new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

Fat Polygonal Partitions with Applications to Visualization and Embeddings

Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

  • 3 authors
·
Sep 9, 2010

View-based Explanations for Graph Neural Networks

Generating explanations for graph neural networks (GNNs) has been studied to understand their behavior in analytical tasks such as graph classification. Existing approaches aim to understand the overall results of GNNs rather than providing explanations for specific class labels of interest, and may return explanation structures that are hard to access, nor directly queryable.We propose GVEX, a novel paradigm that generates Graph Views for EXplanation. (1) We design a two-tier explanation structure called explanation views. An explanation view consists of a set of graph patterns and a set of induced explanation subgraphs. Given a database G of multiple graphs and a specific class label l assigned by a GNN-based classifier M, it concisely describes the fraction of G that best explains why l is assigned by M. (2) We propose quality measures and formulate an optimization problem to compute optimal explanation views for GNN explanation. We show that the problem is Σ^2_P-hard. (3) We present two algorithms. The first one follows an explain-and-summarize strategy that first generates high-quality explanation subgraphs which best explain GNNs in terms of feature influence maximization, and then performs a summarization step to generate patterns. We show that this strategy provides an approximation ratio of 1/2. Our second algorithm performs a single-pass to an input node stream in batches to incrementally maintain explanation views, having an anytime quality guarantee of 1/4 approximation. Using real-world benchmark data, we experimentally demonstrate the effectiveness, efficiency, and scalability of GVEX. Through case studies, we showcase the practical applications of GVEX.

  • 6 authors
·
Jan 4, 2024

Offline Planning and Online Learning under Recovering Rewards

Motivated by emerging applications such as live-streaming e-commerce, promotions and recommendations, we introduce and solve a general class of non-stationary multi-armed bandit problems that have the following two features: (i) the decision maker can pull and collect rewards from up to K,(ge 1) out of N different arms in each time period; (ii) the expected reward of an arm immediately drops after it is pulled, and then non-parametrically recovers as the arm's idle time increases. With the objective of maximizing the expected cumulative reward over T time periods, we design a class of ``Purely Periodic Policies'' that jointly set a period to pull each arm. For the proposed policies, we prove performance guarantees for both the offline problem and the online problems. For the offline problem when all model parameters are known, the proposed periodic policy obtains an approximation ratio that is at the order of 1-mathcal O(1/K), which is asymptotically optimal when K grows to infinity. For the online problem when the model parameters are unknown and need to be dynamically learned, we integrate the offline periodic policy with the upper confidence bound procedure to construct on online policy. The proposed online policy is proved to approximately have mathcal O(NT) regret against the offline benchmark. Our framework and policy design may shed light on broader offline planning and online learning applications with non-stationary and recovering rewards.

  • 3 authors
·
Jun 28, 2021

Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time

Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time.

  • 6 authors
·
May 24, 2023

MOHAF: A Multi-Objective Hierarchical Auction Framework for Scalable and Fair Resource Allocation in IoT Ecosystems

The rapid growth of Internet of Things (IoT) ecosystems has intensified the challenge of efficiently allocating heterogeneous resources in highly dynamic, distributed environments. Conventional centralized mechanisms and single-objective auction models, focusing solely on metrics such as cost minimization or revenue maximization, struggle to deliver balanced system performance. This paper proposes the Multi-Objective Hierarchical Auction Framework (MOHAF), a distributed resource allocation mechanism that jointly optimizes cost, Quality of Service (QoS), energy efficiency, and fairness. MOHAF integrates hierarchical clustering to reduce computational complexity with a greedy, submodular optimization strategy that guarantees a (1-1/e) approximation ratio. A dynamic pricing mechanism adapts in real time to resource utilization, enhancing market stability and allocation quality. Extensive experiments on the Google Cluster Data trace, comprising 3,553 requests and 888 resources, demonstrate MOHAF's superior allocation efficiency (0.263) compared to Greedy (0.185), First-Price (0.138), and Random (0.101) auctions, while achieving perfect fairness (Jain's index = 1.000). Ablation studies reveal the critical influence of cost and QoS components in sustaining balanced multi-objective outcomes. With near-linear scalability, theoretical guarantees, and robust empirical performance, MOHAF offers a practical and adaptable solution for large-scale IoT deployments, effectively reconciling efficiency, equity, and sustainability in distributed resource coordination.

  • 6 authors
·
Aug 20, 2025

Capacity Constrained Influence Maximization in Social Networks

Influence maximization (IM) aims to identify a small number of influential individuals to maximize the information spread and finds applications in various fields. It was first introduced in the context of viral marketing, where a company pays a few influencers to promote the product. However, apart from the cost factor, the capacity of individuals to consume content poses challenges for implementing IM in real-world scenarios. For example, players on online gaming platforms can only interact with a limited number of friends. In addition, we observe that in these scenarios, (i) the initial adopters of promotion are likely to be the friends of influencers rather than the influencers themselves, and (ii) existing IM solutions produce sub-par results with high computational demands. Motivated by these observations, we propose a new IM variant called capacity constrained influence maximization (CIM), which aims to select a limited number of influential friends for each initial adopter such that the promotion can reach more users. To solve CIM effectively, we design two greedy algorithms, MG-Greedy and RR-Greedy, ensuring the 1/2-approximation ratio. To improve the efficiency, we devise the scalable implementation named RR-OPIM+ with (1/2-epsilon)-approximation and near-linear running time. We extensively evaluate the performance of 9 approaches on 6 real-world networks, and our solutions outperform all competitors in terms of result quality and running time. Additionally, we deploy RR-OPIM+ to online game scenarios, which improves the baseline considerably.

  • 6 authors
·
May 31, 2023

EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation

In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.

nvidia NVIDIA
·
Oct 28, 2024 2

ECoFLaP: Efficient Coarse-to-Fine Layer-Wise Pruning for Vision-Language Models

Large Vision-Language Models (LVLMs) can understand the world comprehensively by integrating rich information from different modalities, achieving remarkable advancements on various multimodal downstream tasks. However, deploying LVLMs is often problematic due to their massive computational/energy costs and carbon consumption. Such issues make it infeasible to adopt conventional iterative global pruning, which is costly due to computing the Hessian matrix of the entire large model for sparsification. Alternatively, several studies have recently proposed layer-wise pruning approaches to avoid the expensive computation of global pruning and efficiently compress model weights according to their importance within a layer. However, they often suffer from suboptimal model compression due to their lack of a global perspective. To address this limitation in recent efficient pruning methods for large models, we propose Efficient Coarse-to-Fine LayerWise Pruning (ECoFLaP), a two-stage coarse-to-fine weight pruning approach for LVLMs. We first determine the sparsity ratios of different layers or blocks by leveraging the global importance score, which is efficiently computed based on the zeroth-order approximation of the global model gradients. Then, the model performs local layer-wise unstructured weight pruning based on globally-informed sparsity ratios. We validate our proposed method across various multimodal and unimodal models and datasets, demonstrating significant performance improvements over prevalent pruning techniques in the high-sparsity regime.

  • 3 authors
·
Oct 4, 2023

Trained Rank Pruning for Efficient Deep Neural Networks

The performance of Deep Neural Networks (DNNs) keeps elevating in recent years with increasing network depth and width. To enable DNNs on edge devices like mobile phones, researchers proposed several network compression methods including pruning, quantization and factorization. Among the factorization-based approaches, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance usually drops significantly and a sophisticated fine-tuning is required to recover accuracy. We argue that it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training. We propose Trained Rank Pruning (TRP), which iterates low rank approximation and training. TRP maintains the capacity of original network while imposes low-rank constraints during training. A stochastic sub-gradient descent optimized nuclear regularization is utilized to further encourage low rank in TRP. The TRP trained network has low-rank structure in nature, and can be approximated with negligible performance loss, eliminating fine-tuning after low rank approximation. The methods are comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression methods using low rank approximation. Code is available: https://github.com/yuhuixu1993/Trained-Rank-Pruning

  • 9 authors
·
Dec 6, 2018