new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

The chemical inventory of the planet-hosting disk PDS 70

As host to two accreting planets, PDS 70 provides a unique opportunity to probe the chemical complexity of atmosphere-forming material. We present ALMA Band 6 observations of the PDS~70 disk and report the first chemical inventory of the system. With a spatial resolution of 0.4''-0.5'' (sim50 au), 12 species are detected, including CO isotopologues and formaldehyde, small hydrocarbons, HCN and HCO+ isotopologues, and S-bearing molecules. SO and CH3OH are not detected. All lines show a large cavity at the center of the disk, indicative of the deep gap carved by the massive planets. The radial profiles of the line emission are compared to the (sub-)mm continuum and infrared scattered light intensity profiles. Different molecular transitions peak at different radii, revealing the complex interplay between density, temperature and chemistry in setting molecular abundances. Column densities and optical depth profiles are derived for all detected molecules, and upper limits obtained for the non detections. Excitation temperature is obtained for H2CO. Deuteration and nitrogen fractionation profiles from the hydro-cyanide lines show radially increasing fractionation levels. Comparison of the disk chemical inventory to grids of chemical models from the literature strongly suggests a disk molecular layer hosting a carbon to oxygen ratio C/O>1, thus providing for the first time compelling evidence of planets actively accreting high C/O ratio gas at present time.

  • 6 authors
·
Jan 20, 2021

ALMA observations of massive clouds in the central molecular zone: slim filaments tracing parsec-scale shocks

The central molecular zone (CMZ) of our Galaxy exhibits widespread emission from SiO and various complex organic molecules (COMs), yet the exact origin of such emission is uncertain. Here we report the discovery of a unique class of long (>0.5 pc) and narrow (<0.03 pc) filaments in the emission of SiO 5-4 and eight additional molecular lines, including several COMs, in our ALMA 1.3 mm spectral line observations toward two massive molecular clouds in the CMZ, which we name as slim filaments. However, these filaments are not detected in the 1.3 mm continuum at the 5sigma level. Their line-of-sight velocities are coherent and inconsistent with being outflows. The column densities and relative abundances of the detected molecules are statistically similar to those in protostellar outflows but different from those in dense cores within the same clouds. Turbulent pressure in these filaments dominates over self gravity and leads to hydrostatic inequilibrium, indicating that they are a different class of objects than the dense gas filaments in dynamical equilibrium ubiquitously found in nearby molecular clouds. We argue that these newly detected slim filaments are associated with parsec-scale shocks, likely arising from dynamic interactions between shock waves and molecular clouds. The dissipation of the slim filaments may replenish SiO and COMs in the interstellar medium and lead to their widespread emission in the CMZ.

  • 25 authors
·
Feb 6, 2025

Gas dynamics around a Jupiter mass planet: II. Chemical evolution of circumplanetary material

In an ongoing effort to understand planet formation the link between the chemistry of the protoplanetary disk and the properties of resulting planets have long been a subject of interest. These connections have generally been made between mature planets and young protoplanetary disks through the carbon-to-oxygen (C/O) ratio. In a rare number of systems, young protoplanets have been found within their natal protoplanetary disks. These systems offer a unique opportunity to directly study the delivery of gas from the protoplanetary disk to the planet. In this work we post-process 3D numerical simulations of an embedded Jupiter-massed planet in its protoplanetary disk to explore the chemical evolution of gas as it flows from the disk to the planet. The relevant dust to this chemical evolution is assumed to be small, co-moving grains with a reduced dust-to-gas ratio indicative of the upper atmosphere of a protoplanetary disk. We find that as the gas enters deep into the planet's gravitational well, it warms significantly (up to sim 800 K), releasing all of the volatile content from the ice phase. This change in phase can influence our understanding of the delivery of volatile species to the atmospheres of giant planets. The primary carbon, oxygen, and sulfur carrying ices: CO_2, H_2O, and H_2S are released into the gas phase and along with the warm gas temperatures near the embedded planets lead to the production of unique species like CS, SO, and SO_2 compared to the protoplanetary disk. We compute the column densities of SO, SO_2, CS, and H_2CS in our model and find that their values are consistent with previous observational studies.

  • 3 authors
·
Nov 26, 2024

A multi-reconstruction study of breast density estimation using Deep Learning

Breast density estimation is one of the key tasks in recognizing individuals predisposed to breast cancer. It is often challenging because of low contrast and fluctuations in mammograms' fatty tissue background. Most of the time, the breast density is estimated manually where a radiologist assigns one of the four density categories decided by the Breast Imaging and Reporting Data Systems (BI-RADS). There have been efforts in the direction of automating a breast density classification pipeline. Breast density estimation is one of the key tasks performed during a screening exam. Dense breasts are more susceptible to breast cancer. The density estimation is challenging because of low contrast and fluctuations in mammograms' fatty tissue background. Traditional mammograms are being replaced by tomosynthesis and its other low radiation dose variants (for example Hologic' Intelligent 2D and C-View). Because of the low-dose requirement, increasingly more screening centers are favoring the Intelligent 2D view and C-View. Deep-learning studies for breast density estimation use only a single modality for training a neural network. However, doing so restricts the number of images in the dataset. In this paper, we show that a neural network trained on all the modalities at once performs better than a neural network trained on any single modality. We discuss these results using the area under the receiver operator characteristics curves.

  • 5 authors
·
Feb 16, 2022

Volume Rendering of Neural Implicit Surfaces

Neural volume rendering became increasingly popular recently due to its success in synthesizing novel views of a scene from a sparse set of input images. So far, the geometry learned by neural volume rendering techniques was modeled using a generic density function. Furthermore, the geometry itself was extracted using an arbitrary level set of the density function leading to a noisy, often low fidelity reconstruction. The goal of this paper is to improve geometry representation and reconstruction in neural volume rendering. We achieve that by modeling the volume density as a function of the geometry. This is in contrast to previous work modeling the geometry as a function of the volume density. In more detail, we define the volume density function as Laplace's cumulative distribution function (CDF) applied to a signed distance function (SDF) representation. This simple density representation has three benefits: (i) it provides a useful inductive bias to the geometry learned in the neural volume rendering process; (ii) it facilitates a bound on the opacity approximation error, leading to an accurate sampling of the viewing ray. Accurate sampling is important to provide a precise coupling of geometry and radiance; and (iii) it allows efficient unsupervised disentanglement of shape and appearance in volume rendering. Applying this new density representation to challenging scene multiview datasets produced high quality geometry reconstructions, outperforming relevant baselines. Furthermore, switching shape and appearance between scenes is possible due to the disentanglement of the two.

  • 4 authors
·
Jun 22, 2021

XDen-1K: A Density Field Dataset of Real-World Objects

A deep understanding of the physical world is a central goal for embodied AI and realistic simulation. While current models excel at capturing an object's surface geometry and appearance, they largely neglect its internal physical properties. This omission is critical, as properties like volumetric density are fundamental for predicting an object's center of mass, stability, and interaction dynamics in applications ranging from robotic manipulation to physical simulation. The primary bottleneck has been the absence of large-scale, real-world data. To bridge this gap, we introduce XDen-1K, the first large-scale, multi-modal dataset designed for real-world physical property estimation, with a particular focus on volumetric density. The core of this dataset consists of 1,000 real-world objects across 148 categories, for which we provide comprehensive multi-modal data, including a high-resolution 3D geometric model with part-level annotations and a corresponding set of real-world biplanar X-ray scans. Building upon this data, we introduce a novel optimization framework that recovers a high-fidelity volumetric density field of each object from its sparse X-ray views. To demonstrate its practical value, we add X-ray images as a conditioning signal to an existing segmentation network and perform volumetric segmentation. Furthermore, we conduct experiments on downstream robotics tasks. The results show that leveraging the dataset can effectively improve the accuracy of center-of-mass estimation and the success rate of robotic manipulation. We believe XDen-1K will serve as a foundational resource and a challenging new benchmark, catalyzing future research in physically grounded visual inference and embodied AI.

  • 9 authors
·
Dec 11, 2025

Bars in low-density environments rotate faster than bars in dense regions

Does the environment of a galaxy directly influence the kinematics of its bar? We present observational evidence that bars in high-density environments exhibit significantly slower rotation rates than bars in low-density environments. Galactic bars are central, extended structures composed of stars, dust and gas, present in approximately 30 to 70 per cent of luminous spiral galaxies in the local Universe. Recent simulation studies have suggested that the environment can influence the bar rotation rate, R, which is used to classify bars as either fast (1leq R leq1.4) or slow (R gt 1.4). We use estimates of R obtained with the Tremaine-Weinberg method applied to Integral Field Unit spectroscopy from MaNGA and CALIFA. After cross-matching these with the projected neighbour density, logΣ, we retain 286 galaxies. The analysis reveals that bars in high-density environments are significantly slower (median R = 1.67^{+0.72}_{-0.42}) compared to bars in low-density environments (median R = 1.37^{+0.51}_{-0.34}); Anderson-Darling p-value of p_{AD}= 0.002 (3.1,σ). This study marks the first empirical test of the hypothesis that fast bars are formed by global instabilities in isolated galaxies, while slow bars are triggered by tidal interactions in dense environments, in agreement with predictions from numerous N-body simulations. Future studies would benefit from a larger sample of galaxies with reliable Integral Field Unit data, required to measure bar rotation rates. Specifically, more data are necessary to study the environmental influence on bar formation within dense settings (i.e. groups, clusters and filaments).

  • 4 authors
·
Nov 3, 2025

Efficient Masked AutoEncoder for Video Object Counting and A Large-Scale Benchmark

The dynamic imbalance of the fore-background is a major challenge in video object counting, which is usually caused by the sparsity of target objects. This remains understudied in existing works and often leads to severe under-/over-prediction errors. To tackle this issue in video object counting, we propose a density-embedded Efficient Masked Autoencoder Counting (E-MAC) framework in this paper. To empower the model's representation ability on density regression, we develop a new Density-Embedded Masked mOdeling (DEMO) method, which first takes the density map as an auxiliary modality to perform multimodal self-representation learning for image and density map. Although DEMO contributes to effective cross-modal regression guidance, it also brings in redundant background information, making it difficult to focus on the foreground regions. To handle this dilemma, we propose an efficient spatial adaptive masking derived from density maps to boost efficiency. Meanwhile, we employ an optical flow-based temporal collaborative fusion strategy to effectively capture the dynamic variations across frames, aligning features to derive multi-frame density residuals. The counting accuracy of the current frame is boosted by harnessing the information from adjacent frames. In addition, considering that most existing datasets are limited to human-centric scenarios, we first propose a large video bird counting dataset, DroneBird, in natural scenarios for migratory bird protection. Extensive experiments on three crowd datasets and our DroneBird validate our superiority against the counterparts. The code and dataset are available.

  • 6 authors
·
Nov 20, 2024