new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

CrisisTransformers: Pre-trained language models and sentence encoders for crisis-related social media texts

Social media platforms play an essential role in crisis communication, but analyzing crisis-related social media texts is challenging due to their informal nature. Transformer-based pre-trained models like BERT and RoBERTa have shown success in various NLP tasks, but they are not tailored for crisis-related texts. Furthermore, general-purpose sentence encoders are used to generate sentence embeddings, regardless of the textual complexities in crisis-related texts. Advances in applications like text classification, semantic search, and clustering contribute to effective processing of crisis-related texts, which is essential for emergency responders to gain a comprehensive view of a crisis event, whether historical or real-time. To address these gaps in crisis informatics literature, this study introduces CrisisTransformers, an ensemble of pre-trained language models and sentence encoders trained on an extensive corpus of over 15 billion word tokens from tweets associated with more than 30 crisis events, including disease outbreaks, natural disasters, conflicts, and other critical incidents. We evaluate existing models and CrisisTransformers on 18 crisis-specific public datasets. Our pre-trained models outperform strong baselines across all datasets in classification tasks, and our best-performing sentence encoder improves the state-of-the-art by 17.43% in sentence encoding tasks. Additionally, we investigate the impact of model initialization on convergence and evaluate the significance of domain-specific models in generating semantically meaningful sentence embeddings. All models are publicly released (https://huggingface.co/crisistransformers), with the anticipation that they will serve as a robust baseline for tasks involving the analysis of crisis-related social media texts.

  • 3 authors
·
Sep 11, 2023

"Actionable Help" in Crises: A Novel Dataset and Resource-Efficient Models for Identifying Request and Offer Social Media Posts

During crises, social media serves as a crucial coordination tool, but the vast influx of posts--from "actionable" requests and offers to generic content like emotional support, behavioural guidance, or outdated information--complicates effective classification. Although generative LLMs (Large Language Models) can address this issue with few-shot classification, their high computational demands limit real-time crisis response. While fine-tuning encoder-only models (e.g., BERT) is a popular choice, these models still exhibit higher inference times in resource-constrained environments. Moreover, although distilled variants (e.g., DistilBERT) exist, they are not tailored for the crisis domain. To address these challenges, we make two key contributions. First, we present CrisisHelpOffer, a novel dataset of 101k tweets collaboratively labelled by generative LLMs and validated by humans, specifically designed to distinguish actionable content from noise. Second, we introduce the first crisis-specific mini models optimized for deployment in resource-constrained settings. Across 13 crisis classification tasks, our mini models surpass BERT (also outperform or match the performance of RoBERTa, MPNet, and BERTweet), offering higher accuracy with significantly smaller sizes and faster speeds. The Medium model is 47% smaller with 3.8% higher accuracy at 3.5x speed, the Small model is 68% smaller with a 1.8% accuracy gain at 7.7x speed, and the Tiny model, 83% smaller, matches BERT's accuracy at 18.6x speed. All models outperform existing distilled variants, setting new benchmarks. Finally, as a case study, we analyze social media posts from a global crisis to explore help-seeking and assistance-offering behaviours in selected developing and developed countries.

  • 4 authors
·
Feb 23

CrisiText: A dataset of warning messages for LLM training in emergency communication

Effectively identifying threats and mitigating their potential damage during crisis situations, such as natural disasters or violent attacks, is paramount for safeguarding endangered individuals. To tackle these challenges, AI has been used in assisting humans in emergency situations. Still, the use of NLP techniques remains limited and mostly focuses on classification tasks. The significant potential of timely warning message generation using NLG architectures, however, has been largely overlooked. In this paper we present CrisiText, the first large-scale dataset for the generation of warning messages across 13 different types of crisis scenarios. The dataset contains more than 400,000 warning messages (spanning almost 18,000 crisis situations) aimed at assisting civilians during and after such events. To generate the dataset, we started from existing crisis descriptions and created chains of events related to the scenarios. Each event was then paired with a warning message. The generations follow experts' written guidelines to ensure correct terminology and factuality of their suggestions. Additionally, each message is accompanied by three suboptimal warning types to allow for the study of different NLG approaches. To this end, we conducted a series of experiments comparing supervised fine-tuning setups with preference alignment, zero-shot, and few-shot approaches. We further assessed model performance in out-of-distribution scenarios and evaluated the effectiveness of an automatic post-editor.

  • 4 authors
·
Oct 10

Twitter conversations predict the daily confirmed COVID-19 cases

As of writing this paper, COVID-19 (Coronavirus disease 2019) has spread to more than 220 countries and territories. Following the outbreak, the pandemic's seriousness has made people more active on social media, especially on the microblogging platforms such as Twitter and Weibo. The pandemic-specific discourse has remained on-trend on these platforms for months now. Previous studies have confirmed the contributions of such socially generated conversations towards situational awareness of crisis events. The early forecasts of cases are essential to authorities to estimate the requirements of resources needed to cope with the outgrowths of the virus. Therefore, this study attempts to incorporate the public discourse in the design of forecasting models particularly targeted for the steep-hill region of an ongoing wave. We propose a sentiment-involved topic-based latent variables search methodology for designing forecasting models from publicly available Twitter conversations. As a use case, we implement the proposed methodology on Australian COVID-19 daily cases and Twitter conversations generated within the country. Experimental results: (i) show the presence of latent social media variables that Granger-cause the daily COVID-19 confirmed cases, and (ii) confirm that those variables offer additional prediction capability to forecasting models. Further, the results show that the inclusion of social media variables introduces 48.83--51.38% improvements on RMSE over the baseline models. We also release the large-scale COVID-19 specific geotagged global tweets dataset, MegaGeoCOV, to the public anticipating that the geotagged data of this scale would aid in understanding the conversational dynamics of the pandemic through other spatial and temporal contexts.

  • 3 authors
·
Jun 21, 2022

ADSumm: Annotated Ground-truth Summary Datasets for Disaster Tweet Summarization

Online social media platforms, such as Twitter, provide valuable information during disaster events. Existing tweet disaster summarization approaches provide a summary of these events to aid government agencies, humanitarian organizations, etc., to ensure effective disaster response. In the literature, there are two types of approaches for disaster summarization, namely, supervised and unsupervised approaches. Although supervised approaches are typically more effective, they necessitate a sizable number of disaster event summaries for testing and training. However, there is a lack of good number of disaster summary datasets for training and evaluation. This motivates us to add more datasets to make supervised learning approaches more efficient. In this paper, we present ADSumm, which adds annotated ground-truth summaries for eight disaster events which consist of both natural and man-made disaster events belonging to seven different countries. Our experimental analysis shows that the newly added datasets improve the performance of the supervised summarization approaches by 8-28% in terms of ROUGE-N F1-score. Moreover, in newly annotated dataset, we have added a category label for each input tweet which helps to ensure good coverage from different categories in summary. Additionally, we have added two other features relevance label and key-phrase, which provide information about the quality of a tweet and explanation about the inclusion of the tweet into summary, respectively. For ground-truth summary creation, we provide the annotation procedure adapted in detail, which has not been described in existing literature. Experimental analysis shows the quality of ground-truth summary is very good with Coverage, Relevance and Diversity.

  • 3 authors
·
May 10, 2024

MASH: A Multiplatform and Multimodal Annotated Dataset for Societal Impact of Hurricane

Natural disasters cause multidimensional threats to human societies, with hurricanes exemplifying one of the most disruptive events that not only caused severe physical damage but also sparked widespread discussion on social media platforms. Existing datasets for studying societal impacts of hurricanes often focus on outdated hurricanes and are limited to a single social media platform, failing to capture the broader societal impact in today's diverse social media environment. Moreover, existing datasets annotate visual and textual content of the post separately, failing to account for the multimodal nature of social media posts. To address these gaps, we present a multiplatform and Multimodal Annotated Dataset for Societal Impact of Hurricane (MASH) that includes 98,662 relevant social media data posts from Reddit, X, TikTok, and YouTube. In addition, all relevant social media data posts are annotated in a multimodal approach that considers both textual and visual content on three dimensions: humanitarian classes, bias classes, and information integrity classes. To our best knowledge, MASH is the first large-scale, multi-platform, multimodal, and multi-dimensionally annotated hurricane dataset. We envision that MASH can contribute to the study of hurricanes' impact on society, such as disaster severity classification, public sentiment analysis, disaster policy making, and bias identification.

  • 12 authors
·
Sep 28

QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1

Earthquake monitoring is necessary to promptly identify the affected areas, the severity of the events, and, finally, to estimate damages and plan the actions needed for the restoration process. The use of seismic stations to monitor the strength and origin of earthquakes is limited when dealing with remote areas (we cannot have global capillary coverage). Identification and analysis of all affected areas is mandatory to support areas not monitored by traditional stations. Using social media images in crisis management has proven effective in various situations. However, they are still limited by the possibility of using communication infrastructures in case of an earthquake and by the presence of people in the area. Moreover, social media images and messages cannot be used to estimate the actual severity of earthquakes and their characteristics effectively. The employment of satellites to monitor changes around the globe grants the possibility of exploiting instrumentation that is not limited by the visible spectrum, the presence of land infrastructures, and people in the affected areas. In this work, we propose a new dataset composed of images taken from Sentinel-1 and a new series of tasks to help monitor earthquakes from a new detailed view. Coupled with the data, we provide a series of traditional machine learning and deep learning models as baselines to assess the effectiveness of ML-based models in earthquake analysis.

  • 2 authors
·
Mar 26, 2024

Between welcome culture and border fence. A dataset on the European refugee crisis in German newspaper reports

Newspaper reports provide a rich source of information on the unfolding of public debate on specific policy fields that can serve as basis for inquiry in political science. Such debates are often triggered by critical events, which attract public attention and incite the reactions of political actors: crisis sparks the debate. However, due to the challenges of reliable annotation and modeling, few large-scale datasets with high-quality annotation are available. This paper introduces DebateNet2.0, which traces the political discourse on the European refugee crisis in the German quality newspaper taz during the year 2015. The core units of our annotation are political claims (requests for specific actions to be taken within the policy field) and the actors who make them (politicians, parties, etc.). The contribution of this paper is twofold. First, we document and release DebateNet2.0 along with its companion R package, mardyR, guiding the reader through the practical and conceptual issues related to the annotation of policy debates in newspapers. Second, we outline and apply a Discourse Network Analysis (DNA) to DebateNet2.0, comparing two crucial moments of the policy debate on the 'refugee crisis': the migration flux through the Mediterranean in April/May and the one along the Balkan route in September/October. Besides the released resources and the case-study, our contribution is also methodological: we talk the reader through the steps from a newspaper article to a discourse network, demonstrating that there is not just one discourse network for the German migration debate, but multiple ones, depending on the topic of interest (political actors, policy fields, time spans).

  • 6 authors
·
Nov 19, 2021

Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted Outcomes to Analyze Longitudinal Social Media Data

The COVID-19 pandemic has escalated mental health crises worldwide, with social isolation and economic instability contributing to a rise in suicidal behavior. Suicide can result from social factors such as shame, abuse, abandonment, and mental health conditions like depression, Post-Traumatic Stress Disorder (PTSD), Attention-Deficit/Hyperactivity Disorder (ADHD), anxiety disorders, and bipolar disorders. As these conditions develop, signs of suicidal ideation may manifest in social media interactions. Analyzing social media data using artificial intelligence (AI) techniques can help identify patterns of suicidal behavior, providing invaluable insights for suicide prevention agencies, professionals, and broader community awareness initiatives. Machine learning algorithms for this purpose require large volumes of accurately labeled data. Previous research has not fully explored the potential of incorporating explanations in analyzing and labeling longitudinal social media data. In this study, we employed a model explanation method, Layer Integrated Gradients, on top of a fine-tuned state-of-the-art language model, to assign each token from Reddit users' posts an attribution score for predicting suicidal ideation. By extracting and analyzing attributions of tokens from the data, we propose a methodology for preliminary screening of social media posts for suicidal ideation without using large language models during inference.

  • 8 authors
·
Dec 13, 2023

Natural Hazards Twitter Dataset

With the development of the Internet, social media has become an important channel for posting disaster-related information. Analyzing attitudes hidden in these texts, known as sentiment analysis, is crucial for the government or relief agencies to improve disaster response efficiency, but it has not received sufficient attention. This paper aims to fill this gap by focusing on investigating attitudes towards disaster response and analyzing targeted relief supplies during disaster response. The contributions of this paper are fourfold. First, we propose several machine learning models for classifying public sentiment concerning disaster-related social media data. Second, we create a natural disaster dataset with sentiment labels, which contains nearly 50,00 Twitter data about different natural disasters in the United States (e.g., a tornado in 2011, a hurricane named Sandy in 2012, a series of floods in 2013, a hurricane named Matthew in 2016, a blizzard in 2016, a hurricane named Harvey in 2017, a hurricane named Michael in 2018, a series of wildfires in 2018, and a hurricane named Dorian in 2019). We are making our dataset available to the research community: https://github.com/Dong-UTIL/Natural-Hazards-Twitter-Dataset. It is our hope that our contribution will enable the study of sentiment analysis in disaster response. Third, we focus on extracting public attitudes and analyzing the essential needs (e.g., food, housing, transportation, and medical supplies) for the public during disaster response, instead of merely targeting on studying positive or negative attitudes of the public to natural disasters. Fourth, we conduct this research from two different dimensions for a comprehensive understanding of public opinion on disaster response, since disparate hazards caused by different types of natural disasters.

  • 2 authors
·
Apr 29, 2020

MEDIC: A Multi-Task Learning Dataset for Disaster Image Classification

Recent research in disaster informatics demonstrates a practical and important use case of artificial intelligence to save human lives and suffering during natural disasters based on social media contents (text and images). While notable progress has been made using texts, research on exploiting the images remains relatively under-explored. To advance image-based approaches, we propose MEDIC (Available at: https://crisisnlp.qcri.org/medic/index.html), which is the largest social media image classification dataset for humanitarian response consisting of 71,198 images to address four different tasks in a multi-task learning setup. This is the first dataset of its kind: social media images, disaster response, and multi-task learning research. An important property of this dataset is its high potential to facilitate research on multi-task learning, which recently receives much interest from the machine learning community and has shown remarkable results in terms of memory, inference speed, performance, and generalization capability. Therefore, the proposed dataset is an important resource for advancing image-based disaster management and multi-task machine learning research. We experiment with different deep learning architectures and report promising results, which are above the majority baselines for all tasks. Along with the dataset, we also release all relevant scripts (https://github.com/firojalam/medic).

  • 6 authors
·
Aug 29, 2021

Into the crossfire: evaluating the use of a language model to crowdsource gun violence reports

Gun violence is a pressing and growing human rights issue that affects nearly every dimension of the social fabric, from healthcare and education to psychology and the economy. Reliable data on firearm events is paramount to developing more effective public policy and emergency responses. However, the lack of comprehensive databases and the risks of in-person surveys prevent human rights organizations from collecting needed data in most countries. Here, we partner with a Brazilian human rights organization to conduct a systematic evaluation of language models to assist with monitoring real-world firearm events from social media data. We propose a fine-tuned BERT-based model trained on Twitter (now X) texts to distinguish gun violence reports from ordinary Portuguese texts. Our model achieves a high AUC score of 0.97. We then incorporate our model into a web application and test it in a live intervention. We study and interview Brazilian analysts who continuously fact-check social media texts to identify new gun violence events. Qualitative assessments show that our solution helped all analysts use their time more efficiently and expanded their search capacities. Quantitative assessments show that the use of our model was associated with more analysts' interactions with online users reporting gun violence. Taken together, our findings suggest that modern Natural Language Processing techniques can help support the work of human rights organizations.

  • 3 authors
·
Jan 16, 2024

Detection of Somali-written Fake News and Toxic Messages on the Social Media Using Transformer-based Language Models

The fact that everyone with a social media account can create and share content, and the increasing public reliance on social media platforms as a news and information source bring about significant challenges such as misinformation, fake news, harmful content, etc. Although human content moderation may be useful to an extent and used by these platforms to flag posted materials, the use of AI models provides a more sustainable, scalable, and effective way to mitigate these harmful contents. However, low-resourced languages such as the Somali language face limitations in AI automation, including scarce annotated training datasets and lack of language models tailored to their unique linguistic characteristics. This paper presents part of our ongoing research work to bridge some of these gaps for the Somali language. In particular, we created two human-annotated social-media-sourced Somali datasets for two downstream applications, fake news \& toxicity classification, and developed a transformer-based monolingual Somali language model (named SomBERTa) -- the first of its kind to the best of our knowledge. SomBERTa is then fine-tuned and evaluated on toxic content, fake news and news topic classification datasets. Comparative evaluation analysis of the proposed model against related multilingual models (e.g., AfriBERTa, AfroXLMR, etc) demonstrated that SomBERTa consistently outperformed these comparators in both fake news and toxic content classification tasks while achieving the best average accuracy (87.99%) across all tasks. This research contributes to Somali NLP by offering a foundational language model and a replicable framework for other low-resource languages, promoting digital and AI inclusivity and linguistic diversity.

  • 6 authors
·
Mar 23

Understanding Environmental Posts: Sentiment and Emotion Analysis of Social Media Data

Social media is now the predominant source of information due to the availability of immediate public response. As a result, social media data has become a valuable resource for comprehending public sentiments. Studies have shown that it can amplify ideas and influence public sentiments. This study analyzes the public perception of climate change and the environment over a decade from 2014 to 2023. Using the Pointwise Mutual Information (PMI) algorithm, we identify sentiment and explore prevailing emotions expressed within environmental tweets across various social media platforms, namely Twitter, Reddit, and YouTube. Accuracy on a human-annotated dataset was 0.65, higher than Vader score but lower than that of an expert rater (0.90). Our findings suggest that negative environmental tweets are far more common than positive or neutral ones. Climate change, air quality, emissions, plastic, and recycling are the most discussed topics on all social media platforms, highlighting its huge global concern. The most common emotions in environmental tweets are fear, trust, and anticipation, demonstrating public reactions wide and complex nature. By identifying patterns and trends in opinions related to the environment, we hope to provide insights that can help raise awareness regarding environmental issues, inform the development of interventions, and adapt further actions to meet environmental challenges.

  • 3 authors
·
Dec 5, 2023

Chinese MentalBERT: Domain-Adaptive Pre-training on Social Media for Chinese Mental Health Text Analysis

In the current environment, psychological issues are prevalent and widespread, with social media serving as a key outlet for individuals to share their feelings. This results in the generation of vast quantities of data daily, where negative emotions have the potential to precipitate crisis situations. There is a recognized need for models capable of efficient analysis. While pre-trained language models have demonstrated their effectiveness broadly, there's a noticeable gap in pre-trained models tailored for specialized domains like psychology. To address this, we have collected a huge dataset from Chinese social media platforms and enriched it with publicly available datasets to create a comprehensive database encompassing 3.36 million text entries. To enhance the model's applicability to psychological text analysis, we integrated psychological lexicons into the pre-training masking mechanism. Building on an existing Chinese language model, we performed adaptive training to develop a model specialized for the psychological domain. We assessed our model's effectiveness across four public benchmarks, where it not only surpassed the performance of standard pre-trained models but also showed a inclination for making psychologically relevant predictions. Due to concerns regarding data privacy, the dataset will not be made publicly available. However, we have made the pre-trained models and codes publicly accessible to the community via: https://github.com/zwzzzQAQ/Chinese-MentalBERT.

  • 8 authors
·
Feb 14, 2024

Towards Characterizing COVID-19 Awareness on Twitter

The coronavirus (COVID-19) pandemic has significantly altered our lifestyles as we resort to minimize the spread through preventive measures such as social distancing and quarantine. An increasingly worrying aspect is the gap between the exponential disease spread and the delay in adopting preventive measures. This gap is attributed to the lack of awareness about the disease and its preventive measures. Nowadays, social media platforms (ie., Twitter) are frequently used to create awareness about major events, including COVID-19. In this paper, we use Twitter to characterize public awareness regarding COVID-19 by analyzing the information flow in the most affected countries. Towards that, we collect more than 46K trends and 622 Million tweets from the top twenty most affected countries to examine 1) the temporal evolution of COVID-19 related trends, 2) the volume of tweets and recurring topics in those trends, and 3) the user sentiment towards preventive measures. Our results show that countries with a lower pandemic spread generated a higher volume of trends and tweets to expedite the information flow and contribute to public awareness. We also observed that in those countries, the COVID-19 related trends were generated before the sharp increase in the number of cases, indicating a preemptive attempt to notify users about the potential threat. Finally, we noticed that in countries with a lower spread, users had a positive sentiment towards COVID-19 preventive measures. Our measurements and analysis show that effective social media usage can influence public behavior, which can be leveraged to better combat future pandemics.

  • 3 authors
·
May 17, 2020

CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets

Over the course of the COVID-19 pandemic, large volumes of biomedical information concerning this new disease have been published on social media. Some of this information can pose a real danger to people's health, particularly when false information is shared, for instance recommendations on how to treat diseases without professional medical advice. Therefore, automatic fact-checking resources and systems developed specifically for the medical domain are crucial. While existing fact-checking resources cover COVID-19-related information in news or quantify the amount of misinformation in tweets, there is no dataset providing fact-checked COVID-19-related Twitter posts with detailed annotations for biomedical entities, relations and relevant evidence. We contribute CoVERT, a fact-checked corpus of tweets with a focus on the domain of biomedicine and COVID-19-related (mis)information. The corpus consists of 300 tweets, each annotated with medical named entities and relations. We employ a novel crowdsourcing methodology to annotate all tweets with fact-checking labels and supporting evidence, which crowdworkers search for online. This methodology results in moderate inter-annotator agreement. Furthermore, we use the retrieved evidence extracts as part of a fact-checking pipeline, finding that the real-world evidence is more useful than the knowledge indirectly available in pretrained language models.

  • 3 authors
·
Apr 26, 2022

COVID-19-related Nepali Tweets Classification in a Low Resource Setting

Billions of people across the globe have been using social media platforms in their local languages to voice their opinions about the various topics related to the COVID-19 pandemic. Several organizations, including the World Health Organization, have developed automated social media analysis tools that classify COVID-19-related tweets into various topics. However, these tools that help combat the pandemic are limited to very few languages, making several countries unable to take their benefit. While multi-lingual or low-resource language-specific tools are being developed, they still need to expand their coverage, such as for the Nepali language. In this paper, we identify the eight most common COVID-19 discussion topics among the Twitter community using the Nepali language, set up an online platform to automatically gather Nepali tweets containing the COVID-19-related keywords, classify the tweets into the eight topics, and visualize the results across the period in a web-based dashboard. We compare the performance of two state-of-the-art multi-lingual language models for Nepali tweet classification, one generic (mBERT) and the other Nepali language family-specific model (MuRIL). Our results show that the models' relative performance depends on the data size, with MuRIL doing better for a larger dataset. The annotated data, models, and the web-based dashboard are open-sourced at https://github.com/naamiinepal/covid-tweet-classification.

  • 6 authors
·
Oct 11, 2022

EcoVerse: An Annotated Twitter Dataset for Eco-Relevance Classification, Environmental Impact Analysis, and Stance Detection

Anthropogenic ecological crisis constitutes a significant challenge that all within the academy must urgently face, including the Natural Language Processing (NLP) community. While recent years have seen increasing work revolving around climate-centric discourse, crucial environmental and ecological topics outside of climate change remain largely unaddressed, despite their prominent importance. Mainstream NLP tasks, such as sentiment analysis, dominate the scene, but there remains an untouched space in the literature involving the analysis of environmental impacts of certain events and practices. To address this gap, this paper presents EcoVerse, an annotated English Twitter dataset of 3,023 tweets spanning a wide spectrum of environmental topics. We propose a three-level annotation scheme designed for Eco-Relevance Classification, Stance Detection, and introducing an original approach for Environmental Impact Analysis. We detail the data collection, filtering, and labeling process that led to the creation of the dataset. Remarkable Inter-Annotator Agreement indicates that the annotation scheme produces consistent annotations of high quality. Subsequent classification experiments using BERT-based models, including ClimateBERT, are presented. These yield encouraging results, while also indicating room for a model specifically tailored for environmental texts. The dataset is made freely available to stimulate further research.

  • 4 authors
·
Apr 7, 2024

Overcoming Language Disparity in Online Content Classification with Multimodal Learning

Advances in Natural Language Processing (NLP) have revolutionized the way researchers and practitioners address crucial societal problems. Large language models are now the standard to develop state-of-the-art solutions for text detection and classification tasks. However, the development of advanced computational techniques and resources is disproportionately focused on the English language, sidelining a majority of the languages spoken globally. While existing research has developed better multilingual and monolingual language models to bridge this language disparity between English and non-English languages, we explore the promise of incorporating the information contained in images via multimodal machine learning. Our comparative analyses on three detection tasks focusing on crisis information, fake news, and emotion recognition, as well as five high-resource non-English languages, demonstrate that: (a) detection frameworks based on pre-trained large language models like BERT and multilingual-BERT systematically perform better on the English language compared against non-English languages, and (b) including images via multimodal learning bridges this performance gap. We situate our findings with respect to existing work on the pitfalls of large language models, and discuss their theoretical and practical implications. Resources for this paper are available at https://multimodality-language-disparity.github.io/.

  • 5 authors
·
May 19, 2022

Understanding writing style in social media with a supervised contrastively pre-trained transformer

Online Social Networks serve as fertile ground for harmful behavior, ranging from hate speech to the dissemination of disinformation. Malicious actors now have unprecedented freedom to misbehave, leading to severe societal unrest and dire consequences, as exemplified by events such as the Capitol assault during the US presidential election and the Antivaxx movement during the COVID-19 pandemic. Understanding online language has become more pressing than ever. While existing works predominantly focus on content analysis, we aim to shift the focus towards understanding harmful behaviors by relating content to their respective authors. Numerous novel approaches attempt to learn the stylistic features of authors in texts, but many of these approaches are constrained by small datasets or sub-optimal training losses. To overcome these limitations, we introduce the Style Transformer for Authorship Representations (STAR), trained on a large corpus derived from public sources of 4.5 x 10^6 authored texts involving 70k heterogeneous authors. Our model leverages Supervised Contrastive Loss to teach the model to minimize the distance between texts authored by the same individual. This author pretext pre-training task yields competitive performance at zero-shot with PAN challenges on attribution and clustering. Additionally, we attain promising results on PAN verification challenges using a single dense layer, with our model serving as an embedding encoder. Finally, we present results from our test partition on Reddit. Using a support base of 8 documents of 512 tokens, we can discern authors from sets of up to 1616 authors with at least 80\% accuracy. We share our pre-trained model at huggingface (https://huggingface.co/AIDA-UPM/star) and our code is available at (https://github.com/jahuerta92/star)

  • 3 authors
·
Oct 17, 2023

Predicting the Flu from Instagram

Conventional surveillance systems for monitoring infectious diseases, such as influenza, face challenges due to shortage of skilled healthcare professionals, remoteness of communities and absence of communication infrastructures. Internet-based approaches for surveillance are appealing logistically as well as economically. Search engine queries and Twitter have been the primarily used data sources in such approaches. The aim of this study is to assess the predictive power of an alternative data source, Instagram. By using 317 weeks of publicly available data from Instagram, we trained several machine learning algorithms to both nowcast and forecast the number of official influenza-like illness incidents in Finland where population-wide official statistics about the weekly incidents are available. In addition to date and hashtag count features of online posts, we were able to utilize also the visual content of the posted images with the help of deep convolutional neural networks. Our best nowcasting model reached a mean absolute error of 11.33 incidents per week and a correlation coefficient of 0.963 on the test data. Forecasting models for predicting 1 week and 2 weeks ahead showed statistical significance as well by reaching correlation coefficients of 0.903 and 0.862, respectively. This study demonstrates how social media and in particular, digital photographs shared in them, can be a valuable source of information for the field of infodemiology.

  • 2 authors
·
Nov 27, 2018

From Skepticism to Acceptance: Simulating the Attitude Dynamics Toward Fake News

In the digital era, the rapid propagation of fake news and rumors via social networks brings notable societal challenges and impacts public opinion regulation. Traditional fake news modeling typically forecasts the general popularity trends of different groups or numerically represents opinions shift. However, these methods often oversimplify real-world complexities and overlook the rich semantic information of news text. The advent of large language models (LLMs) provides the possibility of modeling subtle dynamics of opinion. Consequently, in this work, we introduce a Fake news Propagation Simulation framework (FPS) based on LLM, which studies the trends and control of fake news propagation in detail. Specifically, each agent in the simulation represents an individual with a distinct personality. They are equipped with both short-term and long-term memory, as well as a reflective mechanism to mimic human-like thinking. Every day, they engage in random opinion exchanges, reflect on their thinking, and update their opinions. Our simulation results uncover patterns in fake news propagation related to topic relevance, and individual traits, aligning with real-world observations. Additionally, we evaluate various intervention strategies and demonstrate that early and appropriately frequent interventions strike a balance between governance cost and effectiveness, offering valuable insights for practical applications. Our study underscores the significant utility and potential of LLMs in combating fake news.

  • 6 authors
·
Mar 14, 2024

Benchmarking for Public Health Surveillance tasks on Social Media with a Domain-Specific Pretrained Language Model

A user-generated text on social media enables health workers to keep track of information, identify possible outbreaks, forecast disease trends, monitor emergency cases, and ascertain disease awareness and response to official health correspondence. This exchange of health information on social media has been regarded as an attempt to enhance public health surveillance (PHS). Despite its potential, the technology is still in its early stages and is not ready for widespread application. Advancements in pretrained language models (PLMs) have facilitated the development of several domain-specific PLMs and a variety of downstream applications. However, there are no PLMs for social media tasks involving PHS. We present and release PHS-BERT, a transformer-based PLM, to identify tasks related to public health surveillance on social media. We compared and benchmarked the performance of PHS-BERT on 25 datasets from different social medial platforms related to 7 different PHS tasks. Compared with existing PLMs that are mainly evaluated on limited tasks, PHS-BERT achieved state-of-the-art performance on all 25 tested datasets, showing that our PLM is robust and generalizable in the common PHS tasks. By making PHS-BERT available, we aim to facilitate the community to reduce the computational cost and introduce new baselines for future works across various PHS-related tasks.

  • 5 authors
·
Apr 9, 2022

The Role of the Crowd in Countering Misinformation: A Case Study of the COVID-19 Infodemic

Fact checking by professionals is viewed as a vital defense in the fight against misinformation.While fact checking is important and its impact has been significant, fact checks could have limited visibility and may not reach the intended audience, such as those deeply embedded in polarized communities. Concerned citizens (i.e., the crowd), who are users of the platforms where misinformation appears, can play a crucial role in disseminating fact-checking information and in countering the spread of misinformation. To explore if this is the case, we conduct a data-driven study of misinformation on the Twitter platform, focusing on tweets related to the COVID-19 pandemic, analyzing the spread of misinformation, professional fact checks, and the crowd response to popular misleading claims about COVID-19. In this work, we curate a dataset of false claims and statements that seek to challenge or refute them. We train a classifier to create a novel dataset of 155,468 COVID-19-related tweets, containing 33,237 false claims and 33,413 refuting arguments.Our findings show that professional fact-checking tweets have limited volume and reach. In contrast, we observe that the surge in misinformation tweets results in a quick response and a corresponding increase in tweets that refute such misinformation. More importantly, we find contrasting differences in the way the crowd refutes tweets, some tweets appear to be opinions, while others contain concrete evidence, such as a link to a reputed source. Our work provides insights into how misinformation is organically countered in social platforms by some of their users and the role they play in amplifying professional fact checks.These insights could lead to development of tools and mechanisms that can empower concerned citizens in combating misinformation. The code and data can be found in http://claws.cc.gatech.edu/covid_counter_misinformation.html.

  • 5 authors
·
Nov 11, 2020

Theme-driven Keyphrase Extraction to Analyze Social Media Discourse

Social media platforms are vital resources for sharing self-reported health experiences, offering rich data on various health topics. Despite advancements in Natural Language Processing (NLP) enabling large-scale social media data analysis, a gap remains in applying keyphrase extraction to health-related content. Keyphrase extraction is used to identify salient concepts in social media discourse without being constrained by predefined entity classes. This paper introduces a theme-driven keyphrase extraction framework tailored for social media, a pioneering approach designed to capture clinically relevant keyphrases from user-generated health texts. Themes are defined as broad categories determined by the objectives of the extraction task. We formulate this novel task of theme-driven keyphrase extraction and demonstrate its potential for efficiently mining social media text for the use case of treatment for opioid use disorder. This paper leverages qualitative and quantitative analysis to demonstrate the feasibility of extracting actionable insights from social media data and efficiently extracting keyphrases using minimally supervised NLP models. Our contributions include the development of a novel data collection and curation framework for theme-driven keyphrase extraction and the creation of MOUD-Keyphrase, the first dataset of its kind comprising human-annotated keyphrases from a Reddit community. We also identify the scope of minimally supervised NLP models to extract keyphrases from social media data efficiently. Lastly, we found that a large language model (ChatGPT) outperforms unsupervised keyphrase extraction models, and we evaluate its efficacy in this task.

  • 5 authors
·
Jan 26, 2023

MentalGLM Series: Explainable Large Language Models for Mental Health Analysis on Chinese Social Media

As the prevalence of mental health challenges, social media has emerged as a key platform for individuals to express their emotions.Deep learning tends to be a promising solution for analyzing mental health on social media. However, black box models are often inflexible when switching between tasks, and their results typically lack explanations. With the rise of large language models (LLMs), their flexibility has introduced new approaches to the field. Also due to the generative nature, they can be prompted to explain decision-making processes. However, their performance on complex psychological analysis still lags behind deep learning. In this paper, we introduce the first multi-task Chinese Social Media Interpretable Mental Health Instructions (C-IMHI) dataset, consisting of 9K samples, which has been quality-controlled and manually validated. We also propose MentalGLM series models, the first open-source LLMs designed for explainable mental health analysis targeting Chinese social media, trained on a corpus of 50K instructions. The proposed models were evaluated on three downstream tasks and achieved better or comparable performance compared to deep learning models, generalized LLMs, and task fine-tuned LLMs. We validated a portion of the generated decision explanations with experts, showing promising results. We also evaluated the proposed models on a clinical dataset, where they outperformed other LLMs, indicating their potential applicability in the clinical field. Our models show strong performance, validated across tasks and perspectives. The decision explanations enhance usability and facilitate better understanding and practical application of the models. Both the constructed dataset and the models are publicly available via: https://github.com/zwzzzQAQ/MentalGLM.

  • 10 authors
·
Oct 14, 2024

Profiling News Media for Factuality and Bias Using LLMs and the Fact-Checking Methodology of Human Experts

In an age characterized by the proliferation of mis- and disinformation online, it is critical to empower readers to understand the content they are reading. Important efforts in this direction rely on manual or automatic fact-checking, which can be challenging for emerging claims with limited information. Such scenarios can be handled by assessing the reliability and the political bias of the source of the claim, i.e., characterizing entire news outlets rather than individual claims or articles. This is an important but understudied research direction. While prior work has looked into linguistic and social contexts, we do not analyze individual articles or information in social media. Instead, we propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet. Specifically, we design a variety of prompts based on these criteria and elicit responses from large language models (LLMs), which we aggregate to make predictions. In addition to demonstrating sizable improvements over strong baselines via extensive experiments with multiple LLMs, we provide an in-depth error analysis of the effect of media popularity and region on model performance. Further, we conduct an ablation study to highlight the key components of our dataset that contribute to these improvements. To facilitate future research, we released our dataset and code at https://github.com/mbzuai-nlp/llm-media-profiling.

  • 4 authors
·
Jun 14 3

MentalLLaMA: Interpretable Mental Health Analysis on Social Media with Large Language Models

With the development of web technology, social media texts are becoming a rich source for automatic mental health analysis. As traditional discriminative methods bear the problem of low interpretability, the recent large language models have been explored for interpretable mental health analysis on social media, which aims to provide detailed explanations along with predictions. The results show that ChatGPT can generate approaching-human explanations for its correct classifications. However, LLMs still achieve unsatisfactory classification performance in a zero-shot/few-shot manner. Domain-specific finetuning is an effective solution, but faces 2 challenges: 1) lack of high-quality training data. 2) no open-source LLMs for interpretable mental health analysis were released to lower the finetuning cost. To alleviate these problems, we build the first multi-task and multi-source interpretable mental health instruction (IMHI) dataset on social media, with 105K data samples. The raw social media data are collected from 10 existing sources covering 8 mental health analysis tasks. We use expert-written few-shot prompts and collected labels to prompt ChatGPT and obtain explanations from its responses. To ensure the reliability of the explanations, we perform strict automatic and human evaluations on the correctness, consistency, and quality of generated data. Based on the IMHI dataset and LLaMA2 foundation models, we train MentalLLaMA, the first open-source LLM series for interpretable mental health analysis with instruction-following capability. We also evaluate the performance of MentalLLaMA on the IMHI evaluation benchmark with 10 test sets, where their correctness for making predictions and the quality of explanations are examined. The results show that MentalLLaMA approaches state-of-the-art discriminative methods in correctness and generates high-quality explanations.

  • 5 authors
·
Sep 24, 2023

Unveiling the Hidden Agenda: Biases in News Reporting and Consumption

One of the most pressing challenges in the digital media landscape is understanding the impact of biases on the news sources that people rely on for information. Biased news can have significant and far-reaching consequences, influencing our perspectives and shaping the decisions we make, potentially endangering the public and individual well-being. With the advent of the Internet and social media, discussions have moved online, making it easier to disseminate both accurate and inaccurate information. To combat mis- and dis-information, many have begun to evaluate the reliability of news sources, but these assessments often only examine the validity of the news (narrative bias) and neglect other types of biases, such as the deliberate selection of events to favor certain perspectives (selection bias). This paper aims to investigate these biases in various news sources and their correlation with third-party evaluations of reliability, engagement, and online audiences. Using machine learning to classify content, we build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases. Our results show that the source classification provided by third-party organizations closely follows the narrative bias dimension, while it is much less accurate in identifying the selection bias. Moreover, we found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions. Lastly, analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.

  • 5 authors
·
Jan 14, 2023

GPT-4V(ision) as A Social Media Analysis Engine

Recent research has offered insights into the extraordinary capabilities of Large Multimodal Models (LMMs) in various general vision and language tasks. There is growing interest in how LMMs perform in more specialized domains. Social media content, inherently multimodal, blends text, images, videos, and sometimes audio. Understanding social multimedia content remains a challenging problem for contemporary machine learning frameworks. In this paper, we explore GPT-4V(ision)'s capabilities for social multimedia analysis. We select five representative tasks, including sentiment analysis, hate speech detection, fake news identification, demographic inference, and political ideology detection, to evaluate GPT-4V. Our investigation begins with a preliminary quantitative analysis for each task using existing benchmark datasets, followed by a careful review of the results and a selection of qualitative samples that illustrate GPT-4V's potential in understanding multimodal social media content. GPT-4V demonstrates remarkable efficacy in these tasks, showcasing strengths such as joint understanding of image-text pairs, contextual and cultural awareness, and extensive commonsense knowledge. Despite the overall impressive capacity of GPT-4V in the social media domain, there remain notable challenges. GPT-4V struggles with tasks involving multilingual social multimedia comprehension and has difficulties in generalizing to the latest trends in social media. Additionally, it exhibits a tendency to generate erroneous information in the context of evolving celebrity and politician knowledge, reflecting the known hallucination problem. The insights gleaned from our findings underscore a promising future for LMMs in enhancing our comprehension of social media content and its users through the analysis of multimodal information.

  • 9 authors
·
Nov 13, 2023

GOAT-Bench: Safety Insights to Large Multimodal Models through Meme-Based Social Abuse

The exponential growth of social media has profoundly transformed how information is created, disseminated, and absorbed, exceeding any precedent in the digital age. Regrettably, this explosion has also spawned a significant increase in the online abuse of memes. Evaluating the negative impact of memes is notably challenging, owing to their often subtle and implicit meanings, which are not directly conveyed through the overt text and imagery. In light of this, large multimodal models (LMMs) have emerged as a focal point of interest due to their remarkable capabilities in handling diverse multimodal tasks. In response to this development, our paper aims to thoroughly examine the capacity of various LMMs (e.g. GPT-4V) to discern and respond to the nuanced aspects of social abuse manifested in memes. We introduce the comprehensive meme benchmark, GOAT-Bench, comprising over 6K varied memes encapsulating themes such as implicit hate speech, sexism, and cyberbullying, etc. Utilizing GOAT-Bench, we delve into the ability of LMMs to accurately assess hatefulness, misogyny, offensiveness, sarcasm, and harmful content. Our extensive experiments across a range of LMMs reveal that current models still exhibit a deficiency in safety awareness, showing insensitivity to various forms of implicit abuse. We posit that this shortfall represents a critical impediment to the realization of safe artificial intelligence. The GOAT-Bench and accompanying resources are publicly accessible at https://goatlmm.github.io/, contributing to ongoing research in this vital field.

  • 5 authors
·
Jan 2, 2024

XFacta: Contemporary, Real-World Dataset and Evaluation for Multimodal Misinformation Detection with Multimodal LLMs

The rapid spread of multimodal misinformation on social media calls for more effective and robust detection methods. Recent advances leveraging multimodal large language models (MLLMs) have shown the potential in addressing this challenge. However, it remains unclear exactly where the bottleneck of existing approaches lies (evidence retrieval v.s. reasoning), hindering the further advances in this field. On the dataset side, existing benchmarks either contain outdated events, leading to evaluation bias due to discrepancies with contemporary social media scenarios as MLLMs can simply memorize these events, or artificially synthetic, failing to reflect real-world misinformation patterns. Additionally, it lacks comprehensive analyses of MLLM-based model design strategies. To address these issues, we introduce XFacta, a contemporary, real-world dataset that is better suited for evaluating MLLM-based detectors. We systematically evaluate various MLLM-based misinformation detection strategies, assessing models across different architectures and scales, as well as benchmarking against existing detection methods. Building on these analyses, we further enable a semi-automatic detection-in-the-loop framework that continuously updates XFacta with new content to maintain its contemporary relevance. Our analysis provides valuable insights and practices for advancing the field of multimodal misinformation detection. The code and data have been released.

  • 4 authors
·
Aug 4

MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset

Misinformation is becoming increasingly prevalent on social media and in news articles. It has become so widespread that we require algorithmic assistance utilising machine learning to detect such content. Training these machine learning models require datasets of sufficient scale, diversity and quality. However, datasets in the field of automatic misinformation detection are predominantly monolingual, include a limited amount of modalities and are not of sufficient scale and quality. Addressing this, we develop a data collection and linking system (MuMiN-trawl), to build a public misinformation graph dataset (MuMiN), containing rich social media data (tweets, replies, users, images, articles, hashtags) spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade. The dataset is made available as a heterogeneous graph via a Python package (mumin). We provide baseline results for two node classification tasks related to the veracity of a claim involving social media, and demonstrate that these are challenging tasks, with the highest macro-average F1-score being 62.55% and 61.45% for the two tasks, respectively. The MuMiN ecosystem is available at https://mumin-dataset.github.io/, including the data, documentation, tutorials and leaderboards.

  • 2 authors
·
Feb 23, 2022

FakeNewsNet: A Data Repository with News Content, Social Context and Spatialtemporal Information for Studying Fake News on Social Media

Social media has become a popular means for people to consume news. Meanwhile, it also enables the wide dissemination of fake news, i.e., news with intentionally false information, which brings significant negative effects to the society. Thus, fake news detection is attracting increasing attention. However, fake news detection is a non-trivial task, which requires multi-source information such as news content, social context, and dynamic information. First, fake news is written to fool people, which makes it difficult to detect fake news simply based on news contents. In addition to news contents, we need to explore social contexts such as user engagements and social behaviors. For example, a credible user's comment that "this is a fake news" is a strong signal for detecting fake news. Second, dynamic information such as how fake news and true news propagate and how users' opinions toward news pieces are very important for extracting useful patterns for (early) fake news detection and intervention. Thus, comprehensive datasets which contain news content, social context, and dynamic information could facilitate fake news propagation, detection, and mitigation; while to the best of our knowledge, existing datasets only contains one or two aspects. Therefore, in this paper, to facilitate fake news related researches, we provide a fake news data repository FakeNewsNet, which contains two comprehensive datasets that includes news content, social context, and dynamic information. We present a comprehensive description of datasets collection, demonstrate an exploratory analysis of this data repository from different perspectives, and discuss the benefits of FakeNewsNet for potential applications on fake news study on social media.

  • 5 authors
·
Sep 4, 2018

Characterizing Multi-Domain False News and Underlying User Effects on Chinese Weibo

False news that spreads on social media has proliferated over the past years and has led to multi-aspect threats in the real world. While there are studies of false news on specific domains (like politics or health care), little work is found comparing false news across domains. In this article, we investigate false news across nine domains on Weibo, the largest Twitter-like social media platform in China, from 2009 to 2019. The newly collected data comprise 44,728 posts in the nine domains, published by 40,215 users, and reposted over 3.4 million times. Based on the distributions and spreads of the multi-domain dataset, we observe that false news in domains that are close to daily life like health and medicine generated more posts but diffused less effectively than those in other domains like politics, and that political false news had the most effective capacity for diffusion. The widely diffused false news posts on Weibo were associated strongly with certain types of users -- by gender, age, etc. Further, these posts provoked strong emotions in the reposts and diffused further with the active engagement of false-news starters. Our findings have the potential to help design false news detection systems in suspicious news discovery, veracity prediction, and display and explanation. The comparison of the findings on Weibo with those of existing work demonstrates nuanced patterns, suggesting the need for more research on data from diverse platforms, countries, or languages to tackle the global issue of false news. The code and new anonymized dataset are available at https://github.com/ICTMCG/Characterizing-Weibo-Multi-Domain-False-News.

  • 6 authors
·
May 6, 2022

FACTIFY3M: A Benchmark for Multimodal Fact Verification with Explainability through 5W Question-Answering

Combating disinformation is one of the burning societal crises -- about 67% of the American population believes that disinformation produces a lot of uncertainty, and 10% of them knowingly propagate disinformation. Evidence shows that disinformation can manipulate democratic processes and public opinion, causing disruption in the share market, panic and anxiety in society, and even death during crises. Therefore, disinformation should be identified promptly and, if possible, mitigated. With approximately 3.2 billion images and 720,000 hours of video shared online daily on social media platforms, scalable detection of multimodal disinformation requires efficient fact verification. Despite progress in automatic text-based fact verification (e.g., FEVER, LIAR), the research community lacks substantial effort in multimodal fact verification. To address this gap, we introduce FACTIFY 3M, a dataset of 3 million samples that pushes the boundaries of the domain of fact verification via a multimodal fake news dataset, in addition to offering explainability through the concept of 5W question-answering. Salient features of the dataset include: (i) textual claims, (ii) ChatGPT-generated paraphrased claims, (iii) associated images, (iv) stable diffusion-generated additional images (i.e., visual paraphrases), (v) pixel-level image heatmap to foster image-text explainability of the claim, (vi) 5W QA pairs, and (vii) adversarial fake news stories.

  • 18 authors
·
May 22, 2023

Are We in the AI-Generated Text World Already? Quantifying and Monitoring AIGT on Social Media

Social media platforms are experiencing a growing presence of AI-Generated Texts (AIGTs). However, the misuse of AIGTs could have profound implications for public opinion, such as spreading misinformation and manipulating narratives. Despite its importance, it remains unclear how prevalent AIGTs are on social media. To address this gap, this paper aims to quantify and monitor the AIGTs on online social media platforms. We first collect a dataset (SM-D) with around 2.4M posts from 3 major social media platforms: Medium, Quora, and Reddit. Then, we construct a diverse dataset (AIGTBench) to train and evaluate AIGT detectors. AIGTBench combines popular open-source datasets and our AIGT datasets generated from social media texts by 12 LLMs, serving as a benchmark for evaluating mainstream detectors. With this setup, we identify the best-performing detector (OSM-Det). We then apply OSM-Det to SM-D to track AIGTs across social media platforms from January 2022 to October 2024, using the AI Attribution Rate (AAR) as the metric. Specifically, Medium and Quora exhibit marked increases in AAR, rising from 1.77% to 37.03% and 2.06% to 38.95%, respectively. In contrast, Reddit shows slower growth, with AAR increasing from 1.31% to 2.45% over the same period. Our further analysis indicates that AIGTs on social media differ from human-written texts across several dimensions, including linguistic patterns, topic distributions, engagement levels, and the follower distribution of authors. We envision our analysis and findings on AIGTs in social media can shed light on future research in this domain.

  • 8 authors
·
Dec 23, 2024

Explainable Depression Symptom Detection in Social Media

Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals' health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are centred on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings. We present two approaches: i) train a model to classify, and another one to explain the classifier's decision separately and ii) unify the two tasks simultaneously using a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational LLMs when using in-context learning. Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms, enhancing trust in the automated process. We evaluate our approach using recent symptom-based datasets, employing both offline and expert-in-the-loop metrics to assess the quality of the explanations generated by our models. The experimental results show that it is possible to achieve good classification results while generating interpretable symptom-based explanations.

  • 3 authors
·
Oct 20, 2023

Large-Scale, Longitudinal Study of Large Language Models During the 2024 US Election Season

The 2024 US presidential election is the first major contest to occur in the US since the popularization of large language models (LLMs). Building on lessons from earlier shifts in media (most notably social media's well studied role in targeted messaging and political polarization) this moment raises urgent questions about how LLMs may shape the information ecosystem and influence political discourse. While platforms have announced some election safeguards, how well they work in practice remains unclear. Against this backdrop, we conduct a large-scale, longitudinal study of 12 models, queried using a structured survey with over 12,000 questions on a near-daily cadence from July through November 2024. Our design systematically varies content and format, resulting in a rich dataset that enables analyses of the models' behavior over time (e.g., across model updates), sensitivity to steering, responsiveness to instructions, and election-related knowledge and "beliefs." In the latter half of our work, we perform four analyses of the dataset that (i) study the longitudinal variation of model behavior during election season, (ii) illustrate the sensitivity of election-related responses to demographic steering, (iii) interrogate the models' beliefs about candidates' attributes, and (iv) reveal the models' implicit predictions of the election outcome. To facilitate future evaluations of LLMs in electoral contexts, we detail our methodology, from question generation to the querying pipeline and third-party tooling. We also publicly release our dataset at https://huggingface.co/datasets/sarahcen/llm-election-data-2024

  • 7 authors
·
Sep 22