- ASHABot: An LLM-Powered Chatbot to Support the Informational Needs of Community Health Workers Community health workers (CHWs) provide last-mile healthcare services but face challenges due to limited medical knowledge and training. This paper describes the design, deployment, and evaluation of ASHABot, an LLM-powered, experts-in-the-loop, WhatsApp-based chatbot to address the information needs of CHWs in India. Through interviews with CHWs and their supervisors and log analysis, we examine factors affecting their engagement with ASHABot, and ASHABot's role in addressing CHWs' informational needs. We found that ASHABot provided a private channel for CHWs to ask rudimentary and sensitive questions they hesitated to ask supervisors. CHWs trusted the information they received on ASHABot and treated it as an authoritative resource. CHWs' supervisors expanded their knowledge by contributing answers to questions ASHABot failed to answer, but were concerned about demands on their workload and increased accountability. We emphasize positioning LLMs as supplemental fallible resources within the community healthcare ecosystem, instead of as replacements for supervisor support. 8 authors · Sep 17, 2024
- Introducing L2M3, A Multilingual Medical Large Language Model to Advance Health Equity in Low-Resource Regions Addressing the imminent shortfall of 10 million health workers by 2030, predominantly in Low- and Middle-Income Countries (LMICs), this paper introduces an innovative approach that harnesses the power of Large Language Models (LLMs) integrated with machine translation models. This solution is engineered to meet the unique needs of Community Health Workers (CHWs), overcoming language barriers, cultural sensitivities, and the limited availability of medical dialog datasets. I have crafted a model that not only boasts superior translation capabilities but also undergoes rigorous fine-tuning on open-source datasets to ensure medical accuracy and is equipped with comprehensive safety features to counteract the risks of misinformation. Featuring a modular design, this approach is specifically structured for swift adaptation across various linguistic and cultural contexts, utilizing open-source components to significantly reduce healthcare operational costs. This strategic innovation markedly improves the accessibility and quality of healthcare services by providing CHWs with contextually appropriate medical knowledge and diagnostic tools. This paper highlights the transformative impact of this context-aware LLM, underscoring its crucial role in addressing the global healthcare workforce deficit and propelling forward healthcare outcomes in LMICs. 1 authors · Apr 11, 2024