- On Signs of eigenvalues of Modular forms satisfying Ramanujan Conjecture Let F in S_{k_1}(Gamma^{(2)}(N_1)) and G in S_{k_2}(Gamma^{(2)}(N_2)) be two Siegel cusp forms over the congruence subgroups Gamma^{(2)}(N_1) and Gamma^{(2)}(N_2) respectively. Assume that they are Hecke eigenforms in different eigenspaces and satisfy the Generalized Ramanujan Conjecture. Let lambda_F(p) denote the eigenvalue of F with respect to the Hecke operator T(p). In this article, we compute a lower bound for the density of the set of primes, { p : lambda_F(p) lambda_G(p) < 0 }. 1 authors · Dec 12, 2024
- Elementary Proofs of Recent Congruences for Overpartitions Wherein Non-Overlined Parts are Not Divisible by 6 We define R_l^*(n) as the number of overpartitions of n in which non-overlined parts are not divisible by l. In a recent work, Nath, Saikia, and the second author established several families of congruences for R_l^*(n), with particular focus on the cases l=6 and l=8. In the concluding remarks of their paper, they conjectured that R_6^*(n) satisfies an infinite family of congruences modulo 128. In this paper, we confirm their conjectures using elementary methods. Additionally, we provide elementary proofs of two congruences for R_6^*(n) previously proven via the machinery of modular forms by Alanazi, Munagi, and Saikia. 3 authors · Aug 5
- Class Numbers and Pell's Equation x^2 + 105y^2 = z^2 Two well-studied Diophantine equations are those of Pythagorean triples and elliptic curves, for the first we have a parametrization through rational points on the unit circle, and for the second we have a structure theorem for the group of rational solutions. Recently, Yekutieli discussed a connection between these two problems, and described the group structure of Pythagorean triples and the number of triples for a given hypotenuse. In arXiv:2112.03663 we generalized these methods and results to Pell's equation. We find a similar group structure and count on the number of solutions for a given z to x^2 + Dy^2 = z^2 when D is 1 or 2 modulo 4 and the class group of Q[-D] is a free Z_2 module, which always happens if the class number is at most 2. In this paper, we discuss the main results of arXiv:2112.03663 using some concrete examples in the case of D=105. 4 authors · Mar 30, 2022
- On the Hasse principle for divisibility in elliptic curves Let p be a prime number and n a positive integer. Let E be an elliptic curve defined over a number field k. It is known that the local-global divisibility by p holds in E/k, but for powers of p^n counterexamples may appear. The validity or the failing of the Hasse principle depends on the elliptic curve E and the field k and, consequently, on the group Gal(k(E[p^n])/k). For which kind of these groups does the principle hold? For which of them can we find a counterexample? The answer to these questions was known for n=1,2, but for ngeq 3 they were still open. We show some conditions on the generators of Gal(k(E[p^n])/k) implying an affirmative answer to the local-global divisibility by p^n in E over k, for every ngeq 2. We also prove that these conditions are necessary by producing counterexamples in the case when they do not hold. These last results generalize to every power p^n, a result obtained by Ranieri for n=2. 2 authors · Nov 3
- On cusp holonomies in strictly convex projective geometry We give a complete characterization of the holonomies of strictly convex cusps and of round cusps in convex projective geometry. We build families of generalized cusps of non-maximal rank associated to each strictly convex or round cusp. We also extend Ballas-Cooper-Leitner's definition of generalized cusp to allow for virtually solvable fundamental group, and we produce the first such example with non-virtually nilpotent fundamental group. Along with a companion paper, this allows to build strictly convex cusps and generalized cusps whose fundamental group is any finitely generated virtually nilpotent group. This also has interesting consequences for the theory of relatively Anosov representations. 1 authors · Nov 28
- A Group with Exactly One Noncommutator The question of whether there exists a finite group of order at least three in which every element except one is a commutator has remained unresolved in group theory. In this article, we address this open problem by developing an algorithmic approach that leverages several group theoretic properties of such groups. Specifically, we utilize a result of Frobenius and various necessary properties of such groups, combined with Plesken and Holt's extensive enumeration of finite perfect groups, to systematically examine all finite groups up to a certain order for the desired property. The computational core of our work is implemented using the computer system GAP (Groups, Algorithms, and Programming). We discover two nonisomorphic groups of order 368,640 that exhibit the desired property. Our investigation also establishes that this order is the minimum order for such a group to exist. As a result, this study provides a positive answer to Problem 17.76 in the Kourovka Notebook. In addition to the algorithmic framework, this paper provides a structural description of one of the two groups found. 2 authors · Nov 1
- Cusps and Commensurability Classes of Hyperbolic 4-Manifolds There are six orientable, compact, flat 3-manifolds that can occur as cusp cross-sections of hyperbolic 4-manifolds. This paper provides criteria for exactly when a given commensurability class of arithmetic hyperbolic 4-manifolds contains a representative with a given cusp type. In particular, for three of the six cusp types, we provide infinitely many examples of commensurability classes that contain no manifolds with cusps of the given type; no such examples were previously known for any cusp type. 1 authors · Sep 24, 2021
- Critical groups and partitions of finite groups We define a class of finite groups based on the properties of the closed twins of their power graphs and study the structure of those groups. As a byproduct, we obtain results about finite groups admitting a partition by cyclic subgroups. 2 authors · Dec 16, 2024
- Fixed point conditions for non-coprime actions In the setting of finite groups, suppose J acts on N via automorphisms so that the induced semidirect product Nrtimes J acts on some non-empty set Omega, with N acting transitively. Glauberman proved that if the orders of J and N are coprime, then J fixes a point in Omega. We consider the non-coprime case and show that if N is abelian and a Sylow p-subgroup of J fixes a point in Omega for each prime p, then J fixes a point in Omega. We also show that if N is nilpotent, Nrtimes J is supersoluble, and a Sylow p-subgroup of J fixes a point in Omega for each prime p, then J fixes a point in Omega. 1 authors · Aug 23, 2023
- An addendum on the Mathieu Conjecture for SU(N), Sp(N) and G_2 In this paper, we sharpen results obtained by the author in 2023. The new results reduce the Mathieu Conjecture on SU(N) (formulated for all compact connected Lie groups by O. Mathieu in 1997) to a conjecture involving only functions on R^ntimes (S^1)^m with n,m non-negative integers instead of involving functions on R^ntimes (S^1setminus{1})^m. The proofs rely on a more recent work of the author (2024) and a specific KAK decomposition. Finally, with these results we can also improve the results on the groups Sp(N) and G_2 in the latter paper, since they relied on the construction introduced in the 2023 paper. 1 authors · Apr 2
- Rational Spherical Triangles A rational spherical triangle is a triangle on the unit sphere such that the lengths of its three sides and its area are rational multiples of π. Little and Coxeter have given examples of rational spherical triangles in 1980s. In this work, we are interested in determining all the rational spherical triangles. We introduce a conjecture on the solutions to a trigonometric Diophantine equation. An implication of the conjecture is that the only rational spherical triangles are the ones given by Little and Coxeter. We prove some partial results towards the conjecture. 1 authors · Dec 4, 2023
- Models of Abelian varieties over valued fields, using model theory Given an elliptic curve E over a perfect defectless henselian valued field (F,val) with perfect residue field k_F and valuation ring O_F, there exists an integral separated smooth group scheme E over O_F with Etimes_{Spec O_F}Spec Fcong E. If char(k_F)neq 2,3 then one can be found over O_{F^{alg}} such that the definable group E(O) is the maximal generically stable subgroup of E. We also give some partial results on general Abelian varieties over F. The construction of E is by means of generating a birational group law over O_F by the aid of a generically stable generic type of a definable subgroup of E. 1 authors · Mar 28, 2023
- New infinite families in the stable homotopy groups of spheres We identify seven new 192-periodic infinite families of elements in the 2-primary stable homotopy groups of spheres. Although their Hurewicz image is trivial for topological modular forms, they remain nontrivial after T(2)- as well as K(2)-localization. We also obtain new information about 2-torsion and 2-divisibility of some of the previously known 192-periodic infinite families in the stable stems. 3 authors · Apr 15, 2024
- Counting Imaginary Quadratic Fields with an Ideal Class Group of 5-rank at least 2 We prove that there are ggX^{frac{1{3}}}{(log X)^2} imaginary quadratic fields k with discriminant |d_k|leq X and an ideal class group of 5-rank at least 2. This improves a result of Byeon, who proved the lower bound gg X^{1{4}} in the same setting. We use a method of Howe, Leprévost, and Poonen to construct a genus 2 curve C over Q such that C has a rational Weierstrass point and the Jacobian of C has a rational torsion subgroup of 5-rank 2. We deduce the main result from the existence of the curve C and a quantitative result of Kulkarni and the second author. 3 authors · Feb 2
- Certain residual properties of HNN-extensions with normal associated subgroups Let E be the HNN-extension of a group B with subgroups H and K associated according to an isomorphism varphicolon H to K. Suppose that H and K are normal in B and (H cap K)varphi = H cap K. Under these assumptions, we prove necessary and sufficient conditions for E to be residually a C-group, where C is a class of groups closed under taking subgroups, quotient groups, and unrestricted wreath products. Among other things, these conditions give new facts on the residual finiteness and the residual p-finiteness of the group E. 2 authors · Apr 30
- The generalized roof F(1,2,n): Hodge structures and derived categories We consider generalized homogeneous roofs, i.e. quotients of simply connected, semisimple Lie groups by a parabolic subgroup, which admit two projective bundle structures. Given a general hyperplane section on such a variety, we consider the zero loci of its pushforwards along the projective bundle structures and we discuss their properties at the level of Hodge structures. In the case of the flag variety F(1,2,n) with its projections to P^{n-1} and G(2, n), we construct a derived embedding of the relevant zero loci by methods based on the study of B-brane categories in the context of a gauged linear sigma model. 4 authors · Oct 20, 2021
- A proof of van der Waerden's Conjecture on random Galois groups of polynomials Of the (2H+1)^n monic integer polynomials f(x)=x^n+a_1 x^{n-1}+cdots+a_n with max{|a_1|,ldots,|a_n|}leq H, how many have associated Galois group that is not the full symmetric group S_n? There are clearly gg H^{n-1} such polynomials, as may be obtained by setting a_n=0. In 1936, van der Waerden conjectured that O(H^{n-1}) should in fact also be the correct upper bound for the count of such polynomials. The conjecture has been known previously for degrees nleq 4, due to work of van der Waerden and Chow and Dietmann. In this expository article, we outline a proof of van der Waerden's Conjecture for all degrees n. 1 authors · Oct 3, 2024
- CayleyPy Growth: Efficient growth computations and hundreds of new conjectures on Cayley graphs (Brief version) This is the third paper of the CayleyPy project applying artificial intelligence to problems in group theory. We announce the first public release of CayleyPy, an open source Python library for computations with Cayley and Schreier graphs. Compared with systems such as GAP and Sage, CayleyPy handles much larger graphs and performs several orders of magnitude faster. Using CayleyPy we obtained about 200 new conjectures on Cayley and Schreier graphs, focused on diameters and growth. For many Cayley graphs of symmetric groups Sn we observe quasi polynomial diameter formulas: a small set of quadratic or linear polynomials indexed by n mod s. We conjecture that this is a general phenomenon, giving efficient diameter computation despite the problem being NP hard. We propose a refinement of the Babai type conjecture on diameters of Sn: n^2/2 + 4n upper bounds in the undirected case, compared to previous O(n^2) bounds. We also provide explicit generator families, related to involutions in a square with whiskers pattern, conjectured to maximize the diameter; search confirms this for all n up to 15. We further conjecture an answer to a question posed by V M Glushkov in 1968 on directed Cayley graphs generated by a cyclic shift and a transposition. For nilpotent groups we conjecture an improvement of J S Ellenberg's results on upper unitriangular matrices over Z/pZ, showing linear dependence of diameter on p. Moreover. Some conjectures are LLM friendly, naturally stated as sorting problems verifiable by algorithms or Python code. To benchmark path finding we created more than 10 Kaggle datasets. CayleyPy works with arbitrary permutation or matrix groups and includes over 100 predefined generators. Our growth computation code outperforms GAP and Sage up to 1000 times in speed and size. 49 authors · Sep 23
- Actions of nilpotent groups on nilpotent groups For finite nilpotent groups J and N, suppose J acts on N via automorphisms. We exhibit a decomposition of the first cohomology set in terms of the first cohomologies of the Sylow p-subgroups of J that mirrors the primary decomposition of H^1(J,N) for abelian N. We then show that if N rtimes J acts on some non-empty set Omega, where the action of N is transitive and for each prime p a Sylow p-subgroup of J fixes an element of Omega, then J fixes an element of Omega. 1 authors · Jan 25
- Flat matrix models for quantum permutation groups We study the matrix models pi:C(S_N^+)to M_N(C(X)) which are flat, in the sense that the standard generators of C(S_N^+) are mapped to rank 1 projections. Our first result is a generalization of the Pauli matrix construction at N=4, using finite groups and 2-cocycles. Our second result is the construction of a universal representation of C(S_N^+), inspired from the Sinkhorn algorithm, that we conjecture to be inner faithful. 2 authors · Feb 14, 2016
1 Galois Theory These are the notes for an undergraduate course at the University of Edinburgh, 2021-2023. Assuming basic knowledge of ring theory, group theory and linear algebra, the notes lay out the theory of field extensions and their Galois groups, up to and including the fundamental theorem of Galois theory. Also included are a section on ruler and compass constructions, a proof that solvable polynomials have solvable Galois groups, and the classification of finite fields. 1 authors · Aug 14, 2024
- Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces Let X be one of the 28 Atkin-Lehner quotients of a curve X_0(N) such that X has genus 2 and its Jacobian variety J is absolutely simple. We show that the Shafarevich-Tate group of J/Q is trivial. This verifies the strong BSD conjecture for J. 2 authors · Jul 1, 2021
- Lie Group Decompositions for Equivariant Neural Networks Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals. 2 authors · Oct 17, 2023
- Chiseling: Powerful and Valid Subgroup Selection via Interactive Machine Learning In regression and causal inference, controlled subgroup selection aims to identify, with inferential guarantees, a subgroup (defined as a subset of the covariate space) on which the average response or treatment effect is above a given threshold. E.g., in a clinical trial, it may be of interest to find a subgroup with a positive average treatment effect. However, existing methods either lack inferential guarantees, heavily restrict the search for the subgroup, or sacrifice efficiency by naive data splitting. We propose a novel framework called chiseling that allows the analyst to interactively refine and test a candidate subgroup by iteratively shrinking it. The sole restriction is that the shrinkage direction only depends on the points outside the current subgroup, but otherwise the analyst may leverage any prior information or machine learning algorithm. Despite this flexibility, chiseling controls the probability that the discovered subgroup is null (e.g., has a non-positive average treatment effect) under minimal assumptions: for example, in randomized experiments, this inferential validity guarantee holds under only bounded moment conditions. When applied to a variety of simulated datasets and a real survey experiment, chiseling identifies substantially better subgroups than existing methods with inferential guarantees. 3 authors · Sep 23
- On Two Orderings of Lattice Paths The Markov numbers are positive integers appearing as solutions to the Diophantine equation x^2 + y^2 + z^2 = 3xyz. These numbers are very well-studied and have many combinatorial properties, as well as being the source of the long-standing unicity conjecture. In 2018, Canakc{\i} and Schiffler showed that the Markov number m_{a{b}} is the number of perfect matchings of a certain snake graph corresponding to the Christoffel path from (0,0) to (a,b). Based on this correspondence, Schiffler in 2023 introduced two orderings on lattice paths. For any path omega, associate a snake graph G(omega) and a continued fraction g(omega). The ordering <_M is given by the number of perfect matchings on G(omega), and the ordering <_L is given by the Lagrange number of g(omega). In this work, we settle two conjectures of Schiffler. First, we show that the path omega(a,b) = RRcdots R UU cdots U is the unique maximum over all lattice paths from (0,0) to (a,b) with respect to both orderings <_M and <_L. We then use this result to prove that sup L(omega) over all lattice paths is exactly 1+sqrt5. 2 authors · Oct 25, 2023
- Einstein metrics on aligned homogeneous spaces with two factors Given two homogeneous spaces of the form G_1/K and G_2/K, where G_1 and G_2 are compact simple Lie groups, we study the existence problem for G_1xG_2-invariant Einstein metrics on the homogeneous space M=G_1xG_2/K. For the large subclass C of spaces having three pairwise inequivalent isotropy irreducible summands (12 infinite families and 70 sporadic examples), we obtain that existence is equivalent to the existence of a real root for certain quartic polynomial depending on the dimensions and two Killing constants, which allows a full classification and the possibility to weigh the existence and non-existence pieces of C. 2 authors · Aug 1, 2024
- On two problems about isogenies of elliptic curves over finite fields Isogenies occur throughout the theory of elliptic curves. Recently, the cryptographic protocols based on isogenies are considered as candidates of quantum-resistant cryptographic protocols. Given two elliptic curves E_1, E_2 defined over a finite field k with the same trace, there is a nonconstant isogeny beta from E_2 to E_1 defined over k. This study gives out the index of Hom_{it k}(it E_{rm 1},E_{rm 2})beta as a left ideal in End_{it k}(it E_{rm 2}) and figures out the correspondence between isogenies and kernel ideals. In addition, some results about the non-trivial minimal degree of isogenies between the two elliptic curves are also provided. 3 authors · Dec 31, 2019
- Abundance of progression in large set for non commutative semigroup The notion of abundance of certain type of configuration in certain large sets was first proved by Furstenberg and Glazner in 1998. After that many author investigate abundance of different types of configurations in different types of large sets. Hindman, Hosseini, Strauss and Tootkaboni recently introduced another notion of large sets called CR sets. Then Debnath and De proved abundance of arithmetic progression in CR sets for commutative semigroups. In the present article we investigate abundance of progressions in for non-commutative semigroups. 1 authors · Dec 13, 2023