new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts

Text logo design heavily relies on the creativity and expertise of professional designers, in which arranging element layouts is one of the most important procedures. However, few attention has been paid to this specific task which needs to take precise textural details and user constraints into consideration, but only on the broader tasks such as document/poster layout generation. In this paper, we propose a VLM-based framework that generates content-aware text logo layouts by integrating multi-modal inputs with user constraints, supporting a more flexible and stable layout design in real-world applications. We introduce two model techniques to reduce the computation for processing multiple glyph images simultaneously, while does not face performance degradation. To support instruction-tuning of out model, we construct two extensive text logo datasets, which are 5x more larger than the existing public dataset. Except for the geometric annotations (e.g. text masks and character recognition), we also compliment with comprehensive layout descriptions in natural language format, for more effective training to have reasoning ability when dealing with complex layouts and custom user constraints. Experimental studies demonstrate the effectiveness of our proposed model and datasets, when comparing with previous methods in various benchmarks to evaluate geometric aesthetics and human preferences. The code and datasets will be publicly available.

  • 10 authors
·
Nov 18, 2024

CogDDN: A Cognitive Demand-Driven Navigation with Decision Optimization and Dual-Process Thinking

Mobile robots are increasingly required to navigate and interact within unknown and unstructured environments to meet human demands. Demand-driven navigation (DDN) enables robots to identify and locate objects based on implicit human intent, even when object locations are unknown. However, traditional data-driven DDN methods rely on pre-collected data for model training and decision-making, limiting their generalization capability in unseen scenarios. In this paper, we propose CogDDN, a VLM-based framework that emulates the human cognitive and learning mechanisms by integrating fast and slow thinking systems and selectively identifying key objects essential to fulfilling user demands. CogDDN identifies appropriate target objects by semantically aligning detected objects with the given instructions. Furthermore, it incorporates a dual-process decision-making module, comprising a Heuristic Process for rapid, efficient decisions and an Analytic Process that analyzes past errors, accumulates them in a knowledge base, and continuously improves performance. Chain of Thought (CoT) reasoning strengthens the decision-making process. Extensive closed-loop evaluations on the AI2Thor simulator with the ProcThor dataset show that CogDDN outperforms single-view camera-only methods by 15%, demonstrating significant improvements in navigation accuracy and adaptability. The project page is available at https://yuehaohuang.github.io/CogDDN/.

  • 10 authors
·
Jul 15

Zero-Effort Image-to-Music Generation: An Interpretable RAG-based VLM Approach

Recently, Image-to-Music (I2M) generation has garnered significant attention, with potential applications in fields such as gaming, advertising, and multi-modal art creation. However, due to the ambiguous and subjective nature of I2M tasks, most end-to-end methods lack interpretability, leaving users puzzled about the generation results. Even methods based on emotion mapping face controversy, as emotion represents only a singular aspect of art. Additionally, most learning-based methods require substantial computational resources and large datasets for training, hindering accessibility for common users. To address these challenges, we propose the first Vision Language Model (VLM)-based I2M framework that offers high interpretability and low computational cost. Specifically, we utilize ABC notation to bridge the text and music modalities, enabling the VLM to generate music using natural language. We then apply multi-modal Retrieval-Augmented Generation (RAG) and self-refinement techniques to allow the VLM to produce high-quality music without external training. Furthermore, we leverage the generated motivations in text and the attention maps from the VLM to provide explanations for the generated results in both text and image modalities. To validate our method, we conduct both human studies and machine evaluations, where our method outperforms others in terms of music quality and music-image consistency, indicating promising results. Our code is available at https://github.com/RS2002/Image2Music .

  • 3 authors
·
Sep 26

Mobile-R1: Towards Interactive Reinforcement Learning for VLM-Based Mobile Agent via Task-Level Rewards

Vision-language model-based mobile agents have gained the ability to not only understand complex instructions and mobile screenshots, but also optimize their action outputs via thinking and reasoning, benefiting from reinforcement learning, such as Group Relative Policy Optimization (GRPO). However, existing research centers on offline reinforcement learning training or online optimization using action-level rewards, which limits the agent's dynamic interaction with the environment. This often results in agents settling into local optima, thereby weakening their ability for exploration and error action correction. To address these challenges, we introduce an approach called Mobile-R1, which employs interactive multi-turn reinforcement learning with task-level rewards for mobile agents. Our training framework consists of three stages: initial format finetuning, single-step online training via action-level reward, followed by online training via task-level reward based on multi-turn trajectories. This strategy is designed to enhance the exploration and error correction capabilities of Mobile-R1, leading to significant performance improvements. Moreover, we have collected a dataset covering 28 Chinese applications with 24,521 high-quality manual annotations and established a new benchmark with 500 trajectories. We will open source all resources, including the dataset, benchmark, model weight, and codes: https://mobile-r1.github.io/Mobile-R1/.

  • 13 authors
·
Jun 25

DriveAgent-R1: Advancing VLM-based Autonomous Driving with Active Perception and Hybrid Thinking

The advent of Vision-Language Models (VLMs) has significantly advanced end-to-end autonomous driving, demonstrating powerful reasoning abilities for high-level behavior planning tasks. However, existing methods are often constrained by a passive perception paradigm, relying solely on text-based reasoning. This passivity restricts the model's capacity to actively seek crucial visual evidence when faced with uncertainty. To address this, we introduce DriveAgent-R1, the first autonomous driving agent capable of active perception for planning. In complex scenarios, DriveAgent-R1 proactively invokes tools to perform visual reasoning, firmly grounding its decisions in visual evidence, thereby enhancing both interpretability and reliability. Furthermore, we propose a hybrid thinking framework, inspired by human driver cognitive patterns, allowing the agent to adaptively switch between efficient text-only reasoning and robust tool-augmented visual reasoning based on scene complexity. This capability is cultivated through a three-stage progressive training strategy, featuring a core Cascaded Reinforcement Learning (Cascaded RL) phase. Extensive experiments on the Drive-Internal dataset, which is rich in long-tail scenarios, and the public nuScenes dataset show that, with only 3B parameters, DriveAgent-R1 achieves competitive performance comparable to top closed model systems such as GPT-5 and to human driving proficiency while remaining deployment-friendly, offering a proven path toward building more intelligent autonomous driving systems.

  • 7 authors
·
Jul 28

UIShift: Enhancing VLM-based GUI Agents through Self-supervised Reinforcement Learning

Training effective Vision Language Models (VLMs) for GUI agents typically relies on supervised fine-tuning (SFT) over large-scale annotated datasets, where the collection process is labor-intensive and error-prone. In this work, we propose a self-supervised inverse dynamics task to enable VLMs to learn from GUI transition pairs by inferring the action that caused that transition. This training task offers two advantages: (1) It enables VLMs to ignore variations unrelated to user actions (e.g., background refreshes, ads) and to focus on true affordances such as buttons and input fields within complex GUIs. (2) The training data can be easily obtained from existing GUI trajectories without requiring human annotation, and it can be easily scaled through automatic offline exploration. Using this training task, we propose UI-shift, a framework for enhancing VLM-based GUI agents through self-supervised reinforcement learning (RL). With only 2K training samples sourced from existing datasets, two VLMs -- Qwen2.5-VL-3B and Qwen2.5-VL-7B -- trained with UI-Shift achieve competitive or superior performance on grounding tasks (ScreenSpot-series benchmarks) and GUI automation tasks (AndroidControl), compared to SFT baselines and GUI-specific models that explicitly elicit reasoning abilities during RL. Our findings suggest a potential direction for enhancing VLMs for GUI agents by leveraging more self-supervised training data in the future.

  • 3 authors
·
May 18

TRISHUL: Towards Region Identification and Screen Hierarchy Understanding for Large VLM based GUI Agents

Recent advancements in Large Vision Language Models (LVLMs) have enabled the development of LVLM-based Graphical User Interface (GUI) agents under various paradigms. Training-based approaches, such as CogAgent and SeeClick, struggle with cross-dataset and cross-platform generalization due to their reliance on dataset-specific training. Generalist LVLMs, such as GPT-4V, employ Set-of-Marks (SoM) for action grounding, but obtaining SoM labels requires metadata like HTML source, which is not consistently available across platforms. Moreover, existing methods often specialize in singular GUI tasks rather than achieving comprehensive GUI understanding. To address these limitations, we introduce TRISHUL, a novel, training-free agentic framework that enhances generalist LVLMs for holistic GUI comprehension. Unlike prior works that focus on either action grounding (mapping instructions to GUI elements) or GUI referring (describing GUI elements given a location), TRISHUL seamlessly integrates both. At its core, TRISHUL employs Hierarchical Screen Parsing (HSP) and the Spatially Enhanced Element Description (SEED) module, which work synergistically to provide multi-granular, spatially, and semantically enriched representations of GUI elements. Our results demonstrate TRISHUL's superior performance in action grounding across the ScreenSpot, VisualWebBench, AITW, and Mind2Web datasets. Additionally, for GUI referring, TRISHUL surpasses the ToL agent on the ScreenPR benchmark, setting a new standard for robust and adaptable GUI comprehension.

  • 3 authors
·
Feb 12

PAID: A Framework of Product-Centric Advertising Image Design

Creating visually appealing advertising images is often a labor-intensive and time-consuming process. Is it possible to automatically generate such images using only basic product information--specifically, a product foreground image, taglines, and a target size? Existing methods mainly focus on parts of the problem and fail to provide a comprehensive solution. To address this gap, we propose a novel multistage framework called Product-Centric Advertising Image Design (PAID). It consists of four sequential stages to highlight product foregrounds and taglines while achieving overall image aesthetics: prompt generation, layout generation, background image generation, and graphics rendering. Different expert models are designed and trained for the first three stages: First, we use a visual language model (VLM) to generate background prompts that match the products. Next, a VLM-based layout generation model arranges the placement of product foregrounds, graphic elements (taglines and decorative underlays), and various nongraphic elements (objects from the background prompt). Following this, we train an SDXL-based image generation model that can simultaneously accept prompts, layouts, and foreground controls. To support the PAID framework, we create corresponding datasets with over 50,000 labeled images. Extensive experimental results and online A/B tests demonstrate that PAID can produce more visually appealing advertising images.

  • 8 authors
·
Jan 24

ImagiDrive: A Unified Imagination-and-Planning Framework for Autonomous Driving

Autonomous driving requires rich contextual comprehension and precise predictive reasoning to navigate dynamic and complex environments safely. Vision-Language Models (VLMs) and Driving World Models (DWMs) have independently emerged as powerful recipes addressing different aspects of this challenge. VLMs provide interpretability and robust action prediction through their ability to understand multi-modal context, while DWMs excel in generating detailed and plausible future driving scenarios essential for proactive planning. Integrating VLMs with DWMs is an intuitive, promising, yet understudied strategy to exploit the complementary strengths of accurate behavioral prediction and realistic scene generation. Nevertheless, this integration presents notable challenges, particularly in effectively connecting action-level decisions with high-fidelity pixel-level predictions and maintaining computational efficiency. In this paper, we propose ImagiDrive, a novel end-to-end autonomous driving framework that integrates a VLM-based driving agent with a DWM-based scene imaginer to form a unified imagination-and-planning loop. The driving agent predicts initial driving trajectories based on multi-modal inputs, guiding the scene imaginer to generate corresponding future scenarios. These imagined scenarios are subsequently utilized to iteratively refine the driving agent's planning decisions. To address efficiency and predictive accuracy challenges inherent in this integration, we introduce an early stopping mechanism and a trajectory selection strategy. Extensive experimental validation on the nuScenes and NAVSIM datasets demonstrates the robustness and superiority of ImagiDrive over previous alternatives under both open-loop and closed-loop conditions.

  • 6 authors
·
Aug 15

Uni4D-LLM: A Unified SpatioTemporal-Aware VLM for 4D Understanding and Generation

Vision-language models (VLMs) have demonstrated strong performance in 2D scene understanding and generation, but extending this unification to the physical world remains an open challenge. Existing 3D and 4D approaches typically embed scene geometry into autoregressive model for semantic understanding and diffusion model for content generation. This paradigm gap prevents a single model from jointly handling both tasks, especially in dynamic 4D settings where spatiotemporal modeling is critical. We propose Uni4D-LLM, the first unified VLM framework with spatiotemporal awareness for 4D scene understanding and generation. Our design is guided by two key insights: 1) Unification requires a shared representation. We extract semantic features for understanding and noisy-injected appearance features for generation, incorporate 4D geometric cues, and fuse them into a spatiotemporal-aware visual representation through adaptive cross-attention. 2) Unification requires a shared architecture. Both autoregression and diffusion are built on Transformer backbones, and this enables integration into a single LLM with task-specific heads. By aligning visual and linguistic representations, our Uni4D-LLM produces predictions for both understanding and generation within one Transformer-based framework. We further apply instruction fine-tuning on diverse 4D vision-language datasets to improve generalization across tasks. Extensive experiments on multiple benchmarks demonstrate that Uni4D-LLM achieves competitive or superior results compared to state-of-the-art models and offers the first true unification of 4D scene understanding and generation.

  • 2 authors
·
Sep 28

FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback

Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose FASIONAD -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a 6.7% reduction in average L2 trajectory error and 28.1% lower collision rate.

  • 19 authors
·
Mar 11

SAFEFLOW: A Principled Protocol for Trustworthy and Transactional Autonomous Agent Systems

Recent advances in large language models (LLMs) and vision-language models (VLMs) have enabled powerful autonomous agents capable of complex reasoning and multi-modal tool use. Despite their growing capabilities, today's agent frameworks remain fragile, lacking principled mechanisms for secure information flow, reliability, and multi-agent coordination. In this work, we introduce SAFEFLOW, a new protocol-level framework for building trustworthy LLM/VLM-based agents. SAFEFLOW enforces fine-grained information flow control (IFC), precisely tracking provenance, integrity, and confidentiality of all the data exchanged between agents, tools, users, and environments. By constraining LLM reasoning to respect these security labels, SAFEFLOW prevents untrusted or adversarial inputs from contaminating high-integrity decisions. To ensure robustness in concurrent multi-agent settings, SAFEFLOW introduces transactional execution, conflict resolution, and secure scheduling over shared state, preserving global consistency across agents. We further introduce mechanisms, including write-ahead logging, rollback, and secure caches, that further enhance resilience against runtime errors and policy violations. To validate the performances, we built SAFEFLOWBENCH, a comprehensive benchmark suite designed to evaluate agent reliability under adversarial, noisy, and concurrent operational conditions. Extensive experiments demonstrate that agents built with SAFEFLOW maintain impressive task performance and security guarantees even in hostile environments, substantially outperforming state-of-the-art. Together, SAFEFLOW and SAFEFLOWBENCH lay the groundwork for principled, robust, and secure agent ecosystems, advancing the frontier of reliable autonomy.

OpenREAD: Reinforced Open-Ended Reasoing for End-to-End Autonomous Driving with LLM-as-Critic

Recently, two-stage fine-tuning strategies, e.g., acquiring essential driving knowledge through supervised fine-tuning (SFT) and further enhancing decision-making and planning via reinforcement fine-tuning (RFT), have shown strong potential in advancing the knowledge-driven autonomous driving (AD) paradigm. However, the learning nature of SFT still limits the generalization of reasoning, thereby constraining the full potential of driving performance. Meanwhile, current RFT approaches are primarily applied to downstream tasks, since scene understanding is an open-ended problem where corresponding rewards are difficult to quantify. To address these limitations, we propose OpenREAD, an OPEN-ended REasoning reinforced vision-language model (VLM)-based autonomous driving (AD) framework that enables end-to-end RFT across the full spectrum from high-level reasoning to low-level trajectory planning. Specifically, we begin by constructing large-scale Chain-of-Thought (CoT) annotations on open-source driving-related knowledge datasets, and employ the powerful Qwen3 large language model (LLM) as the critic in RFT to quantify reasoning quality for open-ended questions during reward modeling. Extensive experiments confirm that joint end-to-end RFT yields substantial improvements in both upstream and downstream tasks, enabling OpenREAD to achieve state-of-the-art performance on reasoning and planning benchmarks.

GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training

Reinforcement learning with verifiable outcome rewards (RLVR) has effectively scaled up chain-of-thought (CoT) reasoning in large language models (LLMs). Yet, its efficacy in training vision-language model (VLM) agents for goal-directed action reasoning in visual environments is less established. This work investigates this problem through extensive experiments on complex card games, such as 24 points, and embodied tasks from ALFWorld. We find that when rewards are based solely on action outcomes, RL fails to incentivize CoT reasoning in VLMs, instead leading to a phenomenon we termed thought collapse, characterized by a rapid loss of diversity in the agent's thoughts, state-irrelevant and incomplete reasoning, and subsequent invalid actions, resulting in negative rewards. To counteract thought collapse, we highlight the necessity of process guidance and propose an automated corrector that evaluates and refines the agent's reasoning at each RL step. This simple and scalable GTR (Guided Thought Reinforcement) framework trains reasoning and action simultaneously without the need for dense, per-step human labeling. Our experiments demonstrate that GTR significantly enhances the performance and generalization of the LLaVA-7b model across various visual environments, achieving 3-5 times higher task success rates compared to SoTA models with notably smaller model sizes.

  • 6 authors
·
Mar 11 2

REF-VLM: Triplet-Based Referring Paradigm for Unified Visual Decoding

Multimodal Large Language Models (MLLMs) demonstrate robust zero-shot capabilities across diverse vision-language tasks after training on mega-scale datasets. However, dense prediction tasks, such as semantic segmentation and keypoint detection, pose significant challenges for MLLMs when represented solely as text outputs. Simultaneously, current MLLMs utilizing latent embeddings for visual task decoding generally demonstrate limited adaptability to both multi-task learning and multi-granularity scenarios. In this work, we present REF-VLM, an end-to-end framework for unified training of various visual decoding tasks. To address complex visual decoding scenarios, we introduce the Triplet-Based Referring Paradigm (TRP), which explicitly decouples three critical dimensions in visual decoding tasks through a triplet structure: concepts, decoding types, and targets. TRP employs symbolic delimiters to enforce structured representation learning, enhancing the parsability and interpretability of model outputs. Additionally, we construct Visual-Task Instruction Following Dataset (VTInstruct), a large-scale multi-task dataset containing over 100 million multimodal dialogue samples across 25 task types. Beyond text inputs and outputs, VT-Instruct incorporates various visual prompts such as point, box, scribble, and mask, and generates outputs composed of text and visual units like box, keypoint, depth and mask. The combination of different visual prompts and visual units generates a wide variety of task types, expanding the applicability of REF-VLM significantly. Both qualitative and quantitative experiments demonstrate that our REF-VLM outperforms other MLLMs across a variety of standard benchmarks. The code, dataset, and demo available at https://github.com/MacavityT/REF-VLM.

  • 7 authors
·
Mar 10 1

WEAVE: Unleashing and Benchmarking the In-context Interleaved Comprehension and Generation

Recent advances in unified multimodal models (UMMs) have enabled impressive progress in visual comprehension and generation. However, existing datasets and benchmarks focus primarily on single-turn interactions, failing to capture the multi-turn, context-dependent nature of real-world image creation and editing. To address this gap, we present WEAVE, the first suite for in-context interleaved cross-modality comprehension and generation. Our suite consists of two complementary parts. WEAVE-100k is a large-scale dataset of 100K interleaved samples spanning over 370K dialogue turns and 500K images, covering comprehension, editing, and generation tasks that require reasoning over historical context. WEAVEBench is a human-annotated benchmark with 100 tasks based on 480 images, featuring a hybrid VLM judger evaluation framework based on both the reference image and the combination of the original image with editing instructions that assesses models' abilities in multi-turn generation, visual memory, and world-knowledge reasoning across diverse domains. Experiments demonstrate that training on WEAVE-100k enables vision comprehension, image editing, and comprehension-generation collaboration capabilities. Furthermore, it facilitates UMMs to develop emergent visual-memory capabilities, while extensive evaluations on WEAVEBench expose the persistent limitations and challenges of current approaches in multi-turn, context-aware image generation and editing. We believe WEAVE provides a view and foundation for studying in-context interleaved comprehension and generation for multi-modal community.

  • 13 authors
·
Nov 14 2

SeeingEye: Agentic Information Flow Unlocks Multimodal Reasoning In Text-only LLMs

Recent advances in text-only large language models (LLMs), such as DeepSeek-R1, demonstrate remarkable reasoning ability. However, these models remain fragile or entirely incapable when extended to multi-modal tasks. Existing approaches largely rely on single-form captions, which lack diversity and often fail to adapt across different types of Visual Question Answering (VQA) benchmarks. As a result, they provide no principled or efficient channel for transmitting fine-grained visual information. We introduce Seeing Eye, a modular framework that unlocks multimodal reasoning in text-only LLMs through an agent-based small VLM translator. This translator acts as a perception agent: it can invoke specialized tools (e.g., OCR and crop) and iteratively distill multimodal inputs into structured intermediate representations (SIRs) tailored to the question. These SIRs are then passed to the text-only LLM, which serves as a reasoning agent. Crucially, the translator and reasoner engage in multi-round feedback and interaction, enabling the extraction of targeted visual details and yielding more confident answers. Experiments on knowledge-intensive VQA benchmarks, including MMMU and MIA-Bench, demonstrate that Seeing Eye not only reduces inference cost but also surpasses much larger end-to-end VLMs. For example, an instantiation combining a 3B-parameter vision translator with an 8B-parameter language reasoner outperforms a monolithic 32B VLM on challenging knowledge-based questions. Our results highlight that decoupling perception from reasoning via agent information flow offers a scalable and plug-and-play pathway to multimodal reasoning, allowing strong text-only LLMs to fully leverage their reasoning capabilities. Code is available at: https://github.com/ulab-uiuc/SeeingEye

  • 5 authors
·
Oct 28 1

Query-Kontext: An Unified Multimodal Model for Image Generation and Editing

Unified Multimodal Models (UMMs) have demonstrated remarkable performance in text-to-image generation (T2I) and editing (TI2I), whether instantiated as assembled unified frameworks which couple powerful vision-language model (VLM) with diffusion-based generator, or as naive Unified Multimodal Models with an early fusion of understanding and generation modalities. We contend that in current unified frameworks, the crucial capability of multimodal generative reasoning which encompasses instruction understanding, grounding, and image referring for identity preservation and faithful reconstruction, is intrinsically entangled with high-fidelity synthesis. In this work, we introduce Query-Kontext, a novel approach that bridges the VLM and diffusion model via a multimodal ``kontext'' composed of semantic cues and coarse-grained image conditions encoded from multimodal inputs. This design delegates the complex ability of multimodal generative reasoning to powerful VLM while reserving diffusion model's role for high-quality visual synthesis. To achieve this, we propose a three-stage progressive training strategy. First, we connect the VLM to a lightweight diffusion head via multimodal kontext tokens to unleash the VLM's generative reasoning ability. Second, we scale this head to a large, pre-trained diffusion model to enhance visual detail and realism. Finally, we introduce a low-level image encoder to improve image fidelity and perform instruction tuning on downstream tasks. Furthermore, we build a comprehensive data pipeline integrating real, synthetic, and open-source datasets, covering diverse multimodal reference-to-image scenarios, including image generation, instruction-driven editing, customized generation, and multi-subject composition. Experiments show that our approach matches strong unified baselines and even outperforms task-specific state-of-the-art methods in several cases.

  • 11 authors
·
Sep 30

MMC: Iterative Refinement of VLM Reasoning via MCTS-based Multimodal Critique

Visual language models (VLMs) have demonstrated strong performance across diverse multimodal reasoning tasks but still face challenges such as hallucinations, resulting in incorrect reasoning outcomes. Inspired by recent research on external feedback mechanisms in large language models (LLMs), we propose a multimodal actor-critic framework to enhance VLM reasoning capabilities. Specifically, the actor model generates step-by-step reasoning paths based on image and text inputs, while the critic model evaluates these reasoning paths and provides corrective feedback. The actor model iteratively refines its reasoning based on the feedback until the reasoning outcome is deemed satisfactory by the critic model. To reduce reliance on costly manual annotations, we introduce an automated method for constructing multimodal critique datasets. By leveraging Monte Carlo Tree Search (MCTS), we systematically guide the actor model to explore diverse reasoning paths. To obtain critique data for correcting erroneous reasoning steps, we prompt an annotator model to compare pairs of reasoning paths diverging from a shared ancestor node - one leading to a correct conclusion and the other to an incorrect one. This approach enables us to construct the MMC (MCTS-based Multimodal Critique) dataset, upon which we further develop a comprehensive training and inference pipeline. Extensive experiments conducted on several public benchmark datasets and mainstream VLMs demonstrate that our approach significantly improves the performance of VLM on complex multimodal reasoning tasks, underscoring its effectiveness and wide applicability.

  • 10 authors
·
Apr 15

VLM-RL: A Unified Vision Language Models and Reinforcement Learning Framework for Safe Autonomous Driving

In recent years, reinforcement learning (RL)-based methods for learning driving policies have gained increasing attention in the autonomous driving community and have achieved remarkable progress in various driving scenarios. However, traditional RL approaches rely on manually engineered rewards, which require extensive human effort and often lack generalizability. To address these limitations, we propose VLM-RL, a unified framework that integrates pre-trained Vision-Language Models (VLMs) with RL to generate reward signals using image observation and natural language goals. The core of VLM-RL is the contrasting language goal (CLG)-as-reward paradigm, which uses positive and negative language goals to generate semantic rewards. We further introduce a hierarchical reward synthesis approach that combines CLG-based semantic rewards with vehicle state information, improving reward stability and offering a more comprehensive reward signal. Additionally, a batch-processing technique is employed to optimize computational efficiency during training. Extensive experiments in the CARLA simulator demonstrate that VLM-RL outperforms state-of-the-art baselines, achieving a 10.5\% reduction in collision rate, a 104.6\% increase in route completion rate, and robust generalization to unseen driving scenarios. Furthermore, VLM-RL can seamlessly integrate almost any standard RL algorithms, potentially revolutionizing the existing RL paradigm that relies on manual reward engineering and enabling continuous performance improvements. The demo video and code can be accessed at: https://zilin-huang.github.io/VLM-RL-website.

  • 5 authors
·
Dec 19, 2024

VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model

Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1

Remote Sensing Semantic Segmentation Quality Assessment based on Vision Language Model

The complexity of scenes and variations in image quality result in significant variability in the performance of semantic segmentation methods of remote sensing imagery (RSI) in supervised real-world scenarios. This makes the evaluation of semantic segmentation quality in such scenarios an issue to be resolved. However, most of the existing evaluation metrics are developed based on expert-labeled object-level annotations, which are not applicable in such scenarios. To address this issue, we propose RS-SQA, an unsupervised quality assessment model for RSI semantic segmentation based on vision language model (VLM). This framework leverages a pre-trained RS VLM for semantic understanding and utilizes intermediate features from segmentation methods to extract implicit information about segmentation quality. Specifically, we introduce CLIP-RS, a large-scale pre-trained VLM trained with purified text to reduce textual noise and capture robust semantic information in the RS domain. Feature visualizations confirm that CLIP-RS can effectively differentiate between various levels of segmentation quality. Semantic features and low-level segmentation features are effectively integrated through a semantic-guided approach to enhance evaluation accuracy. To further support the development of RS semantic segmentation quality assessment, we present RS-SQED, a dedicated dataset sampled from four major RS semantic segmentation datasets and annotated with segmentation accuracy derived from the inference results of 8 representative segmentation methods. Experimental results on the established dataset demonstrate that RS-SQA significantly outperforms state-of-the-art quality assessment models. This provides essential support for predicting segmentation accuracy and high-quality semantic segmentation interpretation, offering substantial practical value.

  • 7 authors
·
Feb 18

Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning

Vision-language models~(VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.

  • 13 authors
·
Nov 27, 2024 2

Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs

Vision Language Models (VLMs) demonstrate remarkable proficiency in addressing a wide array of visual questions, which requires strong perception and reasoning faculties. Assessing these two competencies independently is crucial for model refinement, despite the inherent difficulty due to the intertwined nature of seeing and reasoning in existing VLMs. To tackle this issue, we present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving. Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information using a Large Language Model (LLM). This modular design enables the systematic comparison and assessment of both proprietary and open-source VLM for their perception and reasoning strengths. Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks. By combining a streamlined VLM focused on perception with a powerful LLM tailored for reasoning, Prism achieves superior results in general vision-language tasks while substantially cutting down on training and operational expenses. Quantitative evaluations show that Prism, when configured with a vanilla 2B LLaVA and freely accessible GPT-3.5, delivers performance on par with VLMs 10 times larger on the rigorous multimodal benchmark MMStar. The project is released at: https://github.com/SparksJoe/Prism.

  • 9 authors
·
Jun 20, 2024 2

Beyond Pixels: Introducing Geometric-Semantic World Priors for Video-based Embodied Models via Spatio-temporal Alignment

Achieving human-like reasoning in deep learning models for complex tasks in unknown environments remains a critical challenge in embodied intelligence. While advanced vision-language models (VLMs) excel in static scene understanding, their limitations in spatio-temporal reasoning and adaptation to dynamic, open-set tasks like task-oriented navigation and embodied question answering (EQA) persist due to inadequate modeling of fine-grained spatio-temporal cues and physical world comprehension. To address this, we propose VEME, a novel cross-modal alignment method that enhances generalization in unseen scenes by learning an ego-centric, experience-centered world model. Our framework integrates three key components: (1) a cross-modal alignment framework bridging objects, spatial representations, and visual semantics with spatio-temporal cues to enhance VLM in-context learning; (2) a dynamic, implicit cognitive map activated by world embedding to enable task-relevant geometric-semantic memory recall; and (3) an instruction-based navigation and reasoning framework leveraging embodied priors for long-term planning and efficient exploration. By embedding geometry-aware spatio-temporal episodic experiences, our method significantly improves reasoning and planning in dynamic environments. Experimental results on VSI-Bench and VLN-CE demonstrate 1%-3% accuracy and exploration efficiency improvement compared to traditional approaches.

  • 6 authors
·
Aug 29

BLIP-FusePPO: A Vision-Language Deep Reinforcement Learning Framework for Lane Keeping in Autonomous Vehicles

In this paper, we propose Bootstrapped Language-Image Pretraining-driven Fused State Representation in Proximal Policy Optimization (BLIP-FusePPO), a novel multimodal reinforcement learning (RL) framework for autonomous lane-keeping (LK), in which semantic embeddings generated by a vision-language model (VLM) are directly fused with geometric states, LiDAR observations, and Proportional-Integral-Derivative-based (PID) control feedback within the agent observation space. The proposed method lets the agent learn driving rules that are aware of their surroundings and easy to understand by combining high-level scene understanding from the VLM with low-level control and spatial signals. Our architecture brings together semantic, geometric, and control-aware representations to make policy learning more robust. A hybrid reward function that includes semantic alignment, LK accuracy, obstacle avoidance, and speed regulation helps learning to be more efficient and generalizable. Our method is different from the approaches that only use semantic models to shape rewards. Instead, it directly embeds semantic features into the state representation. This cuts down on expensive runtime inference and makes sure that semantic guidance is always available. The simulation results show that the proposed model is better at LK stability and adaptability than the best vision-based and multimodal RL baselines in a wide range of difficult driving situations. We make our code publicly available.

  • 3 authors
·
Oct 25

Astrea: A MOE-based Visual Understanding Model with Progressive Alignment

Vision-Language Models (VLMs) based on Mixture-of-Experts (MoE) architectures have emerged as a pivotal paradigm in multimodal understanding, offering a powerful framework for integrating visual and linguistic information. However, the increasing complexity and diversity of tasks present significant challenges in coordinating load balancing across heterogeneous visual experts, where optimizing one specialist's performance often compromises others' capabilities. To address task heterogeneity and expert load imbalance, we propose Astrea, a novel multi-expert collaborative VLM architecture based on progressive pre-alignment. Astrea introduces three key innovations: 1) A heterogeneous expert coordination mechanism that integrates four specialized models (detection, segmentation, classification, captioning) into a comprehensive expert matrix covering essential visual comprehension elements; 2) A dynamic knowledge fusion strategy featuring progressive pre-alignment to harmonize experts within the VLM latent space through contrastive learning, complemented by probabilistically activated stochastic residual connections to preserve knowledge continuity; 3) An enhanced optimization framework utilizing momentum contrastive learning for long-range dependency modeling and adaptive weight allocators for real-time expert contribution calibration. Extensive evaluations across 12 benchmark tasks spanning VQA, image captioning, and cross-modal retrieval demonstrate Astrea's superiority over state-of-the-art models, achieving an average performance gain of +4.7\%. This study provides the first empirical demonstration that progressive pre-alignment strategies enable VLMs to overcome task heterogeneity limitations, establishing new methodological foundations for developing general-purpose multimodal agents.

  • 15 authors
·
Mar 12

Physically Grounded Vision-Language Models for Robotic Manipulation

Recent advances in vision-language models (VLMs) have led to improved performance on tasks such as visual question answering and image captioning. Consequently, these models are now well-positioned to reason about the physical world, particularly within domains such as robotic manipulation. However, current VLMs are limited in their understanding of the physical concepts (e.g., material, fragility) of common objects, which restricts their usefulness for robotic manipulation tasks that involve interaction and physical reasoning about such objects. To address this limitation, we propose PhysObjects, an object-centric dataset of 36.9K crowd-sourced and 417K automated physical concept annotations of common household objects. We demonstrate that fine-tuning a VLM on PhysObjects improves its understanding of physical object concepts, by capturing human priors of these concepts from visual appearance. We incorporate this physically-grounded VLM in an interactive framework with a large language model-based robotic planner, and show improved planning performance on tasks that require reasoning about physical object concepts, compared to baselines that do not leverage physically-grounded VLMs. We additionally illustrate the benefits of our physically-grounded VLM on a real robot, where it improves task success rates. We release our dataset and provide further details and visualizations of our results at https://iliad.stanford.edu/pg-vlm/.

  • 8 authors
·
Sep 5, 2023 1

VLMPlanner: Integrating Visual Language Models with Motion Planning

Integrating large language models (LLMs) into autonomous driving motion planning has recently emerged as a promising direction, offering enhanced interpretability, better controllability, and improved generalization in rare and long-tail scenarios. However, existing methods often rely on abstracted perception or map-based inputs, missing crucial visual context, such as fine-grained road cues, accident aftermath, or unexpected obstacles, which are essential for robust decision-making in complex driving environments. To bridge this gap, we propose VLMPlanner, a hybrid framework that combines a learning-based real-time planner with a vision-language model (VLM) capable of reasoning over raw images. The VLM processes multi-view images to capture rich, detailed visual information and leverages its common-sense reasoning capabilities to guide the real-time planner in generating robust and safe trajectories. Furthermore, we develop the Context-Adaptive Inference Gate (CAI-Gate) mechanism that enables the VLM to mimic human driving behavior by dynamically adjusting its inference frequency based on scene complexity, thereby achieving an optimal balance between planning performance and computational efficiency. We evaluate our approach on the large-scale, challenging nuPlan benchmark, with comprehensive experimental results demonstrating superior planning performance in scenarios with intricate road conditions and dynamic elements. Code will be available.

  • 8 authors
·
Jul 27

Look Less, Reason More: Rollout-Guided Adaptive Pixel-Space Reasoning

Vision-Language Models (VLMs) excel at many multimodal tasks, yet they frequently struggle with tasks requiring precise understanding and handling of fine-grained visual elements. This is mainly due to information loss during image encoding or insufficient attention to critical regions. Recent work has shown promise by incorporating pixel-level visual information into the reasoning process, enabling VLMs to access high-resolution visual details during their thought process. However, this pixel-level information is often overused, leading to inefficiency and distraction from irrelevant visual details. To address these challenges, we propose the first framework for adaptive pixel reasoning that dynamically determines necessary pixel-level operations based on the input query. Specifically, we first apply operation-aware supervised fine-tuning to establish baseline competence in textual reasoning and visual operations, then design a novel rollout-guided reinforcement learning framework relying on feedback of the model's own responses, which enables the VLM to determine when pixel operations should be invoked based on query difficulty. Experiments on extensive multimodal reasoning benchmarks show that our model achieves superior performance while significantly reducing unnecessary visual operations. Impressively, our model achieves 73.4\% accuracy on HR-Bench 4K while maintaining a tool usage ratio of only 20.1\%, improving accuracy and simultaneously reducing tool usage by 66.5\% compared to the previous methods.

  • 6 authors
·
Oct 2

Ariadne: A Controllable Framework for Probing and Extending VLM Reasoning Boundaries

While Vision-Language Models (VLMs) post-trained with Reinforcement Learning (RL) show impressive general reasoning, their evaluation is often confined to language-dominant tasks (e.g., math). This raises a critical question: can RL post-training truly extend the inherent capability boundary of a base VLM, particularly for visual-centric spatial tasks where it initially fails? To investigate this, we introduce Ariadne, a framework utilizing synthetic mazes for multi-step spatial reasoning where task difficulty (e.g., path length, turns) is precisely controlled. We leverage this controllable environment to train VLMs using Reinforcement Learning with Verified Rewards (RLVR) in a difficulty-aware curriculum. Surprisingly, post-RLVR training, the VLM achieves over 50% accuracy on a problem set where the base model scored 0%, demonstrating that our approach expands the model's initial capability boundary. To assess real-world viability, we evaluate out-of-distribution (OOD) generalization on practical benchmarks. Despite training only on synthetic maze samples, Ariadne achieves significant zero-shot improvements, averaging 16% on MapBench (e.g., museum navigation) and 24% on ReasonMap (subway transfer tasks). These results confirm that our method not only broadens the model's fundamental limits but also enhances its generalization to real-world spatial reasoning. We acknowledge our study is limited to the post-training phase, given the opaqueness of pre-training data, and hope our research motivates further work on specialized, capability-extending alignment.

dInfer: An Efficient Inference Framework for Diffusion Language Models

Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on 8times H800 GPUs. Compared to prior systems, dInfer delivers a 10times speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a 2-3times speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.

UniEdit-I: Training-free Image Editing for Unified VLM via Iterative Understanding, Editing and Verifying

In recent years, unified vision-language models (VLMs) have rapidly advanced, effectively tackling both visual understanding and generation tasks within a single design. While many unified VLMs have explored various design choices, the recent hypothesis from OpenAI's GPT-4o suggests a promising generation pipeline: Understanding VLM->Visual Feature->Projector->Diffusion Model->Image. The understanding VLM is frozen, and only the generation-related modules are trained. This pipeline maintains the strong capability of understanding VLM while enabling the image generation ability of the unified VLM. Although this pipeline has shown very promising potential for the future development of unified VLM, how to easily enable image editing capability is still unexplored. In this paper, we introduce a novel training-free framework named UniEdit-I to enable the unified VLM with image editing capability via three iterative steps: understanding, editing, and verifying. 1. The understanding step analyzes the source image to create a source prompt through structured semantic analysis and makes minimal word replacements to form the target prompt based on the editing instruction. 2. The editing step introduces a time-adaptive offset, allowing for coherent editing from coarse to fine throughout the denoising process. 3. The verification step checks the alignment between the target prompt and the intermediate edited image, provides automatic consistency scores and corrective feedback, and determines whether to stop early or continue the editing loop. This understanding, editing, and verifying loop iterates until convergence, delivering high-fidelity editing in a training-free manner. We implemented our method based on the latest BLIP3-o and achieved state-of-the-art (SOTA) performance on the GEdit-Bench benchmark.

  • 7 authors
·
Aug 5

GIRAFFE: Design Choices for Extending the Context Length of Visual Language Models

Visual Language Models (VLMs) demonstrate impressive capabilities in processing multimodal inputs, yet applications such as visual agents, which require handling multiple images and high-resolution videos, demand enhanced long-range modeling. Moreover, existing open-source VLMs lack systematic exploration into extending their context length, and commercial models often provide limited details. To tackle this, we aim to establish an effective solution that enhances long context performance of VLMs while preserving their capacities in short context scenarios. Towards this goal, we make the best design choice through extensive experiment settings from data curation to context window extending and utilizing: (1) we analyze data sources and length distributions to construct ETVLM - a data recipe to balance the performance across scenarios; (2) we examine existing position extending methods, identify their limitations and propose M-RoPE++ as an enhanced approach; we also choose to solely instruction-tune the backbone with mixed-source data; (3) we discuss how to better utilize extended context windows and propose hybrid-resolution training. Built on the Qwen-VL series model, we propose Giraffe, which is effectively extended to 128K lengths. Evaluated on extensive long context VLM benchmarks such as VideoMME and Viusal Haystacks, our Giraffe achieves state-of-the-art performance among similarly sized open-source long VLMs and is competitive with commercial model GPT-4V. We will open-source the code, data, and models.

  • 4 authors
·
Dec 17, 2024

From Pixels to Words -- Towards Native Vision-Language Primitives at Scale

The edifice of native Vision-Language Models (VLMs) has emerged as a rising contender to typical modular VLMs, shaped by evolving model architectures and training paradigms. Yet, two lingering clouds cast shadows over its widespread exploration and promotion: (-) What fundamental constraints set native VLMs apart from modular ones, and to what extent can these barriers be overcome? (-) How to make research in native VLMs more accessible and democratized, thereby accelerating progress in the field. In this paper, we clarify these challenges and outline guiding principles for constructing native VLMs. Specifically, one native VLM primitive should: (i) effectively align pixel and word representations within a shared semantic space; (ii) seamlessly integrate the strengths of formerly separate vision and language modules; (iii) inherently embody various cross-modal properties that support unified vision-language encoding, aligning, and reasoning. Hence, we launch NEO, a novel family of native VLMs built from first principles, capable of rivaling top-tier modular counterparts across diverse real-world scenarios. With only 390M image-text examples, NEO efficiently develops visual perception from scratch while mitigating vision-language conflicts inside a dense and monolithic model crafted from our elaborate primitives. We position NEO as a cornerstone for scalable and powerful native VLMs, paired with a rich set of reusable components that foster a cost-effective and extensible ecosystem. Our code and models are publicly available at: https://github.com/EvolvingLMMs-Lab/NEO.

SenseTime SenseTime
·
Oct 16 2

VHELM: A Holistic Evaluation of Vision Language Models

Current benchmarks for assessing vision-language models (VLMs) often focus on their perception or problem-solving capabilities and neglect other critical aspects such as fairness, multilinguality, or toxicity. Furthermore, they differ in their evaluation procedures and the scope of the evaluation, making it difficult to compare models. To address these issues, we extend the HELM framework to VLMs to present the Holistic Evaluation of Vision Language Models (VHELM). VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety. In doing so, we produce a comprehensive, multi-dimensional view of the capabilities of the VLMs across these important factors. In addition, we standardize the standard inference parameters, methods of prompting, and evaluation metrics to enable fair comparisons across models. Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast. Our initial run evaluates 22 VLMs on 21 existing datasets to provide a holistic snapshot of the models. We uncover new key findings, such as the fact that efficiency-focused models (e.g., Claude 3 Haiku or Gemini 1.5 Flash) perform significantly worse than their full models (e.g., Claude 3 Opus or Gemini 1.5 Pro) on the bias benchmark but not when evaluated on the other aspects. For transparency, we release the raw model generations and complete results on our website (https://crfm.stanford.edu/helm/vhelm/v2.0.1). VHELM is intended to be a living benchmark, and we hope to continue adding new datasets and models over time.

  • 11 authors
·
Oct 9, 2024 2

Trust the Model: Compact VLMs as In-Context Judges for Image-Text Data Quality

Vision-language models (VLMs) extend the conventional large language models by integrating visual data, enabling richer multimodal reasoning and significantly broadens the practical applications of AI. However, including visual inputs also brings new challenges in maintaining data quality. Empirical evidence consistently shows that carefully curated and representative training examples often yield superior results compared to simply increasing the quantity of data. Inspired by this observation, we introduce a streamlined data filtration framework that employs a compact VLM, fine-tuned on a high-quality image-caption annotated dataset. This model effectively evaluates and filters potential training samples based on caption and image quality and alignment. Unlike previous approaches, which typically add auxiliary filtration modules on top of existing full-scale VLMs, our method exclusively utilizes the inherent evaluative capability of a purpose-built small VLM. This strategy eliminates the need for extra modules and reduces training overhead. Our lightweight model efficiently filters out inaccurate, noisy web data, improving image-text alignment and caption linguistic fluency. Experimental results show that datasets underwent high-precision filtration using our compact VLM perform on par with, or even surpass, larger and noisier datasets gathered through high-volume web crawling. Thus, our method provides a lightweight yet robust solution for building high-quality vision-language training corpora. \\ Availability and implementation: Our compact VLM filtration model, training data, utility scripts, and Supplementary data (Appendices) are freely available at https://github.com/daulettoibazar/Compact_VLM_Filter.

  • 6 authors
·
Jul 27

BlueLM-V-3B: Algorithm and System Co-Design for Multimodal Large Language Models on Mobile Devices

The emergence and growing popularity of multimodal large language models (MLLMs) have significant potential to enhance various aspects of daily life, from improving communication to facilitating learning and problem-solving. Mobile phones, as essential daily companions, represent the most effective and accessible deployment platform for MLLMs, enabling seamless integration into everyday tasks. However, deploying MLLMs on mobile phones presents challenges due to limitations in memory size and computational capability, making it difficult to achieve smooth and real-time processing without extensive optimization. In this paper, we present BlueLM-V-3B, an algorithm and system co-design approach specifically tailored for the efficient deployment of MLLMs on mobile platforms. To be specific, we redesign the dynamic resolution scheme adopted by mainstream MLLMs and implement system optimization for hardware-aware deployment to optimize model inference on mobile phones. BlueLM-V-3B boasts the following key highlights: (1) Small Size: BlueLM-V-3B features a language model with 2.7B parameters and a vision encoder with 400M parameters. (2) Fast Speed: BlueLM-V-3B achieves a generation speed of 24.4 token/s on the MediaTek Dimensity 9300 processor with 4-bit LLM weight quantization. (3) Strong Performance: BlueLM-V-3B has attained the highest average score of 66.1 on the OpenCompass benchmark among models with leq 4B parameters and surpassed a series of models with much larger parameter sizes (e.g., MiniCPM-V-2.6, InternVL2-8B).

  • 22 authors
·
Nov 15, 2024 5

UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling

Significant research efforts have been made to scale and improve vision-language model (VLM) training approaches. Yet, with an ever-growing number of benchmarks, researchers are tasked with the heavy burden of implementing each protocol, bearing a non-trivial computational cost, and making sense of how all these benchmarks translate into meaningful axes of progress. To facilitate a systematic evaluation of VLM progress, we introduce UniBench: a unified implementation of 50+ VLM benchmarks spanning a comprehensive range of carefully categorized capabilities from object recognition to spatial awareness, counting, and much more. We showcase the utility of UniBench for measuring progress by evaluating nearly 60 publicly available vision-language models, trained on scales of up to 12.8B samples. We find that while scaling training data or model size can boost many vision-language model capabilities, scaling offers little benefit for reasoning or relations. Surprisingly, we also discover today's best VLMs struggle on simple digit recognition and counting tasks, e.g. MNIST, which much simpler networks can solve. Where scale falls short, we find that more precise interventions, such as data quality or tailored-learning objectives offer more promise. For practitioners, we also offer guidance on selecting a suitable VLM for a given application. Finally, we release an easy-to-run UniBench code-base with the full set of 50+ benchmarks and comparisons across 59 models as well as a distilled, representative set of benchmarks that runs in 5 minutes on a single GPU.

  • 6 authors
·
Aug 8, 2024 2

AutoGUI: Scaling GUI Grounding with Automatic Functionality Annotations from LLMs

User interface understanding with vision-language models has received much attention due to its potential for enabling next-generation software automation. However, existing UI datasets either only provide large-scale context-free element annotations or contextualized functional descriptions for elements at a much smaller scale. In this work, we propose the pipeline for automatically annotating UI elements with detailed functionality descriptions at scale. Specifically, we leverage large language models (LLMs) to infer element functionality by comparing the UI content changes before and after simulated interactions with specific UI elements. To improve annotation quality, we propose LLM-aided rejection and verification, eliminating invalid and incorrect annotations without human labor. We construct an -704k dataset using the proposed pipeline, featuring multi-resolution, multi-device screenshots, diverse data domains, and detailed functionality annotations that have never been provided by previous datasets. Human evaluation shows that the AutoGUI pipeline achieves annotation correctness comparable to trained human annotators. Extensive experimental results show that our -704k dataset remarkably enhances VLM's UI grounding capabilities, exhibits significant scaling effects, and outperforms existing web pre-training data types. We envision AutoGUI as a scalable pipeline for generating massive data to build GUI-oriented VLMs. AutoGUI dataset can be viewed at this anonymous URL: https://autogui-project.github.io/.

  • 6 authors
·
Feb 3

CodexGraph: Bridging Large Language Models and Code Repositories via Code Graph Databases

Large Language Models (LLMs) excel in stand-alone code tasks like HumanEval and MBPP, but struggle with handling entire code repositories. This challenge has prompted research on enhancing LLM-codebase interaction at a repository scale. Current solutions rely on similarity-based retrieval or manual tools and APIs, each with notable drawbacks. Similarity-based retrieval often has low recall in complex tasks, while manual tools and APIs are typically task-specific and require expert knowledge, reducing their generalizability across diverse code tasks and real-world applications. To mitigate these limitations, we introduce \framework, a system that integrates LLM agents with graph database interfaces extracted from code repositories. By leveraging the structural properties of graph databases and the flexibility of the graph query language, \framework enables the LLM agent to construct and execute queries, allowing for precise, code structure-aware context retrieval and code navigation. We assess \framework using three benchmarks: CrossCodeEval, SWE-bench, and EvoCodeBench. Additionally, we develop five real-world coding applications. With a unified graph database schema, \framework demonstrates competitive performance and potential in both academic and real-world environments, showcasing its versatility and efficacy in software engineering. Our application demo: https://github.com/modelscope/modelscope-agent/tree/master/apps/codexgraph_agent.

  • 8 authors
·
Aug 7, 2024 2

Rendering-Aware Reinforcement Learning for Vector Graphics Generation

Scalable Vector Graphics (SVG) offer a powerful format for representing visual designs as interpretable code. Recent advances in vision-language models (VLMs) have enabled high-quality SVG generation by framing the problem as a code generation task and leveraging large-scale pretraining. VLMs are particularly suitable for this task as they capture both global semantics and fine-grained visual patterns, while transferring knowledge across vision, natural language, and code domains. However, existing VLM approaches often struggle to produce faithful and efficient SVGs because they never observe the rendered images during training. Although differentiable rendering for autoregressive SVG code generation remains unavailable, rendered outputs can still be compared to original inputs, enabling evaluative feedback suitable for reinforcement learning (RL). We introduce RLRF(Reinforcement Learning from Rendering Feedback), an RL method that enhances SVG generation in autoregressive VLMs by leveraging feedback from rendered SVG outputs. Given an input image, the model generates SVG roll-outs that are rendered and compared to the original image to compute a reward. This visual fidelity feedback guides the model toward producing more accurate, efficient, and semantically coherent SVGs. RLRF significantly outperforms supervised fine-tuning, addressing common failure modes and enabling precise, high-quality SVG generation with strong structural understanding and generalization.

  • 15 authors
·
May 27 3

ROOT: VLM based System for Indoor Scene Understanding and Beyond

Recently, Vision Language Models (VLMs) have experienced significant advancements, yet these models still face challenges in spatial hierarchical reasoning within indoor scenes. In this study, we introduce ROOT, a VLM-based system designed to enhance the analysis of indoor scenes. Specifically, we first develop an iterative object perception algorithm using GPT-4V to detect object entities within indoor scenes. This is followed by employing vision foundation models to acquire additional meta-information about the scene, such as bounding boxes. Building on this foundational data, we propose a specialized VLM, SceneVLM, which is capable of generating spatial hierarchical scene graphs and providing distance information for objects within indoor environments. This information enhances our understanding of the spatial arrangement of indoor scenes. To train our SceneVLM, we collect over 610,000 images from various public indoor datasets and implement a scene data generation pipeline with a semi-automated technique to establish relationships and estimate distances among indoor objects. By utilizing this enriched data, we conduct various training recipes and finish SceneVLM. Our experiments demonstrate that \rootname facilitates indoor scene understanding and proves effective in diverse downstream applications, such as 3D scene generation and embodied AI. The code will be released at https://github.com/harrytea/ROOT.

  • 7 authors
·
Nov 23, 2024

MMSearch-Plus: A Simple Yet Challenging Benchmark for Multimodal Browsing Agents

Large multimodal language models (MLLMs) are increasingly deployed as web agents, yet many multimodal browsing benchmarks can be solved by shallow, fixed workflows that lean on high-recall image search and nearby text-masking the genuinely multimodal challenges of fine-grained visual reasoning, provenance verification, and long-horizon tool use. We introduce MMSearch-Plus, a benchmark of 311 tasks that highly demand multimodal understanding while preserving the difficulty profile of strong text-only browsing suites. Each item is constructed to contain multiple weak, localized visual signals that must be extracted, propagated through iterative text-image search, and cross-validated under retrieval noise before answering. Our curation procedure, Spatial-Temporal Extrapolation, seeds questions whose answers require extrapolating from spatial cues (micro-text, part-level appearance, layouts, signage) and temporal traces (broadcast overlays, seasonal context) to out-of-image facts such as events, dates, and venues. We provide a model-agnostic agent framework with browsing tools and evaluate a range of closed and open MLLMs. The strongest agent (o3) attains 15.1% without search and 36.0% accuracy with rollout under our framework, while a strong open-source model (Qwen-2.5-VL-72B-Instruct) achieves 0.0% without search and 6.9% after 20 rounds of search. Beyond answer accuracy, we assess bounding-box production and cropped-image search, and conduct an error analysis that surfaces failures in source verification, part-based reasoning, and long-horizon planning.

  • 10 authors
·
Aug 29

DesignBench: A Comprehensive Benchmark for MLLM-based Front-end Code Generation

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in automated front-end engineering, e.g., generating UI code from visual designs. However, existing front-end UI code generation benchmarks have the following limitations: (1) While framework-based development becomes predominant in modern front-end programming, current benchmarks fail to incorporate mainstream development frameworks. (2) Existing evaluations focus solely on the UI code generation task, whereas practical UI development involves several iterations, including refining editing, and repairing issues. (3) Current benchmarks employ unidimensional evaluation, lacking investigation into influencing factors like task difficulty, input context variations, and in-depth code-level analysis. To bridge these gaps, we introduce DesignBench, a multi-framework, multi-task evaluation benchmark for assessing MLLMs' capabilities in automated front-end engineering. DesignBench encompasses three widely-used UI frameworks (React, Vue, and Angular) alongside vanilla HTML/CSS, and evaluates on three essential front-end tasks (generation, edit, and repair) in real-world development workflows. DesignBench contains 900 webpage samples spanning over 11 topics, 9 edit types, and 6 issue categories, enabling detailed analysis of MLLM performance across multiple dimensions. Our systematic evaluation reveals critical insights into MLLMs' framework-specific limitations, task-related bottlenecks, and performance variations under different conditions, providing guidance for future research in automated front-end development. Our code and data are available at https://github.com/WebPAI/DesignBench.

  • 7 authors
·
Jun 6

OpenNeRF: Open Set 3D Neural Scene Segmentation with Pixel-Wise Features and Rendered Novel Views

Large visual-language models (VLMs), like CLIP, enable open-set image segmentation to segment arbitrary concepts from an image in a zero-shot manner. This goes beyond the traditional closed-set assumption, i.e., where models can only segment classes from a pre-defined training set. More recently, first works on open-set segmentation in 3D scenes have appeared in the literature. These methods are heavily influenced by closed-set 3D convolutional approaches that process point clouds or polygon meshes. However, these 3D scene representations do not align well with the image-based nature of the visual-language models. Indeed, point cloud and 3D meshes typically have a lower resolution than images and the reconstructed 3D scene geometry might not project well to the underlying 2D image sequences used to compute pixel-aligned CLIP features. To address these challenges, we propose OpenNeRF which naturally operates on posed images and directly encodes the VLM features within the NeRF. This is similar in spirit to LERF, however our work shows that using pixel-wise VLM features (instead of global CLIP features) results in an overall less complex architecture without the need for additional DINO regularization. Our OpenNeRF further leverages NeRF's ability to render novel views and extract open-set VLM features from areas that are not well observed in the initial posed images. For 3D point cloud segmentation on the Replica dataset, OpenNeRF outperforms recent open-vocabulary methods such as LERF and OpenScene by at least +4.9 mIoU.

  • 6 authors
·
Apr 4, 2024

EvolveDirector: Approaching Advanced Text-to-Image Generation with Large Vision-Language Models

Recent advancements in generation models have showcased remarkable capabilities in generating fantastic content. However, most of them are trained on proprietary high-quality data, and some models withhold their parameters and only provide accessible application programming interfaces (APIs), limiting their benefits for downstream tasks. To explore the feasibility of training a text-to-image generation model comparable to advanced models using publicly available resources, we introduce EvolveDirector. This framework interacts with advanced models through their public APIs to obtain text-image data pairs to train a base model. Our experiments with extensive data indicate that the model trained on generated data of the advanced model can approximate its generation capability. However, it requires large-scale samples of 10 million or more. This incurs significant expenses in time, computational resources, and especially the costs associated with calling fee-based APIs. To address this problem, we leverage pre-trained large vision-language models (VLMs) to guide the evolution of the base model. VLM continuously evaluates the base model during training and dynamically updates and refines the training dataset by the discrimination, expansion, deletion, and mutation operations. Experimental results show that this paradigm significantly reduces the required data volume. Furthermore, when approaching multiple advanced models, EvolveDirector can select the best samples generated by them to learn powerful and balanced abilities. The final trained model Edgen is demonstrated to outperform these advanced models. The code and model weights are available at https://github.com/showlab/EvolveDirector.

  • 11 authors
·
Oct 9, 2024 2

Vision-Language Model for Object Detection and Segmentation: A Review and Evaluation

Vision-Language Model (VLM) have gained widespread adoption in Open-Vocabulary (OV) object detection and segmentation tasks. Despite they have shown promise on OV-related tasks, their effectiveness in conventional vision tasks has thus far been unevaluated. In this work, we present the systematic review of VLM-based detection and segmentation, view VLM as the foundational model and conduct comprehensive evaluations across multiple downstream tasks for the first time: 1) The evaluation spans eight detection scenarios (closed-set detection, domain adaptation, crowded objects, etc.) and eight segmentation scenarios (few-shot, open-world, small object, etc.), revealing distinct performance advantages and limitations of various VLM architectures across tasks. 2) As for detection tasks, we evaluate VLMs under three finetuning granularities: zero prediction, visual fine-tuning, and text prompt, and further analyze how different finetuning strategies impact performance under varied task. 3) Based on empirical findings, we provide in-depth analysis of the correlations between task characteristics, model architectures, and training methodologies, offering insights for future VLM design. 4) We believe that this work shall be valuable to the pattern recognition experts working in the fields of computer vision, multimodal learning, and vision foundation models by introducing them to the problem, and familiarizing them with the current status of the progress while providing promising directions for future research. A project associated with this review and evaluation has been created at https://github.com/better-chao/perceptual_abilities_evaluation.

  • 16 authors
·
Apr 13

E-ViLM: Efficient Video-Language Model via Masked Video Modeling with Semantic Vector-Quantized Tokenizer

To build scalable models for challenging real-world tasks, it is important to learn from diverse, multi-modal data in various forms (e.g., videos, text, and images). Among the existing works, a plethora of them have focused on leveraging large but cumbersome cross-modal architectures. Regardless of their effectiveness, larger architectures unavoidably prevent the models from being extended to real-world applications, so building a lightweight VL architecture and an efficient learning schema is of great practical value. In this paper, we propose an Efficient Video-Language Model (dubbed as E-ViLM) and a masked video modeling (MVM) schema, assisted with a semantic vector-quantized tokenizer. In particular, our E-ViLM learns to reconstruct the semantic labels of masked video regions, produced by the pre-trained vector-quantized tokenizer, which discretizes the continuous visual signals into labels. We show that with our simple MVM task and regular VL pre-training modelings, our E-ViLM, despite its compactness, is able to learn expressive representations from Video-Language corpus and generalize well to extensive Video-Language tasks including video question answering, text-to-video retrieval, etc. In particular, our E-ViLM obtains obvious efficiency improvements by reaching competing performances with faster inference speed, i.e., our model reaches 39.3% Top-1 accuracy on the MSRVTT benchmark, retaining 91.4% of the accuracy of state-of-the-art larger VL architecture with only 15% parameters and 94.8% fewer GFLOPs. We also provide extensive ablative studies that validate the effectiveness of our proposed learning schema for E-ViLM.

  • 4 authors
·
Nov 28, 2023

Complementary Subspace Low-Rank Adaptation of Vision-Language Models for Few-Shot Classification

Vision language model (VLM) has been designed for large scale image-text alignment as a pretrained foundation model. For downstream few shot classification tasks, parameter efficient fine-tuning (PEFT) VLM has gained much popularity in the computer vision community. PEFT methods like prompt tuning and linear adapter have been studied for fine-tuning VLM while low rank adaptation (LoRA) algorithm has rarely been considered for few shot fine-tuning VLM. The main obstacle to use LoRA for few shot fine-tuning is the catastrophic forgetting problem. Because the visual language alignment knowledge is important for the generality in few shot learning, whereas low rank adaptation interferes with the most informative direction of the pretrained weight matrix. We propose the complementary subspace low rank adaptation (Comp-LoRA) method to regularize the catastrophic forgetting problem in few shot VLM finetuning. In detail, we optimize the low rank matrix in the complementary subspace, thus preserving the general vision language alignment ability of VLM when learning the novel few shot information. We conduct comparison experiments of the proposed Comp-LoRA method and other PEFT methods on fine-tuning VLM for few shot classification. And we also present the suppression on the catastrophic forgetting problem of our proposed method against directly applying LoRA to VLM. The results show that the proposed method surpasses the baseline method by about +1.0\% Top-1 accuracy and preserves the VLM zero-shot performance over the baseline method by about +1.3\% Top-1 accuracy.

  • 6 authors
·
Jan 24

Advancing vision-language models in front-end development via data synthesis

Modern front-end (FE) development, especially when leveraging the unique features of frameworks like React and Vue, presents distinctive challenges. These include managing modular architectures, ensuring synchronization between data and visual outputs for declarative rendering, and adapting reusable components to various scenarios. Such complexities make it particularly difficult for state-of-the-art large vision-language models (VLMs) to generate accurate and functional code directly from design images. To address these challenges, we propose a reflective agentic workflow that synthesizes high-quality image-text data to capture the diverse characteristics of FE development. This workflow automates the extraction of self-containedA \textbf{self-contained code snippet is one that encapsulates all necessary logic, styling, and dependencies, ensuring it functions independently without requiring external imports or context.} code snippets from real-world projects, renders the corresponding visual outputs, and generates detailed descriptions that link design elements to functional code. To further expand the scope and utility of the synthesis, we introduce three data synthesis strategies: Evolution-based synthesis, which enables scalable and diverse dataset expansion; Waterfall-Model-based synthesis, which generates logically coherent code derived from system requirements; and Additive Development synthesis, which iteratively increases the complexity of human-authored components. We build a large vision-language model, Flame, trained on the synthesized datasets and demonstrate its effectiveness in generating React code via the pass@k metric. Our results suggest that a code VLM trained to interpret images before code generation may achieve better performance.

  • 5 authors
·
Mar 3

Visual Classification via Description from Large Language Models

Vision-language models (VLMs) such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what features the model uses to construct its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.

  • 2 authors
·
Oct 13, 2022

Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?

Data science and engineering workflows often span multiple stages, from warehousing to orchestration, using tools like BigQuery, dbt, and Airbyte. As vision language models (VLMs) advance in multimodal understanding and code generation, VLM-based agents could potentially automate these workflows by generating SQL queries, Python code, and GUI operations. This automation can improve the productivity of experts while democratizing access to large-scale data analysis. In this paper, we introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering workflows, featuring 494 real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications. These tasks, derived from real-world use cases, evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems. To balance realistic simulation with evaluation simplicity, we devote significant effort to developing automatic configurations for task setup and carefully crafting evaluation metrics for each task. Furthermore, we supplement multimodal agents with comprehensive documents of these enterprise data software systems. Our empirical evaluation reveals that existing state-of-the-art LLM/VLM-based agents do not reliably automate full data workflows (14.0% success). Even with step-by-step guidance, these agents still underperform in tasks that require fine-grained, knowledge-intensive GUI actions (16.2%) and involve remote cloud-hosted workspaces (10.6%). We hope that Spider2-V paves the way for autonomous multimodal agents to transform the automation of data science and engineering workflow. Our code and data are available at https://spider2-v.github.io.

  • 23 authors
·
Jul 15, 2024 2

MathSE: Improving Multimodal Mathematical Reasoning via Self-Evolving Iterative Reflection and Reward-Guided Fine-Tuning

Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in vision-language answering tasks. Despite their strengths, these models often encounter challenges in achieving complex reasoning tasks such as mathematical problem-solving. Previous works have focused on fine-tuning on specialized mathematical datasets. However, these datasets are typically distilled directly from teacher models, which capture only static reasoning patterns and leaving substantial gaps compared to student models. This reliance on fixed teacher-derived datasets not only restricts the model's ability to adapt to novel or more intricate questions that extend beyond the confines of the training data, but also lacks the iterative depth needed for robust generalization. To overcome these limitations, we propose \method, a Mathematical Self-Evolving framework for MLLMs. In contrast to traditional one-shot fine-tuning paradigms, \method iteratively refines the model through cycles of inference, reflection, and reward-based feedback. Specifically, we leverage iterative fine-tuning by incorporating correct reasoning paths derived from previous-stage inference and integrating reflections from a specialized Outcome Reward Model (ORM). To verify the effectiveness of \method, we evaluate it on a suite of challenging benchmarks, demonstrating significant performance gains over backbone models. Notably, our experimental results on MathVL-test surpass the leading open-source multimodal mathematical reasoning model QVQ. Our code and models are available at https://zheny2751\allowbreak-dotcom.github.io/\allowbreak MathSE.github.io/.

LLMC+: Benchmarking Vision-Language Model Compression with a Plug-and-play Toolkit

Large Vision-Language Models (VLMs) exhibit impressive multi-modal capabilities but suffer from prohibitive computational and memory demands, due to their long visual token sequences and massive parameter sizes. To address these issues, recent works have proposed training-free compression methods. However, existing efforts often suffer from three major limitations: (1) Current approaches do not decompose techniques into comparable modules, hindering fair evaluation across spatial and temporal redundancy. (2) Evaluation confined to simple single-turn tasks, failing to reflect performance in realistic scenarios. (3) Isolated use of individual compression techniques, without exploring their joint potential. To overcome these gaps, we introduce LLMC+, a comprehensive VLM compression benchmark with a versatile, plug-and-play toolkit. LLMC+ supports over 20 algorithms across five representative VLM families and enables systematic study of token-level and model-level compression. Our benchmark reveals that: (1) Spatial and temporal redundancies demand distinct technical strategies. (2) Token reduction methods degrade significantly in multi-turn dialogue and detail-sensitive tasks. (3) Combining token and model compression achieves extreme compression with minimal performance loss. We believe LLMC+ will facilitate fair evaluation and inspire future research in efficient VLM. Our code is available at https://github.com/ModelTC/LightCompress.

  • 10 authors
·
Aug 13

From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration

Large Vision-Language Models (LVLMs) have achieved significant progress in combining visual comprehension with language generation. Despite this success, the training data of LVLMs still suffers from Long-Tail (LT) problems, where the data distribution is highly imbalanced. Previous works have mainly focused on traditional VLM architectures, i.e., CLIP or ViT, and specific tasks such as recognition and classification. Nevertheless, the exploration of LVLM (e.g. LLaVA) and more general tasks (e.g. Visual Question Answering and Visual Reasoning) remains under-explored. In this paper, we first conduct an in-depth analysis of the LT issues in LVLMs and identify two core causes: the overrepresentation of head concepts and the underrepresentation of tail concepts. Based on the above observation, we propose an Adaptive Data Refinement Framework (ADR), which consists of two stages: Data Rebalancing (DR) and Data Synthesis (DS). In the DR stage, we adaptively rebalance the redundant data based on entity distributions, while in the DS stage, we leverage Denoising Diffusion Probabilistic Models (DDPMs) and scarce images to supplement underrepresented portions. Through comprehensive evaluations across eleven benchmarks, our proposed ADR effectively mitigates the long-tail problem in the training data, improving the average performance of LLaVA 1.5 relatively by 4.36%, without increasing the training data volume.

  • 4 authors
·
Mar 17 2

VRAG-RL: Empower Vision-Perception-Based RAG for Visually Rich Information Understanding via Iterative Reasoning with Reinforcement Learning

Effectively retrieving, reasoning and understanding visually rich information remains a challenge for RAG methods. Traditional text-based methods cannot handle visual-related information. On the other hand, current vision-based RAG approaches are often limited by fixed pipelines and frequently struggle to reason effectively due to the insufficient activation of the fundamental capabilities of models. As RL has been proven to be beneficial for model reasoning, we introduce VRAG-RL, a novel RL framework tailored for complex reasoning across visually rich information. With this framework, VLMs interact with search engines, autonomously sampling single-turn or multi-turn reasoning trajectories with the help of visual perception tokens and undergoing continual optimization based on these samples. Our approach highlights key limitations of RL in RAG domains: (i) Prior Multi-modal RAG approaches tend to merely incorporate images into the context, leading to insufficient reasoning token allocation and neglecting visual-specific perception; and (ii) When models interact with search engines, their queries often fail to retrieve relevant information due to the inability to articulate requirements, thereby leading to suboptimal performance. To address these challenges, we define an action space tailored for visually rich inputs, with actions including cropping and scaling, allowing the model to gather information from a coarse-to-fine perspective. Furthermore, to bridge the gap between users' original inquiries and the retriever, we employ a simple yet effective reward that integrates query rewriting and retrieval performance with a model-based reward. Our VRAG-RL optimizes VLMs for RAG tasks using specially designed RL strategies, aligning the model with real-world applications. The code is available at https://github.com/Alibaba-NLP/VRAG{https://github.com/Alibaba-NLP/VRAG}.

  • 9 authors
·
May 28 3

A Survey of Safety on Large Vision-Language Models: Attacks, Defenses and Evaluations

With the rapid advancement of Large Vision-Language Models (LVLMs), ensuring their safety has emerged as a crucial area of research. This survey provides a comprehensive analysis of LVLM safety, covering key aspects such as attacks, defenses, and evaluation methods. We introduce a unified framework that integrates these interrelated components, offering a holistic perspective on the vulnerabilities of LVLMs and the corresponding mitigation strategies. Through an analysis of the LVLM lifecycle, we introduce a classification framework that distinguishes between inference and training phases, with further subcategories to provide deeper insights. Furthermore, we highlight limitations in existing research and outline future directions aimed at strengthening the robustness of LVLMs. As part of our research, we conduct a set of safety evaluations on the latest LVLM, Deepseek Janus-Pro, and provide a theoretical analysis of the results. Our findings provide strategic recommendations for advancing LVLM safety and ensuring their secure and reliable deployment in high-stakes, real-world applications. This survey aims to serve as a cornerstone for future research, facilitating the development of models that not only push the boundaries of multimodal intelligence but also adhere to the highest standards of security and ethical integrity. Furthermore, to aid the growing research in this field, we have created a public repository to continuously compile and update the latest work on LVLM safety: https://github.com/XuankunRong/Awesome-LVLM-Safety .

  • 6 authors
·
Feb 14