importance. However, the complexity of dynamics and the computational limitations of real systems make this task challenging. In this work, we introduce FLEX, an exploration algorithm for nonlinear dynamics based on optimal experimental design. Our policy maximizes the information of the next step and results in an adaptive exploration algorithm, compatible with generic parametric learning models and requiring minimal resources. We test our method on a number of nonlinear environments covering different settings, including time-varying dynamics. Keeping in mind that exploration is intended to serve an exploitation objective, we also test our algorithm on downstream model-based classical control tasks and compare it to other state-of-the-art model-based and model-free approaches. The performance achieved by FLEX is competitive and its computational cost is low.
GUI Exploration Lab: Enhancing Screen Navigation in Agents via Multi-Turn Reinforcement Learning
With the rapid development of Large Vision Language Models, the focus of Graphical User Interface (GUI) agent tasks shifts from single-screen tasks to complex screen navigation challenges. However, real-world GUI environments, such as PC software and mobile Apps, are often complex and proprietary, making it difficult to obtain the comprehensive environment information needed for agent training and evaluation. This limitation hinders systematic investigation and benchmarking of agent navigation capabilities. To address this limitation, we introduce GUI Exploration Lab, a simulation environment engine for GUI agent navigation research that enables flexible definition and composition of screens, icons, and navigation graphs, while providing full access to environment information for comprehensive agent training and evaluation. Through extensive experiments, we find that supervised fine-tuning enables effective memorization of fundamental knowledge, serving as a crucial foundation for subsequent training. Building on this, single-turn reinforcement learning further enhances generalization to unseen scenarios. Finally, multi-turn reinforcement learning encourages the development of exploration strategies through interactive trial and error, leading to further improvements in screen navigation performance. We validate our methods on both static and interactive benchmarks, demonstrating that our findings generalize effectively to real-world scenarios. These findings demonstrate the advantages of reinforcement learning approaches in GUI navigation and offer practical guidance for building more capable and generalizable GUI agents.
Deep Research Agents: A Systematic Examination And Roadmap
The rapid progress of Large Language Models (LLMs) has given rise to a new category of autonomous AI systems, referred to as Deep Research (DR) agents. These agents are designed to tackle complex, multi-turn informational research tasks by leveraging a combination of dynamic reasoning, adaptive long-horizon planning, multi-hop information retrieval, iterative tool use, and the generation of structured analytical reports. In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute Deep Research agents. We begin by reviewing information acquisition strategies, contrasting API-based retrieval methods with browser-based exploration. We then examine modular tool-use frameworks, including code execution, multimodal input processing, and the integration of Model Context Protocols (MCPs) to support extensibility and ecosystem development. To systematize existing approaches, we propose a taxonomy that differentiates between static and dynamic workflows, and we classify agent architectures based on planning strategies and agent composition, including single-agent and multi-agent configurations. We also provide a critical evaluation of current benchmarks, highlighting key limitations such as restricted access to external knowledge, sequential execution inefficiencies, and misalignment between evaluation metrics and the practical objectives of DR agents. Finally, we outline open challenges and promising directions for future research. A curated and continuously updated repository of DR agent research is available at: {https://github.com/ai-agents-2030/awesome-deep-research-agent}.
Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents
Large Language Models (LLMs) have become integral components in various autonomous agent systems. In this study, we present an exploration-based trajectory optimization approach, referred to as ETO. This learning method is designed to enhance the performance of open LLM agents. Contrary to previous studies that exclusively train on successful expert trajectories, our method allows agents to learn from their exploration failures. This leads to improved performance through an iterative optimization framework. During the exploration phase, the agent interacts with the environment while completing given tasks, gathering failure trajectories to create contrastive trajectory pairs. In the subsequent training phase, the agent utilizes these trajectory preference pairs to update its policy using contrastive learning methods like DPO. This iterative cycle of exploration and training fosters continued improvement in the agents. Our experiments on three complex tasks demonstrate that ETO consistently surpasses baseline performance by a large margin. Furthermore, an examination of task-solving efficiency and potential in scenarios lacking expert trajectory underscores the effectiveness of our approach.
RoboEXP: Action-Conditioned Scene Graph via Interactive Exploration for Robotic Manipulation
We introduce the novel task of interactive scene exploration, wherein robots autonomously explore environments and produce an action-conditioned scene graph (ACSG) that captures the structure of the underlying environment. The ACSG accounts for both low-level information (geometry and semantics) and high-level information (action-conditioned relationships between different entities) in the scene. To this end, we present the Robotic Exploration (RoboEXP) system, which incorporates the Large Multimodal Model (LMM) and an explicit memory design to enhance our system's capabilities. The robot reasons about what and how to explore an object, accumulating new information through the interaction process and incrementally constructing the ACSG. Leveraging the constructed ACSG, we illustrate the effectiveness and efficiency of our RoboEXP system in facilitating a wide range of real-world manipulation tasks involving rigid, articulated objects, nested objects, and deformable objects.
Targeted Data Acquisition for Evolving Negotiation Agents
Successful negotiators must learn how to balance optimizing for self-interest and cooperation. Yet current artificial negotiation agents often heavily depend on the quality of the static datasets they were trained on, limiting their capacity to fashion an adaptive response balancing self-interest and cooperation. For this reason, we find that these agents can achieve either high utility or cooperation, but not both. To address this, we introduce a targeted data acquisition framework where we guide the exploration of a reinforcement learning agent using annotations from an expert oracle. The guided exploration incentivizes the learning agent to go beyond its static dataset and develop new negotiation strategies. We show that this enables our agents to obtain higher-reward and more Pareto-optimal solutions when negotiating with both simulated and human partners compared to standard supervised learning and reinforcement learning methods. This trend additionally holds when comparing agents using our targeted data acquisition framework to variants of agents trained with a mix of supervised learning and reinforcement learning, or to agents using tailored reward functions that explicitly optimize for utility and Pareto-optimality.
Reactive Exploration to Cope with Non-Stationarity in Lifelong Reinforcement Learning
In lifelong learning, an agent learns throughout its entire life without resets, in a constantly changing environment, as we humans do. Consequently, lifelong learning comes with a plethora of research problems such as continual domain shifts, which result in non-stationary rewards and environment dynamics. These non-stationarities are difficult to detect and cope with due to their continuous nature. Therefore, exploration strategies and learning methods are required that are capable of tracking the steady domain shifts, and adapting to them. We propose Reactive Exploration to track and react to continual domain shifts in lifelong reinforcement learning, and to update the policy correspondingly. To this end, we conduct experiments in order to investigate different exploration strategies. We empirically show that representatives of the policy-gradient family are better suited for lifelong learning, as they adapt more quickly to distribution shifts than Q-learning. Thereby, policy-gradient methods profit the most from Reactive Exploration and show good results in lifelong learning with continual domain shifts. Our code is available at: https://github.com/ml-jku/reactive-exploration.
Learning with a Mole: Transferable latent spatial representations for navigation without reconstruction
Agents navigating in 3D environments require some form of memory, which should hold a compact and actionable representation of the history of observations useful for decision taking and planning. In most end-to-end learning approaches the representation is latent and usually does not have a clearly defined interpretation, whereas classical robotics addresses this with scene reconstruction resulting in some form of map, usually estimated with geometry and sensor models and/or learning. In this work we propose to learn an actionable representation of the scene independently of the targeted downstream task and without explicitly optimizing reconstruction. The learned representation is optimized by a blind auxiliary agent trained to navigate with it on multiple short sub episodes branching out from a waypoint and, most importantly, without any direct visual observation. We argue and show that the blindness property is important and forces the (trained) latent representation to be the only means for planning. With probing experiments we show that the learned representation optimizes navigability and not reconstruction. On downstream tasks we show that it is robust to changes in distribution, in particular the sim2real gap, which we evaluate with a real physical robot in a real office building, significantly improving performance.
FML-bench: A Benchmark for Automatic ML Research Agents Highlighting the Importance of Exploration Breadth
Large language models (LLMs) have sparked growing interest in automatic machine learning research agents. Among them, agents capable of autonomously proposing ideas and conducting machine learning experiments are particularly promising, as they maximize research automation and accelerate scientific progress by iteratively refining ideas based on experimental results. However, comprehensively evaluating such agents remains challenging. Existing benchmarks tend to overemphasize engineering aspects while neglecting academic rigor, creating barriers that obscure a clear assessment of an agent's scientific capabilities in machine learning research. They also suffer from limited task diversity, an overemphasis on application-oriented tasks over fundamental research problems, and limited scalability to realistic research settings. To address these limitations, we introduce FML-bench, a benchmark designed to evaluate automatic machine learning research agents on 8 diverse and fundamental machine learning research problems. It reduces coding burden, emphasizes fundamental problems rather than specific use cases, offers high task diversity, and is extensible to real-world machine learning GitHub repositories. Furthermore, we present a unified evaluation framework with five complementary metrics, designed to comprehensively assess agent performance on our benchmark. We evaluate state-of-the-art automatic research agents on FML-bench, and find that agents employing broad research exploration strategies outperform those focusing on narrow but deep exploration. These findings suggest that emphasizing the breadth of exploration may lead to more effective research outcomes than focusing solely on incremental refinement. Our benchmark is available at https://github.com/qrzou/FML-bench.
One Objective to Rule Them All: A Maximization Objective Fusing Estimation and Planning for Exploration
In online reinforcement learning (online RL), balancing exploration and exploitation is crucial for finding an optimal policy in a sample-efficient way. To achieve this, existing sample-efficient online RL algorithms typically consist of three components: estimation, planning, and exploration. However, in order to cope with general function approximators, most of them involve impractical algorithmic components to incentivize exploration, such as optimization within data-dependent level-sets or complicated sampling procedures. To address this challenge, we propose an easy-to-implement RL framework called Maximize to Explore (MEX), which only needs to optimize unconstrainedly a single objective that integrates the estimation and planning components while balancing exploration and exploitation automatically. Theoretically, we prove that MEX achieves a sublinear regret with general function approximations for Markov decision processes (MDP) and is further extendable to two-player zero-sum Markov games (MG). Meanwhile, we adapt deep RL baselines to design practical versions of MEX, in both model-free and model-based manners, which can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards. Compared with existing sample-efficient online RL algorithms with general function approximations, MEX achieves similar sample efficiency while enjoying a lower computational cost and is more compatible with modern deep RL methods.
RE-Searcher: Robust Agentic Search with Goal-oriented Planning and Self-reflection
Large language models (LLMs) excel at knowledge-intensive question answering and reasoning, yet their real-world deployment remains constrained by knowledge cutoff, hallucination, and limited interaction modalities. Augmenting LLMs with external search tools helps alleviate these issues, but it also exposes agents to a complex search environment in which small, plausible variations in query formulation can steer reasoning into unproductive trajectories and amplify errors. We present a systematic analysis that quantifies how environmental complexity induces fragile search behaviors and, in turn, degrades overall performance. To address this challenge, we propose a simple yet effective approach to instantiate a search agent, RE-Searcher. During search, RE-Searcher explicitly articulates a concrete search goal and subsequently reflects on whether the retrieved evidence satisfies that goal. This combination of goal-oriented planning and self-reflection enables RE-Searcher to resist spurious cues in complex search environments and perform robust search. Extensive experiments show that our method improves search accuracy and achieves state-of-the-art results. Perturbation studies further demonstrate substantial resilience to noisy or misleading external signals, mitigating the fragility of the search process. We believe these findings offer practical guidance for integrating LLM-powered agents into more complex interactive environments and enabling more autonomous decision-making.
Go-Browse: Training Web Agents with Structured Exploration
One of the fundamental problems in digital agents is their lack of understanding of their environment. For instance, a web browsing agent may get lost in unfamiliar websites, uncertain what pages must be visited to achieve its goals. To address this, we propose Go-Browse, a method for automatically collecting diverse and realistic web agent data at scale through structured exploration of web environments. Go-Browse achieves efficient exploration by framing data collection as a graph search, enabling reuse of information across exploration episodes. We instantiate our method on the WebArena benchmark, collecting a dataset of 10K successful task-solving trajectories and 40K interaction steps across 100 URLs. Fine-tuning a 7B parameter language model on this dataset achieves a success rate of 21.7% on the WebArena benchmark, beating GPT-4o mini by 2.4% and exceeding current state-of-the-art results for sub-10B parameter models by 2.9%.
CARINOX: Inference-time Scaling with Category-Aware Reward-based Initial Noise Optimization and Exploration
Text-to-image diffusion models, such as Stable Diffusion, can produce high-quality and diverse images but often fail to achieve compositional alignment, particularly when prompts describe complex object relationships, attributes, or spatial arrangements. Recent inference-time approaches address this by optimizing or exploring the initial noise under the guidance of reward functions that score text-image alignment without requiring model fine-tuning. While promising, each strategy has intrinsic limitations when used alone: optimization can stall due to poor initialization or unfavorable search trajectories, whereas exploration may require a prohibitively large number of samples to locate a satisfactory output. Our analysis further shows that neither single reward metrics nor ad-hoc combinations reliably capture all aspects of compositionality, leading to weak or inconsistent guidance. To overcome these challenges, we present Category-Aware Reward-based Initial Noise Optimization and Exploration (CARINOX), a unified framework that combines noise optimization and exploration with a principled reward selection procedure grounded in correlation with human judgments. Evaluations on two complementary benchmarks covering diverse compositional challenges show that CARINOX raises average alignment scores by +16% on T2I-CompBench++ and +11% on the HRS benchmark, consistently outperforming state-of-the-art optimization and exploration-based methods across all major categories, while preserving image quality and diversity. The project page is available at https://amirkasaei.com/carinox/{this URL}.
Explore and Control with Adversarial Surprise
Unsupervised reinforcement learning (RL) studies how to leverage environment statistics to learn useful behaviors without the cost of reward engineering. However, a central challenge in unsupervised RL is to extract behaviors that meaningfully affect the world and cover the range of possible outcomes, without getting distracted by inherently unpredictable, uncontrollable, and stochastic elements in the environment. To this end, we propose an unsupervised RL method designed for high-dimensional, stochastic environments based on an adversarial game between two policies (which we call Explore and Control) controlling a single body and competing over the amount of observation entropy the agent experiences. The Explore agent seeks out states that maximally surprise the Control agent, which in turn aims to minimize surprise, and thereby manipulate the environment to return to familiar and predictable states. The competition between these two policies drives them to seek out increasingly surprising parts of the environment while learning to gain mastery over them. We show formally that the resulting algorithm maximizes coverage of the underlying state in block MDPs with stochastic observations, providing theoretical backing to our hypothesis that this procedure avoids uncontrollable and stochastic distractions. Our experiments further demonstrate that Adversarial Surprise leads to the emergence of complex and meaningful skills, and outperforms state-of-the-art unsupervised reinforcement learning methods in terms of both exploration and zero-shot transfer to downstream tasks.
Boosting Search Engines with Interactive Agents
This paper presents first successful steps in designing search agents that learn meta-strategies for iterative query refinement in information-seeking tasks. Our approach uses machine reading to guide the selection of refinement terms from aggregated search results. Agents are then empowered with simple but effective search operators to exert fine-grained and transparent control over queries and search results. We develop a novel way of generating synthetic search sessions, which leverages the power of transformer-based language models through (self-)supervised learning. We also present a reinforcement learning agent with dynamically constrained actions that learns interactive search strategies from scratch. Our search agents obtain retrieval and answer quality performance comparable to recent neural methods, using only a traditional term-based BM25 ranking function and interpretable discrete reranking and filtering actions.
A Survey on the Optimization of Large Language Model-based Agents
With the rapid development of Large Language Models (LLMs), LLM-based agents have been widely adopted in various fields, becoming essential for autonomous decision-making and interactive tasks. However, current work typically relies on prompt design or fine-tuning strategies applied to vanilla LLMs, which often leads to limited effectiveness or suboptimal performance in complex agent-related environments. Although LLM optimization techniques can improve model performance across many general tasks, they lack specialized optimization towards critical agent functionalities such as long-term planning, dynamic environmental interaction, and complex decision-making. Although numerous recent studies have explored various strategies to optimize LLM-based agents for complex agent tasks, a systematic review summarizing and comparing these methods from a holistic perspective is still lacking. In this survey, we provide a comprehensive review of LLM-based agent optimization approaches, categorizing them into parameter-driven and parameter-free methods. We first focus on parameter-driven optimization, covering fine-tuning-based optimization, reinforcement learning-based optimization, and hybrid strategies, analyzing key aspects such as trajectory data construction, fine-tuning techniques, reward function design, and optimization algorithms. Additionally, we briefly discuss parameter-free strategies that optimize agent behavior through prompt engineering and external knowledge retrieval. Finally, we summarize the datasets and benchmarks used for evaluation and tuning, review key applications of LLM-based agents, and discuss major challenges and promising future directions. Our repository for related references is available at https://github.com/YoungDubbyDu/LLM-Agent-Optimization.
