- Supporting Undotted Arabic with Pre-trained Language Models We observe a recent behaviour on social media, in which users intentionally remove consonantal dots from Arabic letters, in order to bypass content-classification algorithms. Content classification is typically done by fine-tuning pre-trained language models, which have been recently employed by many natural-language-processing applications. In this work we study the effect of applying pre-trained Arabic language models on "undotted" Arabic texts. We suggest several ways of supporting undotted texts with pre-trained models, without additional training, and measure their performance on two Arabic natural-language-processing downstream tasks. The results are encouraging; in one of the tasks our method shows nearly perfect performance. 2 authors · Nov 18, 2021
1 ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic The focus of language model evaluation has transitioned towards reasoning and knowledge-intensive tasks, driven by advancements in pretraining large models. While state-of-the-art models are partially trained on large Arabic texts, evaluating their performance in Arabic remains challenging due to the limited availability of relevant datasets. To bridge this gap, we present ArabicMMLU, the first multi-task language understanding benchmark for Arabic language, sourced from school exams across diverse educational levels in different countries spanning North Africa, the Levant, and the Gulf regions. Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA), and is carefully constructed by collaborating with native speakers in the region. Our comprehensive evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models. Notably, BLOOMZ, mT0, LLama2, and Falcon struggle to achieve a score of 50%, while even the top-performing Arabic-centric model only achieves a score of 62.3%. 13 authors · Feb 20, 2024 1
- Tibyan Corpus: Balanced and Comprehensive Error Coverage Corpus Using ChatGPT for Arabic Grammatical Error Correction Natural language processing (NLP) utilizes text data augmentation to overcome sample size constraints. Increasing the sample size is a natural and widely used strategy for alleviating these challenges. In this study, we chose Arabic to increase the sample size and correct grammatical errors. Arabic is considered one of the languages with limited resources for grammatical error correction (GEC). Furthermore, QALB-14 and QALB-15 are the only datasets used in most Arabic grammatical error correction research, with approximately 20,500 parallel examples, which is considered low compared with other languages. Therefore, this study aims to develop an Arabic corpus called "Tibyan" for grammatical error correction using ChatGPT. ChatGPT is used as a data augmenter tool based on a pair of Arabic sentences containing grammatical errors matched with a sentence free of errors extracted from Arabic books, called guide sentences. Multiple steps were involved in establishing our corpus, including the collection and pre-processing of a pair of Arabic texts from various sources, such as books and open-access corpora. We then used ChatGPT to generate a parallel corpus based on the text collected previously, as a guide for generating sentences with multiple types of errors. By engaging linguistic experts to review and validate the automatically generated sentences, we ensured that they were correct and error-free. The corpus was validated and refined iteratively based on feedback provided by linguistic experts to improve its accuracy. Finally, we used the Arabic Error Type Annotation tool (ARETA) to analyze the types of errors in the Tibyan corpus. Our corpus contained 49 of errors, including seven types: orthography, morphology, syntax, semantics, punctuation, merge, and split. The Tibyan corpus contains approximately 600 K tokens. 2 authors · Nov 7, 2024
- AceGPT, Localizing Large Language Models in Arabic This paper is devoted to the development of a localized Large Language Model (LLM) specifically for Arabic, a language imbued with unique cultural characteristics inadequately addressed by current mainstream models. Significant concerns emerge when addressing cultural sensitivity and local values. To address this, the paper proposes a comprehensive solution that includes further pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic, alongside Reinforcement Learning with AI Feedback (RLAIF) employing a reward model attuned to local culture and values. The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities. Comprehensive evaluations reveal that the resulting model, dubbed 'AceGPT', sets the state-of-the-art standard for open Arabic LLMs across various benchmarks, including the instruction-following benchmark (i.e., Arabic Vicuna-80 and Arabic AlpacaEval), knowledge benchmark (i.e., Arabic MMLU and EXAMs), and the newly introduced Arabic Cultural and Value Alignment benchmark. Notably, AceGPT outperforms Turbo in the popular Vicuna-80 benchmark when evaluated with GPT-4, despite the benchmark's limited scale. Codes, data, and models are in https://github.com/FreedomIntelligence/AceGPT. 20 authors · Sep 21, 2023
- Training a Bilingual Language Model by Mapping Tokens onto a Shared Character Space We train a bilingual Arabic-Hebrew language model using a transliterated version of Arabic texts in Hebrew, to ensure both languages are represented in the same script. Given the morphological, structural similarities, and the extensive number of cognates shared among Arabic and Hebrew, we assess the performance of a language model that employs a unified script for both languages, on machine translation which requires cross-lingual knowledge. The results are promising: our model outperforms a contrasting model which keeps the Arabic texts in the Arabic script, demonstrating the efficacy of the transliteration step. Despite being trained on a dataset approximately 60% smaller than that of other existing language models, our model appears to deliver comparable performance in machine translation across both translation directions. 2 authors · Feb 25, 2024
1 Partial Diacritization: A Context-Contrastive Inference Approach Diacritization plays a pivotal role in improving readability and disambiguating the meaning of Arabic texts. Efforts have so far focused on marking every eligible character (Full Diacritization). Comparatively overlooked, Partial Diacritzation (PD) is the selection of a subset of characters to be marked to aid comprehension where needed. Research has indicated that excessive diacritic marks can hinder skilled readers--reducing reading speed and accuracy. We conduct a behavioral experiment and show that partially marked text is often easier to read than fully marked text, and sometimes easier than plain text. In this light, we introduce Context-Contrastive Partial Diacritization (CCPD)--a novel approach to PD which integrates seamlessly with existing Arabic diacritization systems. CCPD processes each word twice, once with context and once without, and diacritizes only the characters with disparities between the two inferences. Further, we introduce novel indicators for measuring partial diacritization quality (SR, PDER, HDER, ERE), essential for establishing this as a machine learning task. Lastly, we introduce TD2, a Transformer-variant of an established model which offers a markedly different per formance profile on our proposed indicators compared to all other known systems. 2 authors · Jan 16, 2024
1 AraFinNews: Arabic Financial Summarisation with Domain-Adapted LLMs This paper examines how domain specificity affects abstractive summarisation of Arabic financial texts using large language models (LLMs). We present AraFinNews, the largest publicly available Arabic financial news dataset to date, comprising 212,500 article-headline pairs spanning almost a decade of reporting from October 2015 to July 2025. Developed as an Arabic counterpart to major English summarisation corpora such as CNN/DailyMail, AraFinNews offers a strong benchmark for assessing domain-focused language understanding and generation in financial contexts. Using this resource, we evaluate transformer-based models, including mT5, AraT5 and the domain-adapted FinAraT5, to investigate how financial-domain pretraining influences accuracy, numerical reliability and stylistic alignment with professional reporting. The results show that domain-adapted models produce more coherent summaries, particularly when handling quantitative and entity-centred information. These findings underscore the value of domain-specific adaptation for improving narrative fluency in Arabic financial summarisation. The dataset is freely available for non-commercial research at https://github.com/ArabicNLP-UK/AraFinNews. 2 authors · Nov 3
28 Jais and Jais-chat: Arabic-Centric Foundation and Instruction-Tuned Open Generative Large Language Models We introduce Jais and Jais-chat, new state-of-the-art Arabic-centric foundation and instruction-tuned open generative large language models (LLMs). The models are based on the GPT-3 decoder-only architecture and are pretrained on a mixture of Arabic and English texts, including source code in various programming languages. With 13 billion parameters, they demonstrate better knowledge and reasoning capabilities in Arabic than any existing open Arabic and multilingual models by a sizable margin, based on extensive evaluation. Moreover, the models are competitive in English compared to English-centric open models of similar size, despite being trained on much less English data. We provide a detailed description of the training, the tuning, the safety alignment, and the evaluation of the models. We release two open versions of the model -- the foundation Jais model, and an instruction-tuned Jais-chat variant -- with the aim of promoting research on Arabic LLMs. Available at https://huggingface.co/inception-mbzuai/jais-13b-chat 22 authors · Aug 30, 2023 6
1 SARD: A Large-Scale Synthetic Arabic OCR Dataset for Book-Style Text Recognition Arabic Optical Character Recognition (OCR) is essential for converting vast amounts of Arabic print media into digital formats. However, training modern OCR models, especially powerful vision-language models, is hampered by the lack of large, diverse, and well-structured datasets that mimic real-world book layouts. Existing Arabic OCR datasets often focus on isolated words or lines or are limited in scale, typographic variety, or structural complexity found in books. To address this significant gap, we introduce SARD (Large-Scale Synthetic Arabic OCR Dataset). SARD is a massive, synthetically generated dataset specifically designed to simulate book-style documents. It comprises 843,622 document images containing 690 million words, rendered across ten distinct Arabic fonts to ensure broad typographic coverage. Unlike datasets derived from scanned documents, SARD is free from real-world noise and distortions, offering a clean and controlled environment for model training. Its synthetic nature provides unparalleled scalability and allows for precise control over layout and content variation. We detail the dataset's composition and generation process and provide benchmark results for several OCR models, including traditional and deep learning approaches, highlighting the challenges and opportunities presented by this dataset. SARD serves as a valuable resource for developing and evaluating robust OCR and vision-language models capable of processing diverse Arabic book-style texts. 5 authors · May 30
- 1.5 billion words Arabic Corpus This study is an attempt to build a contemporary linguistic corpus for Arabic language. The corpus produced, is a text corpus includes more than five million newspaper articles. It contains over a billion and a half words in total, out of which, there is about three million unique words. The data were collected from newspaper articles in ten major news sources from eight Arabic countries, over a period of fourteen years. The corpus was encoded with two types of encoding, namely: UTF-8, and Windows CP-1256. Also it was marked with two mark-up languages, namely: SGML, and XML. 1 authors · Nov 12, 2016
- Poem Meter Classification of Recited Arabic Poetry: Integrating High-Resource Systems for a Low-Resource Task Arabic poetry is an essential and integral part of Arabic language and culture. It has been used by the Arabs to spot lights on their major events such as depicting brutal battles and conflicts. They also used it, as in many other languages, for various purposes such as romance, pride, lamentation, etc. Arabic poetry has received major attention from linguistics over the decades. One of the main characteristics of Arabic poetry is its special rhythmic structure as opposed to prose. This structure is referred to as a meter. Meters, along with other poetic characteristics, are intensively studied in an Arabic linguistic field called "Aroud". Identifying these meters for a verse is a lengthy and complicated process. It also requires technical knowledge in Aruod. For recited poetry, it adds an extra layer of processing. Developing systems for automatic identification of poem meters for recited poems need large amounts of labelled data. In this study, we propose a state-of-the-art framework to identify the poem meters of recited Arabic poetry, where we integrate two separate high-resource systems to perform the low-resource task. To ensure generalization of our proposed architecture, we publish a benchmark for this task for future research. 3 authors · Apr 16
2 Enhanced Arabic Text Retrieval with Attentive Relevance Scoring Arabic poses a particular challenge for natural language processing (NLP) and information retrieval (IR) due to its complex morphology, optional diacritics and the coexistence of Modern Standard Arabic (MSA) and various dialects. Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources. In this paper, we present an enhanced Dense Passage Retrieval (DPR) framework developed specifically for Arabic. At the core of our approach is a novel Attentive Relevance Scoring (ARS) that replaces standard interaction mechanisms with an adaptive scoring function that more effectively models the semantic relevance between questions and passages. Our method integrates pre-trained Arabic language models and architectural refinements to improve retrieval performance and significantly increase ranking accuracy when answering Arabic questions. The code is made publicly available at https://github.com/Bekhouche/APR{GitHub}. 5 authors · Jul 31 2
- Octopus: A Multitask Model and Toolkit for Arabic Natural Language Generation Understanding Arabic text and generating human-like responses is a challenging endeavor. While many researchers have proposed models and solutions for individual problems, there is an acute shortage of a comprehensive Arabic natural language generation toolkit that is capable of handling a wide range of tasks. In this work, we present a novel Arabic text-to-text Transformer model, namely AraT5v2. Our new model is methodically trained on extensive and diverse data, utilizing an extended sequence length of 2,048 tokens. We explore various pretraining strategies including unsupervised, supervised, and joint pertaining, under both single and multitask settings. Our models outperform competitive baselines with large margins. We take our work one step further by developing and publicly releasing Octopus, a Python-based package and command-line toolkit tailored for eight Arabic generation tasks all exploiting a single model. We release the models and the toolkit on our public repository. 3 authors · Oct 24, 2023
3 AraBERT: Transformer-based Model for Arabic Language Understanding The Arabic language is a morphologically rich language with relatively few resources and a less explored syntax compared to English. Given these limitations, Arabic Natural Language Processing (NLP) tasks like Sentiment Analysis (SA), Named Entity Recognition (NER), and Question Answering (QA), have proven to be very challenging to tackle. Recently, with the surge of transformers based models, language-specific BERT based models have proven to be very efficient at language understanding, provided they are pre-trained on a very large corpus. Such models were able to set new standards and achieve state-of-the-art results for most NLP tasks. In this paper, we pre-trained BERT specifically for the Arabic language in the pursuit of achieving the same success that BERT did for the English language. The performance of AraBERT is compared to multilingual BERT from Google and other state-of-the-art approaches. The results showed that the newly developed AraBERT achieved state-of-the-art performance on most tested Arabic NLP tasks. The pretrained araBERT models are publicly available on https://github.com/aub-mind/arabert hoping to encourage research and applications for Arabic NLP. 3 authors · Feb 28, 2020 6
6 101 Billion Arabic Words Dataset In recent years, Large Language Models have revolutionized the field of natural language processing, showcasing an impressive rise predominantly in English-centric domains. These advancements have set a global benchmark, inspiring significant efforts toward developing Arabic LLMs capable of understanding and generating the Arabic language with remarkable accuracy. Despite these advancements, a critical challenge persists: the potential bias in Arabic LLMs, primarily attributed to their reliance on datasets comprising English data that has been translated into Arabic. This reliance not only compromises the authenticity of the generated content but also reflects a broader issue -the scarcity of original quality Arabic linguistic data. This study aims to address the data scarcity in the Arab world and to encourage the development of Arabic Language Models that are true to both the linguistic and nuances of the region. We undertook a large-scale data mining project, extracting a substantial volume of text from the Common Crawl WET files, specifically targeting Arabic content. The extracted data underwent a rigorous cleaning and deduplication process, using innovative techniques to ensure the integrity and uniqueness of the dataset. The result is the 101 Billion Arabic Words Dataset, the largest Arabic dataset available to date, which can significantly contribute to the development of authentic Arabic LLMs. This study not only highlights the potential for creating linguistically and culturally accurate Arabic LLMs but also sets a precedent for future research in enhancing the authenticity of Arabic language models. 5 authors · Apr 29, 2024
1 Detecting Hope, Hate, and Emotion in Arabic Textual Speech and Multi-modal Memes Using Large Language Models The rise of social media and online communication platforms has led to the spread of Arabic textual posts and memes as a key form of digital expression. While these contents can be humorous and informative, they are also increasingly being used to spread offensive language and hate speech. Consequently, there is a growing demand for precise analysis of content in Arabic text and memes. This paper explores the potential of large language models to effectively identify hope, hate speech, offensive language, and emotional expressions within such content. We evaluate the performance of base LLMs, fine-tuned LLMs, and pre-trained embedding models. The evaluation is conducted using a dataset of Arabic textual speech and memes proposed in the ArabicNLP MAHED 2025 challenge. The results underscore the capacity of LLMs such as GPT-4o-mini, fine-tuned with Arabic textual speech, and Gemini Flash 2.5, fine-tuned with Arabic memes, to deliver the superior performance. They achieve up to 72.1%, 57.8%, and 79.6% macro F1 scores for tasks 1, 2, and 3, respectively, and secure first place overall in the Mahed 2025 challenge. The proposed solutions offer a more nuanced understanding of both text and memes for accurate and efficient Arabic content moderation systems. 2 authors · Aug 15
21 ATHAR: A High-Quality and Diverse Dataset for Classical Arabic to English Translation Classical Arabic represents a significant era, encompassing the golden age of Arab culture, philosophy, and scientific literature. With a broad consensus on the importance of translating these literatures to enrich knowledge dissemination across communities, the advent of large language models (LLMs) and translation systems offers promising tools to facilitate this goal. However, we have identified a scarcity of translation datasets in Classical Arabic, which are often limited in scope and topics, hindering the development of high-quality translation systems. In response, we present the ATHAR dataset, comprising 66,000 high-quality Classical Arabic to English translation samples that cover a wide array of subjects including science, culture, and philosophy. Furthermore, we assess the performance of current state-of-the-art LLMs under various settings, concluding that there is a need for such datasets in current systems. Our findings highlight how models can benefit from fine-tuning or incorporating this dataset into their pretraining pipelines. The dataset is publicly available on the HuggingFace Data Hub at https://huggingface.co/datasets/mohamed-khalil/ATHAR. 2 authors · Jul 29, 2024 1
- Ashaar: Automatic Analysis and Generation of Arabic Poetry Using Deep Learning Approaches Poetry holds immense significance within the cultural and traditional fabric of any nation. It serves as a vehicle for poets to articulate their emotions, preserve customs, and convey the essence of their culture. Arabic poetry is no exception, having played a cherished role in the heritage of the Arabic community throughout history and maintaining its relevance in the present era. Typically, comprehending Arabic poetry necessitates the expertise of a linguist who can analyze its content and assess its quality. This paper presents the introduction of a framework called Ashaar https://github.com/ARBML/Ashaar, which encompasses a collection of datasets and pre-trained models designed specifically for the analysis and generation of Arabic poetry. The pipeline established within our proposed approach encompasses various aspects of poetry, such as meter, theme, and era classification. It also incorporates automatic poetry diacritization, enabling more intricate analyses like automated extraction of the Arudi style. Additionally, we explore the feasibility of generating conditional poetry through the pre-training of a character-based GPT model. Furthermore, as part of this endeavor, we provide four datasets: one for poetry generation, another for diacritization, and two for Arudi-style prediction. These datasets aim to facilitate research and development in the field of Arabic poetry by enabling researchers and enthusiasts to delve into the nuances of this rich literary tradition. 3 authors · Jul 12, 2023
1 HATFormer: Historic Handwritten Arabic Text Recognition with Transformers Arabic handwritten text recognition (HTR) is challenging, especially for historical texts, due to diverse writing styles and the intrinsic features of Arabic script. Additionally, Arabic handwriting datasets are smaller compared to English ones, making it difficult to train generalizable Arabic HTR models. To address these challenges, we propose HATFormer, a transformer-based encoder-decoder architecture that builds on a state-of-the-art English HTR model. By leveraging the transformer's attention mechanism, HATFormer captures spatial contextual information to address the intrinsic challenges of Arabic script through differentiating cursive characters, decomposing visual representations, and identifying diacritics. Our customization to historical handwritten Arabic includes an image processor for effective ViT information preprocessing, a text tokenizer for compact Arabic text representation, and a training pipeline that accounts for a limited amount of historic Arabic handwriting data. HATFormer achieves a character error rate (CER) of 8.6% on the largest public historical handwritten Arabic dataset, with a 51% improvement over the best baseline in the literature. HATFormer also attains a comparable CER of 4.2% on the largest private non-historical dataset. Our work demonstrates the feasibility of adapting an English HTR method to a low-resource language with complex, language-specific challenges, contributing to advancements in document digitization, information retrieval, and cultural preservation. 5 authors · Oct 2, 2024
- From Arabic Text to Puzzles: LLM-Driven Development of Arabic Educational Crosswords We present an Arabic crossword puzzle generator from a given text that utilizes advanced language models such as GPT-4-Turbo, GPT-3.5-Turbo and Llama3-8B-Instruct, specifically developed for educational purposes, this innovative generator leverages a meticulously compiled dataset named Arabic-Clue-Instruct with over 50,000 entries encompassing text, answers, clues, and categories. This dataset is intricately designed to aid in the generation of pertinent clues linked to specific texts and keywords within defined categories. This project addresses the scarcity of advanced educational tools tailored for the Arabic language, promoting enhanced language learning and cognitive development. By providing a culturally and linguistically relevant tool, our objective is to make learning more engaging and effective through gamification and interactivity. Integrating state-of-the-art artificial intelligence with contemporary learning methodologies, this tool can generate crossword puzzles from any given educational text, thereby facilitating an interactive and enjoyable learning experience. This tool not only advances educational paradigms but also sets a new standard in interactive and cognitive learning technologies. The model and dataset are publicly available. 4 authors · Jan 19
- A Semi-supervised Approach for a Better Translation of Sentiment in Dialectical Arabic UGT In the online world, Machine Translation (MT) systems are extensively used to translate User-Generated Text (UGT) such as reviews, tweets, and social media posts, where the main message is often the author's positive or negative attitude towards the topic of the text. However, MT systems still lack accuracy in some low-resource languages and sometimes make critical translation errors that completely flip the sentiment polarity of the target word or phrase and hence delivers a wrong affect message. This is particularly noticeable in texts that do not follow common lexico-grammatical standards such as the dialectical Arabic (DA) used on online platforms. In this research, we aim to improve the translation of sentiment in UGT written in the dialectical versions of the Arabic language to English. Given the scarcity of gold-standard parallel data for DA-EN in the UGT domain, we introduce a semi-supervised approach that exploits both monolingual and parallel data for training an NMT system initialised by a cross-lingual language model trained with supervised and unsupervised modeling objectives. We assess the accuracy of sentiment translation by our proposed system through a numerical 'sentiment-closeness' measure as well as human evaluation. We will show that our semi-supervised MT system can significantly help with correcting sentiment errors detected in the online translation of dialectical Arabic UGT. 4 authors · Oct 21, 2022
1 LinTO Audio and Textual Datasets to Train and Evaluate Automatic Speech Recognition in Tunisian Arabic Dialect Developing Automatic Speech Recognition (ASR) systems for Tunisian Arabic Dialect is challenging due to the dialect's linguistic complexity and the scarcity of annotated speech datasets. To address these challenges, we propose the LinTO audio and textual datasets -- comprehensive resources that capture phonological and lexical features of Tunisian Arabic Dialect. These datasets include a variety of texts from numerous sources and real-world audio samples featuring diverse speakers and code-switching between Tunisian Arabic Dialect and English or French. By providing high-quality audio paired with precise transcriptions, the LinTO audio and textual datasets aim to provide qualitative material to build and benchmark ASR systems for the Tunisian Arabic Dialect. Keywords -- Tunisian Arabic Dialect, Speech-to-Text, Low-Resource Languages, Audio Data Augmentation 3 authors · Apr 3
9 QARI-OCR: High-Fidelity Arabic Text Recognition through Multimodal Large Language Model Adaptation The inherent complexities of Arabic script; its cursive nature, diacritical marks (tashkeel), and varied typography, pose persistent challenges for Optical Character Recognition (OCR). We present Qari-OCR, a series of vision-language models derived from Qwen2-VL-2B-Instruct, progressively optimized for Arabic through iterative fine-tuning on specialized synthetic datasets. Our leading model, QARI v0.2, establishes a new open-source state-of-the-art with a Word Error Rate (WER) of 0.160, Character Error Rate (CER) of 0.061, and BLEU score of 0.737 on diacritically-rich texts. Qari-OCR demonstrates superior handling of tashkeel, diverse fonts, and document layouts, alongside impressive performance on low-resolution images. Further explorations (QARI v0.3) showcase strong potential for structural document understanding and handwritten text. This work delivers a marked improvement in Arabic OCR accuracy and efficiency, with all models and datasets released to foster further research. 7 authors · Jun 2 2
2 GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Matryoshka Representation Learning and Hybrid Loss Training Semantic textual similarity (STS) is a critical task in natural language processing (NLP), enabling applications in retrieval, clustering, and understanding semantic relationships between texts. However, research in this area for the Arabic language remains limited due to the lack of high-quality datasets and pre-trained models. This scarcity of resources has restricted the accurate evaluation and advance of semantic similarity in Arabic text. This paper introduces General Arabic Text Embedding (GATE) models that achieve state-of-the-art performance on the Semantic Textual Similarity task within the MTEB benchmark. GATE leverages Matryoshka Representation Learning and a hybrid loss training approach with Arabic triplet datasets for Natural Language Inference, which are essential for enhancing model performance in tasks that demand fine-grained semantic understanding. GATE outperforms larger models, including OpenAI, with a 20-25% performance improvement on STS benchmarks, effectively capturing the unique semantic nuances of Arabic. 6 authors · May 30 2
1 ChatGPT for Arabic Grammatical Error Correction Recently, large language models (LLMs) fine-tuned to follow human instruction have exhibited significant capabilities in various English NLP tasks. However, their performance in grammatical error correction (GEC) tasks, particularly in non-English languages, remains significantly unexplored. In this paper, we delve into abilities of instruction fine-tuned LLMs in Arabic GEC, a task made complex due to Arabic's rich morphology. Our findings suggest that various prompting methods, coupled with (in-context) few-shot learning, demonstrate considerable effectiveness, with GPT-4 achieving up to 65.49 F1 score under expert prompting (approximately 5 points higher than our established baseline). This highlights the potential of LLMs in low-resource settings, offering a viable approach for generating useful synthetic data for model training. Despite these positive results, we find that instruction fine-tuned models, regardless of their size, significantly underperform compared to fully fine-tuned models of significantly smaller sizes. This disparity highlights a substantial room for improvements for LLMs. Inspired by methods from low-resource machine translation, we also develop a method exploiting synthetic data that significantly outperforms previous models on two standard Arabic benchmarks. Our work sets new SoTA for Arabic GEC, with 72.19% and 73.26 F_{1} on the 2014 and 2015 QALB datasets, respectively. 4 authors · Aug 8, 2023
21 Nile-Chat: Egyptian Language Models for Arabic and Latin Scripts We introduce Nile-Chat-4B, 3x4B-A6B, and 12B, a collection of LLMs for Egyptian dialect, uniquely designed to understand and generate texts written in both Arabic and Latin scripts. Specifically, with Nile-Chat-3x4B-A6B, we introduce a novel language adaptation approach by leveraging the Branch-Train-MiX strategy to merge script-specialized experts, into a single MoE model. Our Nile-Chat models significantly outperform leading multilingual and Arabic LLMs, such as LLaMa, Jais, and ALLaM, on our newly introduced Egyptian evaluation benchmarks, which span both understanding and generative tasks. Notably, our 12B model yields a 14.4% performance gain over Qwen2.5-14B-Instruct on Latin-script benchmarks. All our resources are publicly available. We believe this work presents a comprehensive methodology for adapting LLMs to dual-script languages, addressing an often overlooked aspect in modern LLM development. 10 authors · Jul 6 1
3 AraELECTRA: Pre-Training Text Discriminators for Arabic Language Understanding Advances in English language representation enabled a more sample-efficient pre-training task by Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELECTRA). Which, instead of training a model to recover masked tokens, it trains a discriminator model to distinguish true input tokens from corrupted tokens that were replaced by a generator network. On the other hand, current Arabic language representation approaches rely only on pretraining via masked language modeling. In this paper, we develop an Arabic language representation model, which we name AraELECTRA. Our model is pretrained using the replaced token detection objective on large Arabic text corpora. We evaluate our model on multiple Arabic NLP tasks, including reading comprehension, sentiment analysis, and named-entity recognition and we show that AraELECTRA outperforms current state-of-the-art Arabic language representation models, given the same pretraining data and with even a smaller model size. 3 authors · Dec 31, 2020
1 The Arabic AI Fingerprint: Stylometric Analysis and Detection of Large Language Models Text Large Language Models (LLMs) have achieved unprecedented capabilities in generating human-like text, posing subtle yet significant challenges for information integrity across critical domains, including education, social media, and academia, enabling sophisticated misinformation campaigns, compromising healthcare guidance, and facilitating targeted propaganda. This challenge becomes severe, particularly in under-explored and low-resource languages like Arabic. This paper presents a comprehensive investigation of Arabic machine-generated text, examining multiple generation strategies (generation from the title only, content-aware generation, and text refinement) across diverse model architectures (ALLaM, Jais, Llama, and GPT-4) in academic, and social media domains. Our stylometric analysis reveals distinctive linguistic patterns differentiating human-written from machine-generated Arabic text across these varied contexts. Despite their human-like qualities, we demonstrate that LLMs produce detectable signatures in their Arabic outputs, with domain-specific characteristics that vary significantly between different contexts. Based on these insights, we developed BERT-based detection models that achieved exceptional performance in formal contexts (up to 99.9\% F1-score) with strong precision across model architectures. Our cross-domain analysis confirms generalization challenges previously reported in the literature. To the best of our knowledge, this work represents the most comprehensive investigation of Arabic machine-generated text to date, uniquely combining multiple prompt generation methods, diverse model architectures, and in-depth stylometric analysis across varied textual domains, establishing a foundation for developing robust, linguistically-informed detection systems essential for preserving information integrity in Arabic-language contexts. 2 authors · May 29
- Masader: Metadata Sourcing for Arabic Text and Speech Data Resources The NLP pipeline has evolved dramatically in the last few years. The first step in the pipeline is to find suitable annotated datasets to evaluate the tasks we are trying to solve. Unfortunately, most of the published datasets lack metadata annotations that describe their attributes. Not to mention, the absence of a public catalogue that indexes all the publicly available datasets related to specific regions or languages. When we consider low-resource dialectical languages, for example, this issue becomes more prominent. In this paper we create Masader, the largest public catalogue for Arabic NLP datasets, which consists of 200 datasets annotated with 25 attributes. Furthermore, We develop a metadata annotation strategy that could be extended to other languages. We also make remarks and highlight some issues about the current status of Arabic NLP datasets and suggest recommendations to address them. 4 authors · Oct 13, 2021
1 Fann or Flop: A Multigenre, Multiera Benchmark for Arabic Poetry Understanding in LLMs Arabic poetry is one of the richest and most culturally rooted forms of expression in the Arabic language, known for its layered meanings, stylistic diversity, and deep historical continuity. Although large language models (LLMs) have demonstrated strong performance across languages and tasks, their ability to understand Arabic poetry remains largely unexplored. In this work, we introduce Fann or Flop, the first benchmark designed to assess the comprehension of Arabic poetry by LLMs in 12 historical eras, covering 14 core poetic genres and a variety of metrical forms, from classical structures to contemporary free verse. The benchmark comprises a curated corpus of poems with explanations that assess semantic understanding, metaphor interpretation, prosodic awareness, and cultural context. We argue that poetic comprehension offers a strong indicator for testing how good the LLM understands classical Arabic through Arabic poetry. Unlike surface-level tasks, this domain demands deeper interpretive reasoning and cultural sensitivity. Our evaluation of state-of-the-art LLMs shows that most models struggle with poetic understanding despite strong results on standard Arabic benchmarks. We release "Fann or Flop" along with the evaluation suite as an open-source resource to enable rigorous evaluation and advancement for Arabic language models. Code is available at: https://github.com/mbzuai-oryx/FannOrFlop. 8 authors · May 23
31 Wasm: A Pipeline for Constructing Structured Arabic Interleaved Multimodal Corpora The performance of large language models (LLMs) and large multimodal models (LMMs) depends heavily on the quality and scale of their pre-training datasets. Recent research shows that large multimodal models trained on natural documents where images and text are interleaved outperform those trained only on image-text pairs across a wide range of benchmarks, leveraging advanced pre- trained models to enforce semantic alignment, image-sequence consistency, and textual coherence. For Arabic, however, the lack of high-quality multimodal datasets that preserve document structure has limited progress. In this paper, we present our pipeline Wasm for processing the Common Crawl dataset to create a new Arabic multimodal dataset that uniquely provides markdown output. Unlike existing Arabic corpora that focus solely on text extraction, our approach preserves the structural integrity of web content while maintaining flexibility for both text-only and multimodal pre-training scenarios. We provide a comprehensive comparative analysis of our data processing pipeline against those used for major existing datasets, highlighting the convergences in filtering strategies and justifying our specific design choices. To support future research, we publicly release a representative dataset dump along with the multimodal processing pipeline for Arabic. 7 authors · Nov 10 2
- Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Understanding There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work concerns addressing two major problems in existing Arabic PLMs which constraint progress of the Arabic NLU and NLG fields.First, existing Arabic PLMs are not well-explored and their pre-trainig can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. In this work, we revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore improving Arabic LMs from three perspectives: quality of the pre-training data, size of the model, and incorporating character-level information. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE that is a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the ARGEN benchmark for Arabic NLG tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce of results will be made available shortly. 14 authors · May 21, 2022
- Arabic Automatic Story Generation with Large Language Models Large language models (LLMs) have recently emerged as a powerful tool for a wide range of language generation tasks. Nevertheless, this progress has been slower in Arabic. In this work, we focus on the task of generating stories from LLMs. For our training, we use stories acquired through machine translation (MT) as well as GPT-4. For the MT data, we develop a careful pipeline that ensures we acquire high-quality stories. For our GPT-41 data, we introduce crafted prompts that allow us to generate data well-suited to the Arabic context in both Modern Standard Arabic (MSA) and two Arabic dialects (Egyptian and Moroccan). For example, we generate stories tailored to various Arab countries on a wide host of topics. Our manual evaluation shows that our model fine-tuned on these training datasets can generate coherent stories that adhere to our instructions. We also conduct an extensive automatic and human evaluation comparing our models against state-of-the-art proprietary and open-source models. Our datasets and models will be made publicly available at https: //github.com/UBC-NLP/arastories. 3 authors · Jul 10, 2024
- ArabicaQA: A Comprehensive Dataset for Arabic Question Answering In this paper, we address the significant gap in Arabic natural language processing (NLP) resources by introducing ArabicaQA, the first large-scale dataset for machine reading comprehension and open-domain question answering in Arabic. This comprehensive dataset, consisting of 89,095 answerable and 3,701 unanswerable questions created by crowdworkers to look similar to answerable ones, along with additional labels of open-domain questions marks a crucial advancement in Arabic NLP resources. We also present AraDPR, the first dense passage retrieval model trained on the Arabic Wikipedia corpus, specifically designed to tackle the unique challenges of Arabic text retrieval. Furthermore, our study includes extensive benchmarking of large language models (LLMs) for Arabic question answering, critically evaluating their performance in the Arabic language context. In conclusion, ArabicaQA, AraDPR, and the benchmarking of LLMs in Arabic question answering offer significant advancements in the field of Arabic NLP. The dataset and code are publicly accessible for further research https://github.com/DataScienceUIBK/ArabicaQA. 7 authors · Mar 26, 2024
- ArMeme: Propagandistic Content in Arabic Memes With the rise of digital communication, memes have become a significant medium for cultural and political expression that is often used to mislead audiences. Identification of such misleading and persuasive multimodal content has become more important among various stakeholders, including social media platforms, policymakers, and the broader society as they often cause harm to individuals, organizations, and/or society. While there has been effort to develop AI-based automatic systems for resource-rich languages (e.g., English), it is relatively little to none for medium to low resource languages. In this study, we focused on developing an Arabic memes dataset with manual annotations of propagandistic content. We annotated ~6K Arabic memes collected from various social media platforms, which is a first resource for Arabic multimodal research. We provide a comprehensive analysis aiming to develop computational tools for their detection. We will make them publicly available for the community. 5 authors · Jun 6, 2024
4 3LM: Bridging Arabic, STEM, and Code through Benchmarking Arabic is one of the most widely spoken languages in the world, yet efforts to develop and evaluate Large Language Models (LLMs) for Arabic remain relatively limited. Most existing Arabic benchmarks focus on linguistic, cultural, or religious content, leaving a significant gap in domains like STEM and code which are increasingly relevant for real-world LLM applications. To help bridge this gap, we present 3LM, a suite of three benchmarks designed specifically for Arabic. The first is a set of STEM-related question-answer pairs, naturally sourced from Arabic textbooks and educational worksheets. The second consists of synthetically generated STEM questions, created using the same sources. The third benchmark focuses on code generation, built through a careful translation of two widely used code benchmarks, incorporating a human-in-the-loop process with several rounds of review to ensure high-quality and faithful translations. We release all three benchmarks publicly to support the growth of Arabic LLM research in these essential but underrepresented areas. 8 authors · Jul 21
- Learning meters of Arabic and English poems with Recurrent Neural Networks: a step forward for language understanding and synthesis Recognizing a piece of writing as a poem or prose is usually easy for the majority of people; however, only specialists can determine which meter a poem belongs to. In this paper, we build Recurrent Neural Network (RNN) models that can classify poems according to their meters from plain text. The input text is encoded at the character level and directly fed to the models without feature handcrafting. This is a step forward for machine understanding and synthesis of languages in general, and Arabic language in particular. Among the 16 poem meters of Arabic and the 4 meters of English the networks were able to correctly classify poem with an overall accuracy of 96.38\% and 82.31\% respectively. The poem datasets used to conduct this research were massive, over 1.5 million of verses, and were crawled from different nontechnical sources, almost Arabic and English literature sites, and in different heterogeneous and unstructured formats. These datasets are now made publicly available in clean, structured, and documented format for other future research. To the best of the authors' knowledge, this research is the first to address classifying poem meters in a machine learning approach, in general, and in RNN featureless based approach, in particular. In addition, the dataset is the first publicly available dataset ready for the purpose of future computational research. 4 authors · May 7, 2019
- Leveraging Domain Adaptation and Data Augmentation to Improve Qur'anic IR in English and Arabic In this work, we approach the problem of Qur'anic information retrieval (IR) in Arabic and English. Using the latest state-of-the-art methods in neural IR, we research what helps to tackle this task more efficiently. Training retrieval models requires a lot of data, which is difficult to obtain for training in-domain. Therefore, we commence with training on a large amount of general domain data and then continue training on in-domain data. To handle the lack of in-domain data, we employed a data augmentation technique, which considerably improved results in MRR@10 and NDCG@5 metrics, setting the state-of-the-art in Qur'anic IR for both English and Arabic. The absence of an Islamic corpus and domain-specific model for IR task in English motivated us to address this lack of resources and take preliminary steps of the Islamic corpus compilation and domain-specific language model (LM) pre-training, which helped to improve the performance of the retrieval models that use the domain-specific LM as the shared backbone. We examined several language models (LMs) in Arabic to select one that efficiently deals with the Qur'anic IR task. Besides transferring successful experiments from English to Arabic, we conducted additional experiments with retrieval task in Arabic to amortize the scarcity of general domain datasets used to train the retrieval models. Handling Qur'anic IR task combining English and Arabic allowed us to enhance the comparison and share valuable insights across models and languages. 1 authors · Dec 5, 2023
- SaudiBERT: A Large Language Model Pretrained on Saudi Dialect Corpora In this paper, we introduce SaudiBERT, a monodialect Arabic language model pretrained exclusively on Saudi dialectal text. To demonstrate the model's effectiveness, we compared SaudiBERT with six different multidialect Arabic language models across 11 evaluation datasets, which are divided into two groups: sentiment analysis and text classification. SaudiBERT achieved average F1-scores of 86.15\% and 87.86\% in these groups respectively, significantly outperforming all other comparative models. Additionally, we present two novel Saudi dialectal corpora: the Saudi Tweets Mega Corpus (STMC), which contains over 141 million tweets in Saudi dialect, and the Saudi Forums Corpus (SFC), which includes 15.2 GB of text collected from five Saudi online forums. Both corpora are used in pretraining the proposed model, and they are the largest Saudi dialectal corpora ever reported in the literature. The results confirm the effectiveness of SaudiBERT in understanding and analyzing Arabic text expressed in Saudi dialect, achieving state-of-the-art results in most tasks and surpassing other language models included in the study. SaudiBERT model is publicly available on https://huggingface.co/faisalq/SaudiBERT. 1 authors · May 10, 2024
3 A Transformer-based Approach for Arabic Offline Handwritten Text Recognition Handwriting recognition is a challenging and critical problem in the fields of pattern recognition and machine learning, with applications spanning a wide range of domains. In this paper, we focus on the specific issue of recognizing offline Arabic handwritten text. Existing approaches typically utilize a combination of convolutional neural networks for image feature extraction and recurrent neural networks for temporal modeling, with connectionist temporal classification used for text generation. However, these methods suffer from a lack of parallelization due to the sequential nature of recurrent neural networks. Furthermore, these models cannot account for linguistic rules, necessitating the use of an external language model in the post-processing stage to boost accuracy. To overcome these issues, we introduce two alternative architectures, namely the Transformer Transducer and the standard sequence-to-sequence Transformer, and compare their performance in terms of accuracy and speed. Our approach can model language dependencies and relies only on the attention mechanism, thereby making it more parallelizable and less complex. We employ pre-trained Transformers for both image understanding and language modeling. Our evaluation on the Arabic KHATT dataset demonstrates that our proposed method outperforms the current state-of-the-art approaches for recognizing offline Arabic handwritten text. 2 authors · Jul 27, 2023
6 Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition Wikipedia articles (content pages) are commonly used corpora in Natural Language Processing (NLP) research, especially in low-resource languages other than English. Yet, a few research studies have studied the three Arabic Wikipedia editions, Arabic Wikipedia (AR), Egyptian Arabic Wikipedia (ARZ), and Moroccan Arabic Wikipedia (ARY), and documented issues in the Egyptian Arabic Wikipedia edition regarding the massive automatic creation of its articles using template-based translation from English to Arabic without human involvement, overwhelming the Egyptian Arabic Wikipedia with articles that do not only have low-quality content but also with articles that do not represent the Egyptian people, their culture, and their dialect. In this paper, we aim to mitigate the problem of template translation that occurred in the Egyptian Arabic Wikipedia by identifying these template-translated articles and their characteristics through exploratory analysis and building automatic detection systems. We first explore the content of the three Arabic Wikipedia editions in terms of density, quality, and human contributions and utilize the resulting insights to build multivariate machine learning classifiers leveraging articles' metadata to detect the template-translated articles automatically. We then publicly deploy and host the best-performing classifier, XGBoost, as an online application called EGYPTIAN WIKIPEDIA SCANNER and release the extracted, filtered, and labeled datasets to the research community to benefit from our datasets and the online, web-based detection system. 5 authors · Mar 31, 2024
- AraGPT2: Pre-Trained Transformer for Arabic Language Generation Recently, pre-trained transformer-based architectures have proven to be very efficient at language modeling and understanding, given that they are trained on a large enough corpus. Applications in language generation for Arabic are still lagging in comparison to other NLP advances primarily due to the lack of advanced Arabic language generation models. In this paper, we develop the first advanced Arabic language generation model, AraGPT2, trained from scratch on a large Arabic corpus of internet text and news articles. Our largest model, AraGPT2-mega, has 1.46 billion parameters, which makes it the largest Arabic language model available. The Mega model was evaluated and showed success on different tasks including synthetic news generation, and zero-shot question answering. For text generation, our best model achieves a perplexity of 29.8 on held-out Wikipedia articles. A study conducted with human evaluators showed the significant success of AraGPT2-mega in generating news articles that are difficult to distinguish from articles written by humans. We thus develop and release an automatic discriminator model with a 98% percent accuracy in detecting model-generated text. The models are also publicly available, hoping to encourage new research directions and applications for Arabic NLP. 3 authors · Dec 31, 2020 1
- A Dataset for Metaphor Detection in Early Medieval Hebrew Poetry There is a large volume of late antique and medieval Hebrew texts. They represent a crucial linguistic and cultural bridge between Biblical and modern Hebrew. Poetry is prominent in these texts and one of its main haracteristics is the frequent use of metaphor. Distinguishing figurative and literal language use is a major task for scholars of the Humanities, especially in the fields of literature, linguistics, and hermeneutics. This paper presents a new, challenging dataset of late antique and medieval Hebrew poetry with expert annotations of metaphor, as well as some baseline results, which we hope will facilitate further research in this area. 5 authors · Feb 27, 2024
2 Muharaf: Manuscripts of Handwritten Arabic Dataset for Cursive Text Recognition We present the Manuscripts of Handwritten Arabic~(Muharaf) dataset, which is a machine learning dataset consisting of more than 1,600 historic handwritten page images transcribed by experts in archival Arabic. Each document image is accompanied by spatial polygonal coordinates of its text lines as well as basic page elements. This dataset was compiled to advance the state of the art in handwritten text recognition (HTR), not only for Arabic manuscripts but also for cursive text in general. The Muharaf dataset includes diverse handwriting styles and a wide range of document types, including personal letters, diaries, notes, poems, church records, and legal correspondences. In this paper, we describe the data acquisition pipeline, notable dataset features, and statistics. We also provide a preliminary baseline result achieved by training convolutional neural networks using this data. 9 authors · Jun 13, 2024
- Gazelle: An Instruction Dataset for Arabic Writing Assistance Writing has long been considered a hallmark of human intelligence and remains a pinnacle task for artificial intelligence (AI) due to the intricate cognitive processes involved. Recently, rapid advancements in generative AI, particularly through the development of Large Language Models (LLMs), have significantly transformed the landscape of writing assistance. However, underrepresented languages like Arabic encounter significant challenges in the development of advanced AI writing tools, largely due to the limited availability of data. This scarcity constrains the training of effective models, impeding the creation of sophisticated writing assistance technologies. To address these issues, we present Gazelle, a comprehensive dataset for Arabic writing assistance. In addition, we offer an evaluation framework designed to enhance Arabic writing assistance tools. Our human evaluation of leading LLMs, including GPT-4, GPT-4o, Cohere Command R+, and Gemini 1.5 Pro, highlights their respective strengths and limitations in addressing the challenges of Arabic writing. Our findings underscore the need for continuous model training and dataset enrichment to manage the complexities of Arabic language processing, paving the way for more effective AI-powered Arabic writing tools. 5 authors · Oct 23, 2024
- Towards Arabic Sentence Simplification via Classification and Generative Approaches This paper presents an attempt to build a Modern Standard Arabic (MSA) sentence-level simplification system. We experimented with sentence simplification using two approaches: (i) a classification approach leading to lexical simplification pipelines which use Arabic-BERT, a pre-trained contextualised model, as well as a model of fastText word embeddings; and (ii) a generative approach, a Seq2Seq technique by applying a multilingual Text-to-Text Transfer Transformer mT5. We developed our training corpus by aligning the original and simplified sentences from the internationally acclaimed Arabic novel "Saaq al-Bambuu". We evaluate effectiveness of these methods by comparing the generated simple sentences to the target simple sentences using the BERTScore evaluation metric. The simple sentences produced by the mT5 model achieve P 0.72, R 0.68 and F-1 0.70 via BERTScore, while, combining Arabic-BERT and fastText achieves P 0.97, R 0.97 and F-1 0.97. In addition, we report a manual error analysis for these experiments. https://github.com/Nouran-Khallaf/Lexical_Simplification 2 authors · Apr 20, 2022
24 PALO: A Polyglot Large Multimodal Model for 5B People In pursuit of more inclusive Vision-Language Models (VLMs), this study introduces a Large Multilingual Multimodal Model called Palo. Palo offers visual reasoning capabilities in 10 major languages, including English, Chinese, Hindi, Spanish, French, Arabic, Bengali, Russian, Urdu, and Japanese, that span a total of sim5B people (65\% of the world population). Our approach involves a semi-automated translation approach to adapt the multimodal instruction dataset from English to the target languages using a fine-tuned Large Language Model, thereby ensuring high linguistic fidelity while allowing scalability due to minimal manual effort. The incorporation of diverse instruction sets helps us boost overall performance across multiple languages especially those that are underrepresented like Hindi, Arabic, Bengali, and Urdu. The resulting models are trained across three scales (1.7B, 7B and 13B parameters) to show the generalization and scalability where we observe substantial improvements compared to strong baselines. We also propose the first multilingual multimodal benchmark for the forthcoming approaches to evaluate their vision-language reasoning capabilities across languages. Code: https://github.com/mbzuai-oryx/PALO. 9 authors · Feb 22, 2024 2
- The Shared Task on Gender Rewriting In this paper, we present the results and findings of the Shared Task on Gender Rewriting, which was organized as part of the Seventh Arabic Natural Language Processing Workshop. The task of gender rewriting refers to generating alternatives of a given sentence to match different target user gender contexts (e.g., female speaker with a male listener, a male speaker with a male listener, etc.). This requires changing the grammatical gender (masculine or feminine) of certain words referring to the users. In this task, we focus on Arabic, a gender-marking morphologically rich language. A total of five teams from four countries participated in the shared task. 14 authors · Oct 22, 2022
5 Swan and ArabicMTEB: Dialect-Aware, Arabic-Centric, Cross-Lingual, and Cross-Cultural Embedding Models and Benchmarks We introduce Swan, a family of embedding models centred around the Arabic language, addressing both small-scale and large-scale use cases. Swan includes two variants: Swan-Small, based on ARBERTv2, and Swan-Large, built on ArMistral, a pretrained Arabic large language model. To evaluate these models, we propose ArabicMTEB, a comprehensive benchmark suite that assesses cross-lingual, multi-dialectal, multi-domain, and multi-cultural Arabic text embedding performance, covering eight diverse tasks and spanning 94 datasets. Swan-Large achieves state-of-the-art results, outperforming Multilingual-E5-large in most Arabic tasks, while the Swan-Small consistently surpasses Multilingual-E5 base. Our extensive evaluations demonstrate that Swan models are both dialectally and culturally aware, excelling across various Arabic domains while offering significant monetary efficiency. This work significantly advances the field of Arabic language modelling and provides valuable resources for future research and applications in Arabic natural language processing. Our models and benchmark will be made publicly accessible for research. 5 authors · Nov 2, 2024 7
- JABER and SABER: Junior and Senior Arabic BERt Language-specific pre-trained models have proven to be more accurate than multilingual ones in a monolingual evaluation setting, Arabic is no exception. However, we found that previously released Arabic BERT models were significantly under-trained. In this technical report, we present JABER and SABER, Junior and Senior Arabic BERt respectively, our pre-trained language model prototypes dedicated for Arabic. We conduct an empirical study to systematically evaluate the performance of models across a diverse set of existing Arabic NLU tasks. Experimental results show that JABER and SABER achieve state-of-the-art performances on ALUE, a new benchmark for Arabic Language Understanding Evaluation, as well as on a well-established NER benchmark. 13 authors · Dec 8, 2021
- EgyBERT: A Large Language Model Pretrained on Egyptian Dialect Corpora This study presents EgyBERT, an Arabic language model pretrained on 10.4 GB of Egyptian dialectal texts. We evaluated EgyBERT's performance by comparing it with five other multidialect Arabic language models across 10 evaluation datasets. EgyBERT achieved the highest average F1-score of 84.25% and an accuracy of 87.33%, significantly outperforming all other comparative models, with MARBERTv2 as the second best model achieving an F1-score 83.68% and an accuracy 87.19%. Additionally, we introduce two novel Egyptian dialectal corpora: the Egyptian Tweets Corpus (ETC), containing over 34.33 million tweets (24.89 million sentences) amounting to 2.5 GB of text, and the Egyptian Forums Corpus (EFC), comprising over 44.42 million sentences (7.9 GB of text) collected from various Egyptian online forums. Both corpora are used in pretraining the new model, and they are the largest Egyptian dialectal corpora to date reported in the literature. Furthermore, this is the first study to evaluate the performance of various language models on Egyptian dialect datasets, revealing significant differences in performance that highlight the need for more dialect-specific models. The results confirm the effectiveness of EgyBERT model in processing and analyzing Arabic text expressed in Egyptian dialect, surpassing other language models included in the study. EgyBERT model is publicly available on https://huggingface.co/faisalq/EgyBERT. 1 authors · Aug 6, 2024
4 Arabic-Nougat: Fine-Tuning Vision Transformers for Arabic OCR and Markdown Extraction We present Arabic-Nougat, a suite of OCR models for converting Arabic book pages into structured Markdown text. Based on Meta's Nougat architecture, Arabic-Nougat includes three specialized models: arabic-small-nougat, arabic-base-nougat, and arabic-large-nougat. These models are fine-tuned on a synthetic dataset, arabic-img2md, comprising 13.7k pairs of Arabic book pages and their Markdown representations. Key contributions include the Aranizer-PBE-86k tokenizer, designed for efficient tokenization, and the use of torch.bfloat16 precision with Flash Attention 2 for optimized training and inference. Our models achieve state-of-the-art performance, with arabic-large-nougat delivering the highest Markdown Structure Accuracy and the lowest Character Error Rate. Additionally, we release a large-scale dataset containing 1.1 billion Arabic tokens extracted from over 8,500 books using our best-performing model, providing a valuable resource for Arabic OCR research. All models, datasets, and code are open-sourced and available at https://github.com/MohamedAliRashad/arabic-nougat. 1 authors · Nov 19, 2024 2
1 Peacock: A Family of Arabic Multimodal Large Language Models and Benchmarks Multimodal large language models (MLLMs) have proven effective in a wide range of tasks requiring complex reasoning and linguistic comprehension. However, due to a lack of high-quality multimodal resources in languages other than English, success of MLLMs remains relatively limited to English-based settings. This poses significant challenges in developing comparable models for other languages, including even those with large speaker populations such as Arabic. To alleviate this challenge, we introduce a comprehensive family of Arabic MLLMs, dubbed Peacock, with strong vision and language capabilities. Through comprehensive qualitative and quantitative analysis, we demonstrate the solid performance of our models on various visual reasoning tasks and further show their emerging dialectal potential. Additionally, we introduce ~Henna, a new benchmark specifically designed for assessing MLLMs on aspects related to Arabic culture, setting the first stone for culturally-aware Arabic MLLMs.The GitHub repository for the Peacock project is available at https://github.com/UBC-NLP/peacock. 5 authors · Mar 1, 2024 2
- Arabic Text Diacritization Using Deep Neural Networks Diacritization of Arabic text is both an interesting and a challenging problem at the same time with various applications ranging from speech synthesis to helping students learning the Arabic language. Like many other tasks or problems in Arabic language processing, the weak efforts invested into this problem and the lack of available (open-source) resources hinder the progress towards solving this problem. This work provides a critical review for the currently existing systems, measures and resources for Arabic text diacritization. Moreover, it introduces a much-needed free-for-all cleaned dataset that can be easily used to benchmark any work on Arabic diacritization. Extracted from the Tashkeela Corpus, the dataset consists of 55K lines containing about 2.3M words. After constructing the dataset, existing tools and systems are tested on it. The results of the experiments show that the neural Shakkala system significantly outperforms traditional rule-based approaches and other closed-source tools with a Diacritic Error Rate (DER) of 2.88% compared with 13.78%, which the best DER for the non-neural approach (obtained by the Mishkal tool). 4 authors · Apr 25, 2019
- A Large and Balanced Corpus for Fine-grained Arabic Readability Assessment This paper introduces the Balanced Arabic Readability Evaluation Corpus (BAREC), a large-scale, fine-grained dataset for Arabic readability assessment. BAREC consists of 69,441 sentences spanning 1+ million words, carefully curated to cover 19 readability levels, from kindergarten to postgraduate comprehension. The corpus balances genre diversity, topical coverage, and target audiences, offering a comprehensive resource for evaluating Arabic text complexity. The corpus was fully manually annotated by a large team of annotators. The average pairwise inter-annotator agreement, measured by Quadratic Weighted Kappa, is 81.8%, reflecting a high level of substantial agreement. Beyond presenting the corpus, we benchmark automatic readability assessment across different granularity levels, comparing a range of techniques. Our results highlight the challenges and opportunities in Arabic readability modeling, demonstrating competitive performance across various methods. To support research and education, we make BAREC openly available, along with detailed annotation guidelines and benchmark results. 3 authors · Feb 19
3 ArabianGPT: Native Arabic GPT-based Large Language Model The predominance of English and Latin-based large language models (LLMs) has led to a notable deficit in native Arabic LLMs. This discrepancy is accentuated by the prevalent inclusion of English tokens in existing Arabic models, detracting from their efficacy in processing native Arabic's intricate morphology and syntax. Consequently, there is a theoretical and practical imperative for developing LLMs predominantly focused on Arabic linguistic elements. To address this gap, this paper proposes ArabianGPT, a series of transformer-based models within the ArabianLLM suite designed explicitly for Arabic. These models, including ArabianGPT-0.1B and ArabianGPT-0.3B, vary in size and complexity, aligning with the nuanced linguistic characteristics of Arabic. The AraNizer tokenizer, integral to these models, addresses the unique morphological aspects of Arabic script, ensuring more accurate text processing. Empirical results from fine-tuning the models on tasks like sentiment analysis and summarization demonstrate significant improvements. For sentiment analysis, the fine-tuned ArabianGPT-0.1B model achieved a remarkable accuracy of 95%, a substantial increase from the base model's 56%. Similarly, in summarization tasks, fine-tuned models showed enhanced F1 scores, indicating improved precision and recall in generating concise summaries. Comparative analysis of fine-tuned ArabianGPT models against their base versions across various benchmarks reveals nuanced differences in performance, with fine-tuning positively impacting specific tasks like question answering and summarization. These findings underscore the efficacy of fine-tuning in aligning ArabianGPT models more closely with specific NLP tasks, highlighting the potential of tailored transformer architectures in advancing Arabic NLP. 5 authors · Feb 23, 2024
- Maknuune: A Large Open Palestinian Arabic Lexicon We present Maknuune, a large open lexicon for the Palestinian Arabic dialect. Maknuune has over 36K entries from 17K lemmas, and 3.7K roots. All entries include diacritized Arabic orthography, phonological transcription and English glosses. Some entries are enriched with additional information such as broken plurals and templatic feminine forms, associated phrases and collocations, Standard Arabic glosses, and examples or notes on grammar, usage, or location of collected entry. 7 authors · Oct 24, 2022
- AraPoemBERT: A Pretrained Language Model for Arabic Poetry Analysis Arabic poetry, with its rich linguistic features and profound cultural significance, presents a unique challenge to the Natural Language Processing (NLP) field. The complexity of its structure and context necessitates advanced computational models for accurate analysis. In this paper, we introduce AraPoemBERT, an Arabic language model pretrained exclusively on Arabic poetry text. To demonstrate the effectiveness of the proposed model, we compared AraPoemBERT with 5 different Arabic language models on various NLP tasks related to Arabic poetry. The new model outperformed all other models and achieved state-of-the-art results in most of the downstream tasks. AraPoemBERT achieved unprecedented accuracy in two out of three novel tasks: poet's gender classification (99.34\% accuracy), and poetry sub-meter classification (97.79\% accuracy). In addition, the model achieved an accuracy score in poems' rhyme classification (97.73\% accuracy) which is almost equivalent to the best score reported in this study. Moreover, the proposed model significantly outperformed previous work and other comparative models in the tasks of poems' sentiment analysis, achieving an accuracy of 78.95\%, and poetry meter classification (99.03\% accuracy), while significantly expanding the scope of these two problems. The dataset used in this study, contains more than 2.09 million verses collected from online sources, each associated with various attributes such as meter, sub-meter, poet, rhyme, and topic. The results demonstrate the effectiveness of the proposed model in understanding and analyzing Arabic poetry, achieving state-of-the-art results in several tasks and outperforming previous works and other language models included in the study. AraPoemBERT model is publicly available on https://huggingface.co/faisalq. 1 authors · Mar 18, 2024
9 KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies. 10 authors · Feb 20 2
- Is this sentence valid? An Arabic Dataset for Commonsense Validation The commonsense understanding and validation remains a challenging task in the field of natural language understanding. Therefore, several research papers have been published that studied the capability of proposed systems to evaluate the models ability to validate commonsense in text. In this paper, we present a benchmark Arabic dataset for commonsense understanding and validation as well as a baseline research and models trained using the same dataset. To the best of our knowledge, this dataset is considered as the first in the field of Arabic text commonsense validation. The dataset is distributed under the Creative Commons BY-SA 4.0 license and can be found on GitHub. 2 authors · Aug 25, 2020
- AraDIC: Arabic Document Classification using Image-Based Character Embeddings and Class-Balanced Loss Classical and some deep learning techniques for Arabic text classification often depend on complex morphological analysis, word segmentation, and hand-crafted feature engineering. These could be eliminated by using character-level features. We propose a novel end-to-end Arabic document classification framework, Arabic document image-based classifier (AraDIC), inspired by the work on image-based character embeddings. AraDIC consists of an image-based character encoder and a classifier. They are trained in an end-to-end fashion using the class balanced loss to deal with the long-tailed data distribution problem. To evaluate the effectiveness of AraDIC, we created and published two datasets, the Arabic Wikipedia title (AWT) dataset and the Arabic poetry (AraP) dataset. To the best of our knowledge, this is the first image-based character embedding framework addressing the problem of Arabic text classification. We also present the first deep learning-based text classifier widely evaluated on modern standard Arabic, colloquial Arabic and classical Arabic. AraDIC shows performance improvement over classical and deep learning baselines by 12.29% and 23.05% for the micro and macro F-score, respectively. 3 authors · Jun 20, 2020
1 The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks. 5 authors · Mar 11, 2021
- ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets Sentiment analysis is a highly subjective and challenging task. Its complexity further increases when applied to the Arabic language, mainly because of the large variety of dialects that are unstandardized and widely used in the Web, especially in social media. While many datasets have been released to train sentiment classifiers in Arabic, most of these datasets contain shallow annotation, only marking the sentiment of the text unit, as a word, a sentence or a document. In this paper, we present the Arabic Sentiment Twitter Dataset for the Levantine dialect (ArSenTD-LEV). Based on findings from analyzing tweets from the Levant region, we created a dataset of 4,000 tweets with the following annotations: the overall sentiment of the tweet, the target to which the sentiment was expressed, how the sentiment was expressed, and the topic of the tweet. Results confirm the importance of these annotations at improving the performance of a baseline sentiment classifier. They also confirm the gap of training in a certain domain, and testing in another domain. 5 authors · May 25, 2019
- GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning Large language models (LLMs) have greatly impacted the natural language processing (NLP) field, particularly for the English language. These models have demonstrated capabilities in understanding and generating human-like text. The success of language models largely depends on the availability of high-quality instruction datasets, which consist of detailed task descriptions and corresponding responses that are essential for training the models to address a variety of prompts accurately. However, the availability and quality of these resources vary by language. While models perform well in English, they often need help with languages like Arabic, due to the lack of datasets for fine-tuning Arabic-specific tasks. To address this issue, we introduce InstAr-500k, a new Arabic instruction dataset created by generating and collecting content that covers several domains and instruction types. We assess this dataset by fine-tuning an open-source Gemma-7B model on several downstream tasks to improve its functionality. Based on multiple evaluations, our fine-tuned model achieves excellent performance on several Arabic NLP benchmarks. These outcomes emphasize the effectiveness of our dataset in elevating the capabilities of language models for Arabic. Our instruction dataset bridges the performance gap between English and Arabic language models by providing resources that amplify Arabic NLP development. Building on this foundation, we developed a model, GemmAr-7B-V1, specifically tuned to excel at a wide range of Arabic NLP tasks. 6 authors · Jul 2, 2024
- Stance Prediction and Claim Verification: An Arabic Perspective This work explores the application of textual entailment in news claim verification and stance prediction using a new corpus in Arabic. The publicly available corpus comes in two perspectives: a version consisting of 4,547 true and false claims and a version consisting of 3,786 pairs (claim, evidence). We describe the methodology for creating the corpus and the annotation process. Using the introduced corpus, we also develop two machine learning baselines for two proposed tasks: claim verification and stance prediction. Our best model utilizes pretraining (BERT) and achieves 76.7 F1 on the stance prediction task and 64.3 F1 on the claim verification task. Our preliminary experiments shed some light on the limits of automatic claim verification that relies on claims text only. Results hint that while the linguistic features and world knowledge learned during pretraining are useful for stance prediction, such learned representations from pretraining are insufficient for verifying claims without access to context or evidence. 1 authors · May 20, 2020
- ORCA: A Challenging Benchmark for Arabic Language Understanding Due to their crucial role in all NLP, several benchmarks have been proposed to evaluate pretrained language models. In spite of these efforts, no public benchmark of diverse nature currently exists for evaluation of Arabic. This makes it challenging to measure progress for both Arabic and multilingual language models. This challenge is compounded by the fact that any benchmark targeting Arabic needs to take into account the fact that Arabic is not a single language but rather a collection of languages and varieties. In this work, we introduce ORCA, a publicly available benchmark for Arabic language understanding evaluation. ORCA is carefully constructed to cover diverse Arabic varieties and a wide range of challenging Arabic understanding tasks exploiting 60 different datasets across seven NLU task clusters. To measure current progress in Arabic NLU, we use ORCA to offer a comprehensive comparison between 18 multilingual and Arabic language models. We also provide a public leaderboard with a unified single-number evaluation metric (ORCA score) to facilitate future research. 3 authors · Dec 20, 2022
- KUISAIL at SemEval-2020 Task 12: BERT-CNN for Offensive Speech Identification in Social Media In this paper, we describe our approach to utilize pre-trained BERT models with Convolutional Neural Networks for sub-task A of the Multilingual Offensive Language Identification shared task (OffensEval 2020), which is a part of the SemEval 2020. We show that combining CNN with BERT is better than using BERT on its own, and we emphasize the importance of utilizing pre-trained language models for downstream tasks. Our system, ranked 4th with macro averaged F1-Score of 0.897 in Arabic, 4th with score of 0.843 in Greek, and 3rd with score of 0.814 in Turkish. Additionally, we present ArabicBERT, a set of pre-trained transformer language models for Arabic that we share with the community. 3 authors · Jul 26, 2020
- Arabic Offensive Language on Twitter: Analysis and Experiments Detecting offensive language on Twitter has many applications ranging from detecting/predicting bullying to measuring polarization. In this paper, we focus on building a large Arabic offensive tweet dataset. We introduce a method for building a dataset that is not biased by topic, dialect, or target. We produce the largest Arabic dataset to date with special tags for vulgarity and hate speech. We thoroughly analyze the dataset to determine which topics, dialects, and gender are most associated with offensive tweets and how Arabic speakers use offensive language. Lastly, we conduct many experiments to produce strong results (F1 = 83.2) on the dataset using SOTA techniques. 5 authors · Apr 5, 2020
- SentiALG: Automated Corpus Annotation for Algerian Sentiment Analysis Data annotation is an important but time-consuming and costly procedure. To sort a text into two classes, the very first thing we need is a good annotation guideline, establishing what is required to qualify for each class. In the literature, the difficulties associated with an appropriate data annotation has been underestimated. In this paper, we present a novel approach to automatically construct an annotated sentiment corpus for Algerian dialect (a Maghrebi Arabic dialect). The construction of this corpus is based on an Algerian sentiment lexicon that is also constructed automatically. The presented work deals with the two widely used scripts on Arabic social media: Arabic and Arabizi. The proposed approach automatically constructs a sentiment corpus containing 8000 messages (where 4000 are dedicated to Arabic and 4000 to Arabizi). The achieved F1-score is up to 72% and 78% for an Arabic and Arabizi test sets, respectively. Ongoing work is aimed at integrating transliteration process for Arabizi messages to further improve the obtained results. 4 authors · Aug 15, 2018
2 Palm: A Culturally Inclusive and Linguistically Diverse Dataset for Arabic LLMs As large language models (LLMs) become increasingly integrated into daily life, ensuring their cultural sensitivity and inclusivity is paramount. We introduce our dataset, a year-long community-driven project covering all 22 Arab countries. The dataset includes instructions (input, response pairs) in both Modern Standard Arabic (MSA) and dialectal Arabic (DA), spanning 20 diverse topics. Built by a team of 44 researchers across the Arab world, all of whom are authors of this paper, our dataset offers a broad, inclusive perspective. We use our dataset to evaluate the cultural and dialectal capabilities of several frontier LLMs, revealing notable limitations. For instance, while closed-source LLMs generally exhibit strong performance, they are not without flaws, and smaller open-source models face greater challenges. Moreover, certain countries (e.g., Egypt, the UAE) appear better represented than others (e.g., Iraq, Mauritania, Yemen). Our annotation guidelines, code, and data for reproducibility are publicly available. 44 authors · Feb 28
4 From Guidelines to Practice: A New Paradigm for Arabic Language Model Evaluation This paper addresses critical gaps in Arabic language model evaluation by establishing comprehensive theoretical guidelines and introducing a novel evaluation framework. We first analyze existing Arabic evaluation datasets, identifying significant issues in linguistic accuracy, cultural alignment, and methodological rigor. To address these limitations in LLMs, we present the Arabic Depth Mini Dataset (ADMD), a carefully curated collection of 490 challenging questions spanning ten major domains (42 sub-domains, see Figure 1. Using ADMD, we evaluate five leading language models: GPT-4, Claude 3.5 Sonnet, Gemini Flash 1.5, CommandR 100B, and Qwen-Max. Our results reveal significant variations in model performance across different domains, with particular challenges in areas requiring deep cultural understanding and specialized knowledge. Claude 3.5 Sonnet demonstrated the highest overall accuracy at 30\%, showing relative strength in mathematical theory in Arabic, Arabic language, and islamic domains. This work provides both theoretical foundations and practical insights for improving Arabic language model evaluation, emphasizing the importance of cultural competence alongside technical capabilities. 6 authors · Jun 2 3
59 Sadeed: Advancing Arabic Diacritization Through Small Language Model Arabic text diacritization remains a persistent challenge in natural language processing due to the language's morphological richness. In this paper, we introduce Sadeed, a novel approach based on a fine-tuned decoder-only language model adapted from Kuwain 1.5B Hennara et al. [2025], a compact model originally trained on diverse Arabic corpora. Sadeed is fine-tuned on carefully curated, high-quality diacritized datasets, constructed through a rigorous data-cleaning and normalization pipeline. Despite utilizing modest computational resources, Sadeed achieves competitive results compared to proprietary large language models and outperforms traditional models trained on similar domains. Additionally, we highlight key limitations in current benchmarking practices for Arabic diacritization. To address these issues, we introduce SadeedDiac-25, a new benchmark designed to enable fairer and more comprehensive evaluation across diverse text genres and complexity levels. Together, Sadeed and SadeedDiac-25 provide a robust foundation for advancing Arabic NLP applications, including machine translation, text-to-speech, and language learning tools. Misraj Ai · Apr 30 2
- Arabic Multi-Dialect Segmentation: bi-LSTM-CRF vs. SVM Arabic word segmentation is essential for a variety of NLP applications such as machine translation and information retrieval. Segmentation entails breaking words into their constituent stems, affixes and clitics. In this paper, we compare two approaches for segmenting four major Arabic dialects using only several thousand training examples for each dialect. The two approaches involve posing the problem as a ranking problem, where an SVM ranker picks the best segmentation, and as a sequence labeling problem, where a bi-LSTM RNN coupled with CRF determines where best to segment words. We are able to achieve solid segmentation results for all dialects using rather limited training data. We also show that employing Modern Standard Arabic data for domain adaptation and assuming context independence improve overall results. 7 authors · Aug 19, 2017
- Design of Arabic Sign Language Recognition Model Deaf people are using sign language for communication, and it is a combination of gestures, movements, postures, and facial expressions that correspond to alphabets and words in spoken languages. The proposed Arabic sign language recognition model helps deaf and hard hearing people communicate effectively with ordinary people. The recognition has four stages of converting the alphabet into letters as follows: Image Loading stage, which loads the images of Arabic sign language alphabets that were used later to train and test the model, a pre-processing stage which applies image processing techniques such as normalization, Image augmentation, resizing, and filtering to extract the features which are necessary to accomplish the recognition perfectly, a training stage which is achieved by deep learning techniques like CNN, a testing stage which demonstrates how effectively the model performs for images did not see it before, and the model was built and tested mainly using PyTorch library. The model is tested on ArASL2018, consisting of 54,000 images for 32 alphabet signs gathered from 40 signers, and the dataset has two sets: training dataset and testing dataset. We had to ensure that the system is reliable in terms of accuracy, time, and flexibility of use explained in detail in this report. Finally, the future work will be a model that converts Arabic sign language into Arabic text. 3 authors · Jan 6, 2023 1
- Few-Shot Prompting for Extractive Quranic QA with Instruction-Tuned LLMs This paper presents two effective approaches for Extractive Question Answering (QA) on the Quran. It addresses challenges related to complex language, unique terminology, and deep meaning in the text. The second uses few-shot prompting with instruction-tuned large language models such as Gemini and DeepSeek. A specialized Arabic prompt framework is developed for span extraction. A strong post-processing system integrates subword alignment, overlap suppression, and semantic filtering. This improves precision and reduces hallucinations. Evaluations show that large language models with Arabic instructions outperform traditional fine-tuned models. The best configuration achieves a pAP10 score of 0.637. The results confirm that prompt-based instruction tuning is effective for low-resource, semantically rich QA tasks. 4 authors · Aug 8
- Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction Following: A Case Study of Arabic While significant progress has been made in benchmarking Large Language Models (LLMs) across various tasks, there is a lack of comprehensive evaluation of their abilities in responding to multi-turn instructions in less-commonly tested languages like Arabic. Our paper offers a detailed examination of the proficiency of open LLMs in such scenarios in Arabic. Utilizing a customized Arabic translation of the MT-Bench benchmark suite, we employ GPT-4 as a uniform evaluator for both English and Arabic queries to assess and compare the performance of the LLMs on various open-ended tasks. Our findings reveal variations in model responses on different task categories, e.g., logic vs. literacy, when instructed in English or Arabic. We find that fine-tuned base models using multilingual and multi-turn datasets could be competitive to models trained from scratch on multilingual data. Finally, we hypothesize that an ensemble of small, open LLMs could perform competitively to proprietary LLMs on the benchmark. 2 authors · Oct 23, 2023
- Nabra: Syrian Arabic Dialects with Morphological Annotations This paper presents Nabra, a corpora of Syrian Arabic dialects with morphological annotations. A team of Syrian natives collected more than 6K sentences containing about 60K words from several sources including social media posts, scripts of movies and series, lyrics of songs and local proverbs to build Nabra. Nabra covers several local Syrian dialects including those of Aleppo, Damascus, Deir-ezzur, Hama, Homs, Huran, Latakia, Mardin, Raqqah, and Suwayda. A team of nine annotators annotated the 60K tokens with full morphological annotations across sentence contexts. We trained the annotators to follow methodological annotation guidelines to ensure unique morpheme annotations, and normalized the annotations. F1 and kappa agreement scores ranged between 74% and 98% across features, showing the excellent quality of Nabra annotations. Our corpora are open-source and publicly available as part of the Currasat portal https://sina.birzeit.edu/currasat. 5 authors · Oct 26, 2023
- Context-Gloss Augmentation for Improving Arabic Target Sense Verification Arabic language lacks semantic datasets and sense inventories. The most common semantically-labeled dataset for Arabic is the ArabGlossBERT, a relatively small dataset that consists of 167K context-gloss pairs (about 60K positive and 107K negative pairs), collected from Arabic dictionaries. This paper presents an enrichment to the ArabGlossBERT dataset, by augmenting it using (Arabic-English-Arabic) machine back-translation. Augmentation increased the dataset size to 352K pairs (149K positive and 203K negative pairs). We measure the impact of augmentation using different data configurations to fine-tune BERT on target sense verification (TSV) task. Overall, the accuracy ranges between 78% to 84% for different data configurations. Although our approach performed at par with the baseline, we did observe some improvements for some POS tags in some experiments. Furthermore, our fine-tuned models are trained on a larger dataset covering larger vocabulary and contexts. We provide an in-depth analysis of the accuracy for each part-of-speech (POS). 3 authors · Feb 6, 2023
- Command R7B Arabic: A Small, Enterprise Focused, Multilingual, and Culturally Aware Arabic LLM Building high-quality large language models (LLMs) for enterprise Arabic applications remains challenging due to the limited availability of digitized Arabic data. In this work, we present a data synthesis and refinement strategy to help address this problem, namely, by leveraging synthetic data generation and human-in-the-loop annotation to expand our Arabic training corpus. We further present our iterative post training recipe that is essential to achieving state-of-the-art performance in aligning the model with human preferences, a critical aspect to enterprise use cases. The culmination of this effort is the release of a small, 7B, open-weight model that outperforms similarly sized peers in head-to-head comparisons and on Arabic-focused benchmarks covering cultural knowledge, instruction following, RAG, and contextual faithfulness. 12 authors · Mar 18
- AraLegal-BERT: A pretrained language model for Arabic Legal text The effectiveness of the BERT model on multiple linguistic tasks has been well documented. On the other hand, its potentials for narrow and specific domains such as Legal, have not been fully explored. In this paper, we examine how BERT can be used in the Arabic legal domain and try customizing this language model for several downstream tasks using several different domain-relevant training and testing datasets to train BERT from scratch. We introduce the AraLegal-BERT, a bidirectional encoder Transformer-based model that have been thoroughly tested and carefully optimized with the goal to amplify the impact of NLP-driven solution concerning jurisprudence, legal documents, and legal practice. We fine-tuned AraLegal-BERT and evaluated it against three BERT variations for Arabic language in three natural languages understanding (NLU) tasks. The results show that the base version of AraLegal-BERT achieve better accuracy than the general and original BERT over the Legal text. 3 authors · Oct 15, 2022
2 CATT: Character-based Arabic Tashkeel Transformer Tashkeel, or Arabic Text Diacritization (ATD), greatly enhances the comprehension of Arabic text by removing ambiguity and minimizing the risk of misinterpretations caused by its absence. It plays a crucial role in improving Arabic text processing, particularly in applications such as text-to-speech and machine translation. This paper introduces a new approach to training ATD models. First, we finetuned two transformers, encoder-only and encoder-decoder, that were initialized from a pretrained character-based BERT. Then, we applied the Noisy-Student approach to boost the performance of the best model. We evaluated our models alongside 11 commercial and open-source models using two manually labeled benchmark datasets: WikiNews and our CATT dataset. Our findings show that our top model surpasses all evaluated models by relative Diacritic Error Rates (DERs) of 30.83\% and 35.21\% on WikiNews and CATT, respectively, achieving state-of-the-art in ATD. In addition, we show that our model outperforms GPT-4-turbo on CATT dataset by a relative DER of 9.36\%. We open-source our CATT models and benchmark dataset for the research communityhttps://github.com/abjadai/catt. 3 authors · Jul 3, 2024
1 ArabJobs: A Multinational Corpus of Arabic Job Ads ArabJobs is a publicly available corpus of Arabic job advertisements collected from Egypt, Jordan, Saudi Arabia, and the United Arab Emirates. Comprising over 8,500 postings and more than 550,000 words, the dataset captures linguistic, regional, and socio-economic variation in the Arab labour market. We present analyses of gender representation and occupational structure, and highlight dialectal variation across ads, which offers opportunities for future research. We also demonstrate applications such as salary estimation and job category normalisation using large language models, alongside benchmark tasks for gender bias detection and profession classification. The findings show the utility of ArabJobs for fairness-aware Arabic NLP and labour market research. The dataset is publicly available on GitHub: https://github.com/drelhaj/ArabJobs. 1 authors · Sep 26
- Pre-Training BERT on Arabic Tweets: Practical Considerations Pretraining Bidirectional Encoder Representations from Transformers (BERT) for downstream NLP tasks is a non-trival task. We pretrained 5 BERT models that differ in the size of their training sets, mixture of formal and informal Arabic, and linguistic preprocessing. All are intended to support Arabic dialects and social media. The experiments highlight the centrality of data diversity and the efficacy of linguistically aware segmentation. They also highlight that more data or more training step do not necessitate better models. Our new models achieve new state-of-the-art results on several downstream tasks. The resulting models are released to the community under the name QARiB. 5 authors · Feb 21, 2021
- ANETAC: Arabic Named Entity Transliteration and Classification Dataset In this paper, we make freely accessible ANETAC our English-Arabic named entity transliteration and classification dataset that we built from freely available parallel translation corpora. The dataset contains 79,924 instances, each instance is a triplet (e, a, c), where e is the English named entity, a is its Arabic transliteration and c is its class that can be either a Person, a Location, or an Organization. The ANETAC dataset is mainly aimed for the researchers that are working on Arabic named entity transliteration, but it can also be used for named entity classification purposes. 3 authors · Jul 6, 2019
- Exploiting Dialect Identification in Automatic Dialectal Text Normalization Dialectal Arabic is the primary spoken language used by native Arabic speakers in daily communication. The rise of social media platforms has notably expanded its use as a written language. However, Arabic dialects do not have standard orthographies. This, combined with the inherent noise in user-generated content on social media, presents a major challenge to NLP applications dealing with Dialectal Arabic. In this paper, we explore and report on the task of CODAfication, which aims to normalize Dialectal Arabic into the Conventional Orthography for Dialectal Arabic (CODA). We work with a unique parallel corpus of multiple Arabic dialects focusing on five major city dialects. We benchmark newly developed pretrained sequence-to-sequence models on the task of CODAfication. We further show that using dialect identification information improves the performance across all dialects. We make our code, data, and pretrained models publicly available. 7 authors · Jul 3, 2024
- BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models. 3 authors · Oct 23
- ALDi: Quantifying the Arabic Level of Dialectness of Text Transcribed speech and user-generated text in Arabic typically contain a mixture of Modern Standard Arabic (MSA), the standardized language taught in schools, and Dialectal Arabic (DA), used in daily communications. To handle this variation, previous work in Arabic NLP has focused on Dialect Identification (DI) on the sentence or the token level. However, DI treats the task as binary, whereas we argue that Arabic speakers perceive a spectrum of dialectness, which we operationalize at the sentence level as the Arabic Level of Dialectness (ALDi), a continuous linguistic variable. We introduce the AOC-ALDi dataset (derived from the AOC dataset), containing 127,835 sentences (17% from news articles and 83% from user comments on those articles) which are manually labeled with their level of dialectness. We provide a detailed analysis of AOC-ALDi and show that a model trained on it can effectively identify levels of dialectness on a range of other corpora (including dialects and genres not included in AOC-ALDi), providing a more nuanced picture than traditional DI systems. Through case studies, we illustrate how ALDi can reveal Arabic speakers' stylistic choices in different situations, a useful property for sociolinguistic analyses. 3 authors · Oct 20, 2023
- Quranic Audio Dataset: Crowdsourced and Labeled Recitation from Non-Arabic Speakers This paper addresses the challenge of learning to recite the Quran for non-Arabic speakers. We explore the possibility of crowdsourcing a carefully annotated Quranic dataset, on top of which AI models can be built to simplify the learning process. In particular, we use the volunteer-based crowdsourcing genre and implement a crowdsourcing API to gather audio assets. We integrated the API into an existing mobile application called NamazApp to collect audio recitations. We developed a crowdsourcing platform called Quran Voice for annotating the gathered audio assets. As a result, we have collected around 7000 Quranic recitations from a pool of 1287 participants across more than 11 non-Arabic countries, and we have annotated 1166 recitations from the dataset in six categories. We have achieved a crowd accuracy of 0.77, an inter-rater agreement of 0.63 between the annotators, and 0.89 between the labels assigned by the algorithm and the expert judgments. 4 authors · May 4, 2024
- ARCOQ: Arabic Closest Opposite Questions Dataset This paper presents a dataset for closest opposite questions in Arabic language. The dataset is the first of its kind for the Arabic language. It is beneficial for the assessment of systems on the aspect of antonymy detection. The structure is similar to that of the Graduate Record Examination (GRE) closest opposite questions dataset for the English language. The introduced dataset consists of 500 questions, each contains a query word for which the closest opposite needs to be determined from among a set of candidate words. Each question is also associated with the correct answer. We publish the dataset publicly in addition to providing standard splits of the dataset into development and test sets. Moreover, the paper provides a benchmark for the performance of different Arabic word embedding models on the introduced dataset. 3 authors · Oct 22, 2023
- Arabic Dialect Classification using RNNs, Transformers, and Large Language Models: A Comparative Analysis The Arabic language is among the most popular languages in the world with a huge variety of dialects spoken in 22 countries. In this study, we address the problem of classifying 18 Arabic dialects of the QADI dataset of Arabic tweets. RNN models, Transformer models, and large language models (LLMs) via prompt engineering are created and tested. Among these, MARBERTv2 performed best with 65% accuracy and 64% F1-score. Through the use of state-of-the-art preprocessing techniques and the latest NLP models, this paper identifies the most significant linguistic issues in Arabic dialect identification. The results corroborate applications like personalized chatbots that respond in users' dialects, social media monitoring, and greater accessibility for Arabic communities. 4 authors · Jun 24
- PalmX 2025: The First Shared Task on Benchmarking LLMs on Arabic and Islamic Culture Large Language Models (LLMs) inherently reflect the vast data distributions they encounter during their pre-training phase. As this data is predominantly sourced from the web, there is a high chance it will be skewed towards high-resourced languages and cultures, such as those of the West. Consequently, LLMs often exhibit a diminished understanding of certain communities, a gap that is particularly evident in their knowledge of Arabic and Islamic cultures. This issue becomes even more pronounced with increasingly under-represented topics. To address this critical challenge, we introduce PalmX 2025, the first shared task designed to benchmark the cultural competence of LLMs in these specific domains. The task is composed of two subtasks featuring multiple-choice questions (MCQs) in Modern Standard Arabic (MSA): General Arabic Culture and General Islamic Culture. These subtasks cover a wide range of topics, including traditions, food, history, religious practices, and language expressions from across 22 Arab countries. The initiative drew considerable interest, with 26 teams registering for Subtask 1 and 19 for Subtask 2, culminating in nine and six valid submissions, respectively. Our findings reveal that task-specific fine-tuning substantially boosts performance over baseline models. The top-performing systems achieved an accuracy of 72.15% on cultural questions and 84.22% on Islamic knowledge. Parameter-efficient fine-tuning emerged as the predominant and most effective approach among participants, while the utility of data augmentation was found to be domain-dependent. 6 authors · Sep 2
- ArabLegalEval: A Multitask Benchmark for Assessing Arabic Legal Knowledge in Large Language Models The rapid advancements in Large Language Models (LLMs) have led to significant improvements in various natural language processing tasks. However, the evaluation of LLMs' legal knowledge, particularly in non-English languages such as Arabic, remains under-explored. To address this gap, we introduce ArabLegalEval, a multitask benchmark dataset for assessing the Arabic legal knowledge of LLMs. Inspired by the MMLU and LegalBench datasets, ArabLegalEval consists of multiple tasks sourced from Saudi legal documents and synthesized questions. In this work, we aim to analyze the capabilities required to solve legal problems in Arabic and benchmark the performance of state-of-the-art LLMs. We explore the impact of in-context learning and investigate various evaluation methods. Additionally, we explore workflows for generating questions with automatic validation to enhance the dataset's quality. We benchmark multilingual and Arabic-centric LLMs, such as GPT-4 and Jais, respectively. We also share our methodology for creating the dataset and validation, which can be generalized to other domains. We hope to accelerate AI research in the Arabic Legal domain by releasing the ArabLegalEval dataset and code: https://github.com/Thiqah/ArabLegalEval 8 authors · Aug 15, 2024
1 Arabic Handwritten Text for Person Biometric Identification: A Deep Learning Approach This study thoroughly investigates how well deep learning models can recognize Arabic handwritten text for person biometric identification. It compares three advanced architectures -- ResNet50, MobileNetV2, and EfficientNetB7 -- using three widely recognized datasets: AHAWP, Khatt, and LAMIS-MSHD. Results show that EfficientNetB7 outperforms the others, achieving test accuracies of 98.57\%, 99.15\%, and 99.79\% on AHAWP, Khatt, and LAMIS-MSHD datasets, respectively. EfficientNetB7's exceptional performance is credited to its innovative techniques, including compound scaling, depth-wise separable convolutions, and squeeze-and-excitation blocks. These features allow the model to extract more abstract and distinctive features from handwritten text images. The study's findings hold significant implications for enhancing identity verification and authentication systems, highlighting the potential of deep learning in Arabic handwritten text recognition for person biometric identification. 4 authors · Jun 1, 2024
- DziriBERT: a Pre-trained Language Model for the Algerian Dialect Pre-trained transformers are now the de facto models in Natural Language Processing given their state-of-the-art results in many tasks and languages. However, most of the current models have been trained on languages for which large text resources are already available (such as English, French, Arabic, etc.). Therefore, there are still a number of low-resource languages that need more attention from the community. In this paper, we study the Algerian dialect which has several specificities that make the use of Arabic or multilingual models inappropriate. To address this issue, we collected more than one million Algerian tweets, and pre-trained the first Algerian language model: DziriBERT. When compared with existing models, DziriBERT achieves better results, especially when dealing with the Roman script. The obtained results show that pre-training a dedicated model on a small dataset (150 MB) can outperform existing models that have been trained on much more data (hundreds of GB). Finally, our model is publicly available to the community. 4 authors · Sep 25, 2021
- Qabas: An Open-Source Arabic Lexicographic Database We present Qabas, a novel open-source Arabic lexicon designed for NLP applications. The novelty of Qabas lies in its synthesis of 110 lexicons. Specifically, Qabas lexical entries (lemmas) are assembled by linking lemmas from 110 lexicons. Furthermore, Qabas lemmas are also linked to 12 morphologically annotated corpora (about 2M tokens), making it the first Arabic lexicon to be linked to lexicons and corpora. Qabas was developed semi-automatically, utilizing a mapping framework and a web-based tool. Compared with other lexicons, Qabas stands as the most extensive Arabic lexicon, encompassing about 58K lemmas (45K nominal lemmas, 12.5K verbal lemmas, and 473 functional-word lemmas). Qabas is open-source and accessible online at https://sina.birzeit.edu/qabas. 2 authors · Jun 6, 2024
- ArabGlossBERT: Fine-Tuning BERT on Context-Gloss Pairs for WSD Using pre-trained transformer models such as BERT has proven to be effective in many NLP tasks. This paper presents our work to fine-tune BERT models for Arabic Word Sense Disambiguation (WSD). We treated the WSD task as a sentence-pair binary classification task. First, we constructed a dataset of labeled Arabic context-gloss pairs (~167k pairs) we extracted from the Arabic Ontology and the large lexicographic database available at Birzeit University. Each pair was labeled as True or False and target words in each context were identified and annotated. Second, we used this dataset for fine-tuning three pre-trained Arabic BERT models. Third, we experimented the use of different supervised signals used to emphasize target words in context. Our experiments achieved promising results (accuracy of 84%) although we used a large set of senses in the experiment. 2 authors · May 19, 2022
- AraT5: Text-to-Text Transformers for Arabic Language Generation Transfer learning with a unified Transformer framework (T5) that converts all language problems into a text-to-text format was recently proposed as a simple and effective transfer learning approach. Although a multilingual version of the T5 model (mT5) was also introduced, it is not clear how well it can fare on non-English tasks involving diverse data. To investigate this question, we apply mT5 on a language with a wide variety of dialects--Arabic. For evaluation, we introduce a novel benchmark for ARabic language GENeration (ARGEN), covering seven important tasks. For model comparison, we pre-train three powerful Arabic T5-style models and evaluate them on ARGEN. Although pre-trained with ~49 less data, our new models perform significantly better than mT5 on all ARGEN tasks (in 52 out of 59 test sets) and set several new SOTAs. Our models also establish new SOTA on the recently-proposed, large Arabic language understanding evaluation benchmark ARLUE (Abdul-Mageed et al., 2021). Our new models are publicly available. We also link to ARGEN datasets through our repository: https://github.com/UBC-NLP/araT5. 3 authors · Aug 30, 2021
- An Amharic News Text classification Dataset In NLP, text classification is one of the primary problems we try to solve and its uses in language analyses are indisputable. The lack of labeled training data made it harder to do these tasks in low resource languages like Amharic. The task of collecting, labeling, annotating, and making valuable this kind of data will encourage junior researchers, schools, and machine learning practitioners to implement existing classification models in their language. In this short paper, we aim to introduce the Amharic text classification dataset that consists of more than 50k news articles that were categorized into 6 classes. This dataset is made available with easy baseline performances to encourage studies and better performance experiments. 2 authors · Mar 10, 2021
- Arabizi vs LLMs: Can the Genie Understand the Language of Aladdin? In this era of rapid technological advancements, communication continues to evolve as new linguistic phenomena emerge. Among these is Arabizi, a hybrid form of Arabic that incorporates Latin characters and numbers to represent the spoken dialects of Arab communities. Arabizi is widely used on social media and allows people to communicate in an informal and dynamic way, but it poses significant challenges for machine translation due to its lack of formal structure and deeply embedded cultural nuances. This case study arises from a growing need to translate Arabizi for gisting purposes. It evaluates the capacity of different LLMs to decode and translate Arabizi, focusing on multiple Arabic dialects that have rarely been studied up until now. Using a combination of human evaluators and automatic metrics, this research project investigates the model's performance in translating Arabizi into both Modern Standard Arabic and English. Key questions explored include which dialects are translated most effectively and whether translations into English surpass those into Arabic. 3 authors · Feb 28
- ASAD: A Twitter-based Benchmark Arabic Sentiment Analysis Dataset This paper provides a detailed description of a new Twitter-based benchmark dataset for Arabic Sentiment Analysis (ASAD), which is launched in a competition3, sponsored by KAUST for awarding 10000 USD, 5000 USD and 2000 USD to the first, second and third place winners, respectively. Compared to other publicly released Arabic datasets, ASAD is a large, high-quality annotated dataset(including 95K tweets), with three-class sentiment labels (positive, negative and neutral). We presents the details of the data collection process and annotation process. In addition, we implement several baseline models for the competition task and report the results as a reference for the participants to the competition. 7 authors · Nov 1, 2020
3 ALLaM: Large Language Models for Arabic and English We present ALLaM: Arabic Large Language Model, a series of large language models to support the ecosystem of Arabic Language Technologies (ALT). ALLaM is carefully trained considering the values of language alignment and knowledge transfer at scale. Our autoregressive decoder-only architecture models demonstrate how second-language acquisition via vocabulary expansion and pretraining on a mixture of Arabic and English text can steer a model towards a new language (Arabic) without any catastrophic forgetting in the original language (English). Furthermore, we highlight the effectiveness of using parallel/translated data to aid the process of knowledge alignment between languages. Finally, we show that extensive alignment with human preferences can significantly enhance the performance of a language model compared to models of a larger scale with lower quality alignment. ALLaM achieves state-of-the-art performance in various Arabic benchmarks, including MMLU Arabic, ACVA, and Arabic Exams. Our aligned models improve both in Arabic and English from their base aligned models. 25 authors · Jul 22, 2024
2 ArTST: Arabic Text and Speech Transformer We present ArTST, a pre-trained Arabic text and speech transformer for supporting open-source speech technologies for the Arabic language. The model architecture follows the unified-modal framework, SpeechT5, that was recently released for English, and is focused on Modern Standard Arabic (MSA), with plans to extend the model for dialectal and code-switched Arabic in future editions. We pre-trained the model from scratch on MSA speech and text data, and fine-tuned it for the following tasks: Automatic Speech Recognition (ASR), Text-To-Speech synthesis (TTS), and spoken dialect identification. In our experiments comparing ArTST with SpeechT5, as well as with previously reported results in these tasks, ArTST performs on a par with or exceeding the current state-of-the-art in all three tasks. Moreover, we find that our pre-training is conducive for generalization, which is particularly evident in the low-resource TTS task. The pre-trained model as well as the fine-tuned ASR and TTS models are released for research use. 4 authors · Oct 25, 2023
- Neural Arabic Text Diacritization: State of the Art Results and a Novel Approach for Machine Translation In this work, we present several deep learning models for the automatic diacritization of Arabic text. Our models are built using two main approaches, viz. Feed-Forward Neural Network (FFNN) and Recurrent Neural Network (RNN), with several enhancements such as 100-hot encoding, embeddings, Conditional Random Field (CRF) and Block-Normalized Gradient (BNG). The models are tested on the only freely available benchmark dataset and the results show that our models are either better or on par with other models, which require language-dependent post-processing steps, unlike ours. Moreover, we show that diacritics in Arabic can be used to enhance the models of NLP tasks such as Machine Translation (MT) by proposing the Translation over Diacritization (ToD) approach. 4 authors · Nov 8, 2019
- Speech Recognition Challenge in the Wild: Arabic MGB-3 This paper describes the Arabic MGB-3 Challenge - Arabic Speech Recognition in the Wild. Unlike last year's Arabic MGB-2 Challenge, for which the recognition task was based on more than 1,200 hours broadcast TV news recordings from Aljazeera Arabic TV programs, MGB-3 emphasises dialectal Arabic using a multi-genre collection of Egyptian YouTube videos. Seven genres were used for the data collection: comedy, cooking, family/kids, fashion, drama, sports, and science (TEDx). A total of 16 hours of videos, split evenly across the different genres, were divided into adaptation, development and evaluation data sets. The Arabic MGB-Challenge comprised two tasks: A) Speech transcription, evaluated on the MGB-3 test set, along with the 10 hour MGB-2 test set to report progress on the MGB-2 evaluation; B) Arabic dialect identification, introduced this year in order to distinguish between four major Arabic dialects - Egyptian, Levantine, North African, Gulf, as well as Modern Standard Arabic. Two hours of audio per dialect were released for development and a further two hours were used for evaluation. For dialect identification, both lexical features and i-vector bottleneck features were shared with participants in addition to the raw audio recordings. Overall, thirteen teams submitted ten systems to the challenge. We outline the approaches adopted in each system, and summarise the evaluation results. 3 authors · Sep 21, 2017
- ClArTTS: An Open-Source Classical Arabic Text-to-Speech Corpus At present, Text-to-speech (TTS) systems that are trained with high-quality transcribed speech data using end-to-end neural models can generate speech that is intelligible, natural, and closely resembles human speech. These models are trained with relatively large single-speaker professionally recorded audio, typically extracted from audiobooks. Meanwhile, due to the scarcity of freely available speech corpora of this kind, a larger gap exists in Arabic TTS research and development. Most of the existing freely available Arabic speech corpora are not suitable for TTS training as they contain multi-speaker casual speech with variations in recording conditions and quality, whereas the corpus curated for speech synthesis are generally small in size and not suitable for training state-of-the-art end-to-end models. In a move towards filling this gap in resources, we present a speech corpus for Classical Arabic Text-to-Speech (ClArTTS) to support the development of end-to-end TTS systems for Arabic. The speech is extracted from a LibriVox audiobook, which is then processed, segmented, and manually transcribed and annotated. The final ClArTTS corpus contains about 12 hours of speech from a single male speaker sampled at 40100 kHz. In this paper, we describe the process of corpus creation and provide details of corpus statistics and a comparison with existing resources. Furthermore, we develop two TTS systems based on Grad-TTS and Glow-TTS and illustrate the performance of the resulting systems via subjective and objective evaluations. The corpus will be made publicly available at www.clartts.com for research purposes, along with the baseline TTS systems demo. 4 authors · Feb 28, 2023
1 Hate speech detection in algerian dialect using deep learning With the proliferation of hate speech on social networks under different formats, such as abusive language, cyberbullying, and violence, etc., people have experienced a significant increase in violence, putting them in uncomfortable situations and threats. Plenty of efforts have been dedicated in the last few years to overcome this phenomenon to detect hate speech in different structured languages like English, French, Arabic, and others. However, a reduced number of works deal with Arabic dialects like Tunisian, Egyptian, and Gulf, mainly the Algerian ones. To fill in the gap, we propose in this work a complete approach for detecting hate speech on online Algerian messages. Many deep learning architectures have been evaluated on the corpus we created from some Algerian social networks (Facebook, YouTube, and Twitter). This corpus contains more than 13.5K documents in Algerian dialect written in Arabic, labeled as hateful or non-hateful. Promising results are obtained, which show the efficiency of our approach. 5 authors · Sep 20, 2023
18 AIN: The Arabic INclusive Large Multimodal Model Amid the swift progress of large language models (LLMs) and their evolution into large multimodal models (LMMs), significant strides have been made in high-resource languages such as English and Chinese. While Arabic LLMs have seen notable progress, Arabic LMMs remain largely unexplored, often narrowly focusing on a few specific aspects of the language and visual understanding. To bridge this gap, we introduce AIN-the Arabic Inclusive Multimodal Model-designed to excel across diverse domains. AIN is an English-Arabic bilingual LMM designed to excel in English and Arabic, leveraging carefully constructed 3.6 million high-quality Arabic-English multimodal data samples. AIN demonstrates state-of-the-art Arabic performance, while also possessing strong English-language visual capabilities. On the recent CAMEL-Bench benchmark comprising 38 sub-domains including, multi-image understanding, complex visual perception, handwritten document understanding, video understanding, medical imaging, plant diseases, and remote sensing-based land use understanding, our AIN demonstrates strong performance with the 7B model outperforming GPT-4o by an absolute gain of 3.4% averaged over eight domains and 38 sub-domains. AIN's superior capabilities position it as a significant step toward empowering Arabic speakers with advanced multimodal generative AI tools across diverse applications. 7 authors · Jan 31 2
8 The FIGNEWS Shared Task on News Media Narratives We present an overview of the FIGNEWS shared task, organized as part of the ArabicNLP 2024 conference co-located with ACL 2024. The shared task addresses bias and propaganda annotation in multilingual news posts. We focus on the early days of the Israel War on Gaza as a case study. The task aims to foster collaboration in developing annotation guidelines for subjective tasks by creating frameworks for analyzing diverse narratives highlighting potential bias and propaganda. In a spirit of fostering and encouraging diversity, we address the problem from a multilingual perspective, namely within five languages: English, French, Arabic, Hebrew, and Hindi. A total of 17 teams participated in two annotation subtasks: bias (16 teams) and propaganda (6 teams). The teams competed in four evaluation tracks: guidelines development, annotation quality, annotation quantity, and consistency. Collectively, the teams produced 129,800 data points. Key findings and implications for the field are discussed. 8 authors · Jul 25, 2024 2
1 Benchmarking the Medical Understanding and Reasoning of Large Language Models in Arabic Healthcare Tasks Recent progress in large language models (LLMs) has showcased impressive proficiency in numerous Arabic natural language processing (NLP) applications. Nevertheless, their effectiveness in Arabic medical NLP domains has received limited investigation. This research examines the degree to which state-of-the-art LLMs demonstrate and articulate healthcare knowledge in Arabic, assessing their capabilities across a varied array of Arabic medical tasks. We benchmark several LLMs using a medical dataset proposed in the Arabic NLP AraHealthQA challenge in MedArabiQ2025 track. Various base LLMs were assessed on their ability to accurately provide correct answers from existing choices in multiple-choice questions (MCQs) and fill-in-the-blank scenarios. Additionally, we evaluated the capacity of LLMs in answering open-ended questions aligned with expert answers. Our results reveal significant variations in correct answer prediction accuracy and low variations in semantic alignment of generated answers, highlighting both the potential and limitations of current LLMs in Arabic clinical contexts. Our analysis shows that for MCQs task, the proposed majority voting solution, leveraging three base models (Gemini Flash 2.5, Gemini Pro 2.5, and GPT o3), outperforms others, achieving up to 77% accuracy and securing first place overall in the Arahealthqa 2025 shared task-track 2 (sub-task 1) challenge. Moreover, for the open-ended questions task, several LLMs were able to demonstrate excellent performance in terms of semantic alignment and achieve a maximum BERTScore of 86.44%. 2 authors · Aug 13
7 Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning This work presents a novel framework for training Arabic nested embedding models through Matryoshka Embedding Learning, leveraging multilingual, Arabic-specific, and English-based models, to highlight the power of nested embeddings models in various Arabic NLP downstream tasks. Our innovative contribution includes the translation of various sentence similarity datasets into Arabic, enabling a comprehensive evaluation framework to compare these models across different dimensions. We trained several nested embedding models on the Arabic Natural Language Inference triplet dataset and assessed their performance using multiple evaluation metrics, including Pearson and Spearman correlations for cosine similarity, Manhattan distance, Euclidean distance, and dot product similarity. The results demonstrate the superior performance of the Matryoshka embedding models, particularly in capturing semantic nuances unique to the Arabic language. Results demonstrated that Arabic Matryoshka embedding models have superior performance in capturing semantic nuances unique to the Arabic language, significantly outperforming traditional models by up to 20-25\% across various similarity metrics. These results underscore the effectiveness of language-specific training and highlight the potential of Matryoshka models in enhancing semantic textual similarity tasks for Arabic NLP. 2 authors · Jul 30, 2024 2
- AlcLaM: Arabic Dialectal Language Model Pre-trained Language Models (PLMs) are integral to many modern natural language processing (NLP) systems. Although multilingual models cover a wide range of languages, they often grapple with challenges like high inference costs and a lack of diverse non-English training data. Arabic-specific PLMs are trained predominantly on modern standard Arabic, which compromises their performance on regional dialects. To tackle this, we construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms. We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch. Named AlcLaM, our model was trained using only 13 GB of text, which represents a fraction of the data used by existing models such as CAMeL, MARBERT, and ArBERT, compared to 7.8%, 10.2%, and 21.3%, respectively. Remarkably, AlcLaM demonstrates superior performance on a variety of Arabic NLP tasks despite the limited training data. AlcLaM is available at GitHub https://github.com/amurtadha/Alclam and HuggingFace https://huggingface.co/rahbi. 6 authors · Jul 17, 2024
- Fine-Tashkeel: Finetuning Byte-Level Models for Accurate Arabic Text Diacritization Most of previous work on learning diacritization of the Arabic language relied on training models from scratch. In this paper, we investigate how to leverage pre-trained language models to learn diacritization. We finetune token-free pre-trained multilingual models (ByT5) to learn to predict and insert missing diacritics in Arabic text, a complex task that requires understanding the sentence semantics and the morphological structure of the tokens. We show that we can achieve state-of-the-art on the diacritization task with minimal amount of training and no feature engineering, reducing WER by 40%. We release our finetuned models for the greater benefit of the researchers in the community. 3 authors · Mar 25, 2023
- Arabic Stable LM: Adapting Stable LM 2 1.6B to Arabic Large Language Models (LLMs) have shown impressive results in multiple domains of natural language processing (NLP) but are mainly focused on the English language. Recently, more LLMs have incorporated a larger proportion of multilingual text to represent low-resource languages. In Arabic NLP, several Arabic-centric LLMs have shown remarkable results on multiple benchmarks in the past two years. However, most Arabic LLMs have more than 7 billion parameters, which increases their hardware requirements and inference latency, when compared to smaller LLMs. This paper introduces Arabic Stable LM 1.6B in a base and chat version as a small but powerful Arabic-centric LLM. Our Arabic Stable LM 1.6B chat model achieves impressive results on several benchmarks beating multiple models with up to 8x the parameters. In addition, we show the benefit of mixing in synthetic instruction tuning data by augmenting our fine-tuning data with a large synthetic dialogue dataset. 11 authors · Dec 5, 2024
- QASR: QCRI Aljazeera Speech Resource -- A Large Scale Annotated Arabic Speech Corpus We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR contains linguistically motivated segmentation, punctuation, speaker information among others. QASR is suitable for training and evaluating speech recognition systems, acoustics- and/or linguistics- based Arabic dialect identification, punctuation restoration, speaker identification, speaker linking, and potentially other NLP modules for spoken data. In addition to QASR transcription, we release a dataset of 130M words to aid in designing and training a better language model. We show that end-to-end automatic speech recognition trained on QASR reports a competitive word error rate compared to the previous MGB-2 corpus. We report baseline results for downstream natural language processing tasks such as named entity recognition using speech transcript. We also report the first baseline for Arabic punctuation restoration. We make the corpus available for the research community. 4 authors · Jun 24, 2021
- ArEEG_Chars: Dataset for Envisioned Speech Recognition using EEG for Arabic Characters Brain-Computer-Interface (BCI) has been a hot research topic in the last few years that could help paralyzed people in their lives. Several researches were done to classify electroencephalography (EEG) signals automatically into English characters and words. Arabic language is one of the most used languages around the world. However, to the best of our knowledge, there is no dataset for Arabic characters EEG signals. In this paper, we have created an EEG dataset for Arabic characters and named it ArEEG_Chars. Moreover, several experiments were done on ArEEG_Chars using deep learning. Best results were achieved using LSTM and reached an accuracy of 97%. ArEEG_Chars dataset will be public for researchers. 4 authors · Feb 24, 2024
88 Hala Technical Report: Building Arabic-Centric Instruction & Translation Models at Scale We present Hala, a family of Arabic-centric instruction and translation models built with our translate-and-tune pipeline. We first compress a strong ARleftrightarrowEN teacher to FP8 (yielding sim2times higher throughput with no quality loss) and use it to create high-fidelity bilingual supervision. A lightweight language model LFM2-1.2B is then fine-tuned on this data and used to translate high-quality English instruction sets into Arabic, producing a million-scale corpus tailored to instruction following. We train Hala models at 350M, 700M, 1.2B, and 9B parameters, and apply slerp merging to balance Arabic specialization with base-model strengths. On Arabic-centric benchmarks, Hala achieves state-of-the-art results within both the "nano" (leq2B) and "small" (7-9B) categories, outperforming their bases. We release models, data, evaluation, and recipes to accelerate research in Arabic NLP. Image and Video Understanding Lab · Sep 17 3
1 On the importance of Data Scale in Pretraining Arabic Language Models Pretraining monolingual language models have been proven to be vital for performance in Arabic Natural Language Processing (NLP) tasks. In this paper, we conduct a comprehensive study on the role of data in Arabic Pretrained Language Models (PLMs). More precisely, we reassess the performance of a suite of state-of-the-art Arabic PLMs by retraining them on massive-scale, high-quality Arabic corpora. We have significantly improved the performance of the leading Arabic encoder-only BERT-base and encoder-decoder T5-base models on the ALUE and ORCA leaderboards, thereby reporting state-of-the-art results in their respective model categories. In addition, our analysis strongly suggests that pretraining data by far is the primary contributor to performance, surpassing other factors. Our models and source code are publicly available at https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch. 4 authors · Jan 15, 2024
- ThatiAR: Subjectivity Detection in Arabic News Sentences Detecting subjectivity in news sentences is crucial for identifying media bias, enhancing credibility, and combating misinformation by flagging opinion-based content. It provides insights into public sentiment, empowers readers to make informed decisions, and encourages critical thinking. While research has developed methods and systems for this purpose, most efforts have focused on English and other high-resourced languages. In this study, we present the first large dataset for subjectivity detection in Arabic, consisting of ~3.6K manually annotated sentences, and GPT-4o based explanation. In addition, we included instructions (both in English and Arabic) to facilitate LLM based fine-tuning. We provide an in-depth analysis of the dataset, annotation process, and extensive benchmark results, including PLMs and LLMs. Our analysis of the annotation process highlights that annotators were strongly influenced by their political, cultural, and religious backgrounds, especially at the beginning of the annotation process. The experimental results suggest that LLMs with in-context learning provide better performance. We aim to release the dataset and resources for the community. 5 authors · Jun 8, 2024
3 An End-to-End OCR Framework for Robust Arabic-Handwriting Recognition using a Novel Transformers-based Model and an Innovative 270 Million-Words Multi-Font Corpus of Classical Arabic with Diacritics This research is the second phase in a series of investigations on developing an Optical Character Recognition (OCR) of Arabic historical documents and examining how different modeling procedures interact with the problem. The first research studied the effect of Transformers on our custom-built Arabic dataset. One of the downsides of the first research was the size of the training data, a mere 15000 images from our 30 million images, due to lack of resources. Also, we add an image enhancement layer, time and space optimization, and Post-Correction layer to aid the model in predicting the correct word for the correct context. Notably, we propose an end-to-end text recognition approach using Vision Transformers as an encoder, namely BEIT, and vanilla Transformer as a decoder, eliminating CNNs for feature extraction and reducing the model's complexity. The experiments show that our end-to-end model outperforms Convolutions Backbones. The model attained a CER of 4.46%. 7 authors · Aug 20, 2022
1 Evaluating Arabic Large Language Models: A Survey of Benchmarks, Methods, and Gaps This survey provides the first systematic review of Arabic LLM benchmarks, analyzing 40+ evaluation benchmarks across NLP tasks, knowledge domains, cultural understanding, and specialized capabilities. We propose a taxonomy organizing benchmarks into four categories: Knowledge, NLP Tasks, Culture and Dialects, and Target-Specific evaluations. Our analysis reveals significant progress in benchmark diversity while identifying critical gaps: limited temporal evaluation, insufficient multi-turn dialogue assessment, and cultural misalignment in translated datasets. We examine three primary approaches: native collection, translation, and synthetic generation discussing their trade-offs regarding authenticity, scale, and cost. This work serves as a comprehensive reference for Arabic NLP researchers, providing insights into benchmark methodologies, reproducibility standards, and evaluation metrics while offering recommendations for future development. 8 authors · Oct 15