Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePrecision holography for non-conformal branes
We set up precision holography for the non-conformal branes preserving 16 supersymmetries. The near-horizon limit of all such p-brane solutions with p \leq 4, including the case of fundamental string solutions, is conformal to AdS_{p+2} x S^{8-p} with a linear dilaton. We develop holographic renormalization for all these cases. In particular, we obtain the most general asymptotic solutions with appropriate Dirichlet boundary conditions, find the corresponding counterterms and compute the holographic 1-point functions, all in complete generality and at the full non-linear level. The result for the stress energy tensor properly defines the notion of mass for backgrounds with such asymptotics. The analysis is done both in the original formulation of the method and also using a radial Hamiltonian analysis. The latter formulation exhibits most clearly the existence of an underlying generalized conformal structure. In the cases of Dp-branes, the corresponding dual boundary theory, the maximally supersymmetric Yang-Mills theory SYM_{p+1}, indeed exhibits the generalized conformal structure found at strong coupling. We compute the holographic 2-point functions of the stress energy tensor and gluon operator and show they satisfy the expected Ward identities and the constraints of generalized conformal structure. The holographic results are also manifestly compatible with the M-theory uplift, with the asymptotic solutions, counterterms, one and two point functions etc of the IIA F1 and D4 appropriately descending from those of M2 and M5 branes, respectively. We present a few applications including the computation of condensates in Witten's model of holographic YM_4 theory.
Iterate to Accelerate: A Unified Framework for Iterative Reasoning and Feedback Convergence
We introduce a unified framework for iterative reasoning that leverages non-Euclidean geometry via Bregman divergences, higher-order operator averaging, and adaptive feedback mechanisms. Our analysis establishes that, under mild smoothness and contractivity assumptions, a generalized update scheme not only unifies classical methods such as mirror descent and dynamic programming but also captures modern chain-of-thought reasoning processes in large language models. In particular, we prove that our accelerated iterative update achieves an O(1/t^2) convergence rate in the absence of persistent perturbations, and we further demonstrate that feedback (iterative) architectures are necessary to approximate certain fixed-point functions efficiently. These theoretical insights bridge classical acceleration techniques with contemporary applications in neural computation and optimization.
BoxSnake: Polygonal Instance Segmentation with Box Supervision
Box-supervised instance segmentation has gained much attention as it requires only simple box annotations instead of costly mask or polygon annotations. However, existing box-supervised instance segmentation models mainly focus on mask-based frameworks. We propose a new end-to-end training technique, termed BoxSnake, to achieve effective polygonal instance segmentation using only box annotations for the first time. Our method consists of two loss functions: (1) a point-based unary loss that constrains the bounding box of predicted polygons to achieve coarse-grained segmentation; and (2) a distance-aware pairwise loss that encourages the predicted polygons to fit the object boundaries. Compared with the mask-based weakly-supervised methods, BoxSnake further reduces the performance gap between the predicted segmentation and the bounding box, and shows significant superiority on the Cityscapes dataset. The code has been available publicly.
Complexity of counting points on curves and the factor $P_1(T)$ of the zeta function of surfaces
This article concerns the computational complexity of a fundamental problem in number theory: counting points on curves and surfaces over finite fields. There is no subexponential-time algorithm known and it is unclear if it can be NP-hard. Given a curve, we present the first efficient Arthur-Merlin protocol to certify its point-count, its Jacobian group structure, and its Hasse-Weil zeta function. We extend this result to a smooth projective surface to certify the factor P_{1}(T), corresponding to the first Betti number, of the zeta function; by using the counting oracle. We give the first algorithm to compute P_{1}(T) that is poly(log q)-time if the degree D of the input surface is fixed; and in quantum poly(Dlog q)-time in general. Our technique in the curve case, is to sample hash functions using the Weil and Riemann-Roch bounds, to certify the group order of its Jacobian. For higher dimension varieties, we first reduce to the case of a surface, which is fibred as a Lefschetz pencil of hyperplane sections over P^{1}. The formalism of vanishing cycles, and the inherent big monodromy, enable us to prove an effective version of Deligne's `theoreme du pgcd' using the hard-Lefschetz theorem and an equidistribution result due to Katz. These reduce our investigations to that of computing the zeta function of a curve, defined over a finite field extension F_{Q}/F_{q} of poly-bounded degree. This explicitization of the theory yields the first nontrivial upper bounds on the computational complexity.
AdAdaGrad: Adaptive Batch Size Schemes for Adaptive Gradient Methods
The choice of batch sizes in stochastic gradient optimizers is critical for model training. However, the practice of varying batch sizes throughout the training process is less explored compared to other hyperparameters. We investigate adaptive batch size strategies derived from adaptive sampling methods, traditionally applied only in stochastic gradient descent. Given the significant interplay between learning rates and batch sizes, and considering the prevalence of adaptive gradient methods in deep learning, we emphasize the need for adaptive batch size strategies in these contexts. We introduce AdAdaGrad and its scalar variant AdAdaGradNorm, which incrementally increase batch sizes during training, while model updates are performed using AdaGrad and AdaGradNorm. We prove that AdaGradNorm converges with high probability at a rate of O(1/K) for finding a first-order stationary point of smooth nonconvex functions within K iterations. AdaGrad also demonstrates similar convergence properties when integrated with a novel coordinate-wise variant of our adaptive batch size strategies. Our theoretical claims are supported by numerical experiments on various image classification tasks, highlighting the enhanced adaptability of progressive batching protocols in deep learning and the potential of such adaptive batch size strategies with adaptive gradient optimizers in large-scale model training.
Quantum Lower Bounds for Finding Stationary Points of Nonconvex Functions
Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding epsilon-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to p-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is Omegabig(epsilon^{-1+p{p}}big) regarding the first setting, and Omega(epsilon^{-4}) regarding the second setting (or Omega(epsilon^{-3}) if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding epsilon-stationary points of nonconvex functions with p-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
We consider the optimization problem of the form min_{x in R^d} f(x) triangleq E_{xi} [F(x; xi)], where the component F(x;xi) is L-mean-squared Lipschitz but possibly nonconvex and nonsmooth. The recently proposed gradient-free method requires at most O( L^4 d^{3/2} epsilon^{-4} + Delta L^3 d^{3/2} delta^{-1} epsilon^{-4}) stochastic zeroth-order oracle complexity to find a (delta,epsilon)-Goldstein stationary point of objective function, where Delta = f(x_0) - inf_{x in R^d} f(x) and x_0 is the initial point of the algorithm. This paper proposes a more efficient algorithm using stochastic recursive gradient estimators, which improves the complexity to O(L^3 d^{3/2} epsilon^{-3}+ Delta L^2 d^{3/2} delta^{-1} epsilon^{-3}).
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
MP1: MeanFlow Tames Policy Learning in 1-step for Robotic Manipulation
In robot manipulation, robot learning has become a prevailing approach. However, generative models within this field face a fundamental trade-off between the slow, iterative sampling of diffusion models and the architectural constraints of faster Flow-based methods, which often rely on explicit consistency losses. To address these limitations, we introduce MP1, which pairs 3D point-cloud inputs with the MeanFlow paradigm to generate action trajectories in one network function evaluation (1-NFE). By directly learning the interval-averaged velocity via the "MeanFlow Identity", our policy avoids any additional consistency constraints. This formulation eliminates numerical ODE-solver errors during inference, yielding more precise trajectories. MP1 further incorporates CFG for improved trajectory controllability while retaining 1-NFE inference without reintroducing structural constraints. Because subtle scene-context variations are critical for robot learning, especially in few-shot learning, we introduce a lightweight Dispersive Loss that repels state embeddings during training, boosting generalization without slowing inference. We validate our method on the Adroit and Meta-World benchmarks, as well as in real-world scenarios. Experimental results show MP1 achieves superior average task success rates, outperforming DP3 by 10.2% and FlowPolicy by 7.3%. Its average inference time is only 6.8 ms-19x faster than DP3 and nearly 2x faster than FlowPolicy. Our code is available at https://github.com/LogSSim/MP1.git.
Model-Based Transfer Learning for Contextual Reinforcement Learning
Deep reinforcement learning (RL) is a powerful approach to complex decision making. However, one issue that limits its practical application is its brittleness, sometimes failing to train in the presence of small changes in the environment. Motivated by the success of zero-shot transfer-where pre-trained models perform well on related tasks-we consider the problem of selecting a good set of training tasks to maximize generalization performance across a range of tasks. Given the high cost of training, it is critical to select training tasks strategically, but not well understood how to do so. We hence introduce Model-Based Transfer Learning (MBTL), which layers on top of existing RL methods to effectively solve contextual RL problems. MBTL models the generalization performance in two parts: 1) the performance set point, modeled using Gaussian processes, and 2) performance loss (generalization gap), modeled as a linear function of contextual similarity. MBTL combines these two pieces of information within a Bayesian optimization (BO) framework to strategically select training tasks. We show theoretically that the method exhibits sublinear regret in the number of training tasks and discuss conditions to further tighten regret bounds. We experimentally validate our methods using urban traffic and standard continuous control benchmarks. The experimental results suggest that MBTL can achieve up to 50x improved sample efficiency compared with canonical independent training and multi-task training. Further experiments demonstrate the efficacy of BO and the insensitivity to the underlying RL algorithm and hyperparameters. This work lays the foundations for investigating explicit modeling of generalization, thereby enabling principled yet effective methods for contextual RL.
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuels synthesis, long-term energy storage, and renewable fertilizer production. Despite considerable effort by the catalysis community to apply machine learning models to the computational catalyst discovery process, it remains an open challenge to build models that can generalize across both elemental compositions of surfaces and adsorbate identity/configurations, perhaps because datasets have been smaller in catalysis than related fields. To address this we developed the OC20 dataset, consisting of 1,281,040 Density Functional Theory (DFT) relaxations (~264,890,000 single point evaluations) across a wide swath of materials, surfaces, and adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this dataset with randomly perturbed structures, short timescale molecular dynamics, and electronic structure analyses. The dataset comprises three central tasks indicative of day-to-day catalyst modeling and comes with pre-defined train/validation/test splits to facilitate direct comparisons with future model development efforts. We applied three state-of-the-art graph neural network models (CGCNN, SchNet, Dimenet++) to each of these tasks as baseline demonstrations for the community to build on. In almost every task, no upper limit on model size was identified, suggesting that even larger models are likely to improve on initial results. The dataset and baseline models are both provided as open resources, as well as a public leader board to encourage community contributions to solve these important tasks.
Code-Craft: Hierarchical Graph-Based Code Summarization for Enhanced Context Retrieval
Understanding and navigating large-scale codebases remains a significant challenge in software engineering. Existing methods often treat code as flat text or focus primarily on local structural relationships, limiting their ability to provide holistic, context-aware information retrieval. We present Hierarchical Code Graph Summarization (HCGS), a novel approach that constructs a multi-layered representation of a codebase by generating structured summaries in a bottom-up fashion from a code graph. HCGS leverages the Language Server Protocol for language-agnostic code analysis and employs a parallel level-based algorithm for efficient summary generation. Through extensive evaluation on five diverse codebases totaling 7,531 functions, HCGS demonstrates significant improvements in code retrieval accuracy, achieving up to 82 percentage relative improvement in top-1 retrieval precision for large codebases like libsignal (27.15 percentage points), and perfect Pass@3 scores for smaller repositories. The system's hierarchical approach consistently outperforms traditional code-only retrieval across all metrics, with particularly substantial gains in larger, more complex codebases where understanding function relationships is crucial.
Is Your Automated Software Engineer Trustworthy?
Large Language Models (LLMs) are being increasingly used in software engineering tasks, with an increased focus on bug report resolution over the past year. However, most proposed systems fail to properly handle uncertain or incorrect inputs and outputs. Existing LLM-based tools and coding agents respond to every issue and generate a patch for every case, even when the input is vague or their own output is incorrect. There are no mechanisms in place to abstain when confidence is low. This leads to unreliable behaviour, such as hallucinated code changes or responses based on vague issue reports. We introduce BouncerBench, a benchmark that evaluates whether LLM-based software agents can refuse to act when inputs are ill-defined or refuse to respond when their own outputs are likely to be incorrect. Unlike prior benchmarks that implicitly incentivize models to generate responses even when uncertain, BouncerBench aims to improve precision by targeting two overlooked failure points: (1) vague or underspecified issue descriptions in tickets and (2) logically or functionally incorrect code patches created by the system. It measures whether proposed systems can distinguish actionable issues from vague tickets and valid patches from untrustworthy ones. We also implement a basic input and output bouncer, evaluating how well current LLMs can abstain when needed. Our results show that most models fail to abstain from underspecified inputs or incorrect outputs. Hence, we conclude that there is significant room for improvement before LLMs can be trusted to make correct decisions and recommendations in real-world software engineering workflows. BouncerBench provides a first step toward evaluating and building more cautious, trustworthy code agents. The replication package, dataset, and leaderboard can be found at bouncerbench.com
A Multi-Language Object-Oriented Programming Benchmark for Large Language Models
Establishing fair and robust benchmarks is essential for evaluating intelligent code generation by large language models (LLMs). Our survey of 35 existing benchmarks uncovers three major imbalances: 85.7% focus on a single programming language; 94.3% target only function-level or statement-level tasks; and over 80% include fewer than ten test cases on average. To address these gaps, we propose MultiOOP, a multi-language object-oriented programming benchmark covering six popular languages (Python, PHP, C++, C#, Java, JavaScript) with 267 tasks per language. We design a translator that extends an existing single-language OOP benchmark and the pass@o metric to a multilingual setting. Moreover, we propose an automated framework for augmenting test cases to ensure the reliability of the evaluation results. We evaluate 14 mainstream LLMs under zero-shot prompting and report three key findings: 1) Substantial performance degradation: pass@1 scores on MultiOOP drop by up to 65.6 percentage points compared to function-level tasks (e.g., HumanEval). 2) Cross-language variability: GPT-4o mini achieves pass@1 of 48.06% in Python but only 0.12%-15.26% in other languages, indicating limited multilingual generalization. 3) Conceptual gaps: pass@o scores are consistently 1.1-19.2 points lower than pass@k, demonstrating that LLMs often generate executable code without fully capturing core OOP concepts. Our benchmark, metric extensions, and evaluation scripts will be publicly released to foster a more balanced and comprehensive assessment of LLMs in object-oriented code generation. Our code and data will be released at https://github.com/alphadl/OOP-eval and https://huggingface.co/datasets/codeai-dteam/MultiOOP respectively.
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
Although deep learning has produced dazzling successes for applications of image, speech, and video processing in the past few years, most trainings are with suboptimal hyper-parameters, requiring unnecessarily long training times. Setting the hyper-parameters remains a black art that requires years of experience to acquire. This report proposes several efficient ways to set the hyper-parameters that significantly reduce training time and improves performance. Specifically, this report shows how to examine the training validation/test loss function for subtle clues of underfitting and overfitting and suggests guidelines for moving toward the optimal balance point. Then it discusses how to increase/decrease the learning rate/momentum to speed up training. Our experiments show that it is crucial to balance every manner of regularization for each dataset and architecture. Weight decay is used as a sample regularizer to show how its optimal value is tightly coupled with the learning rates and momentums. Files to help replicate the results reported here are available.
A hybrid deep-learning-metaheuristic framework for bi-level network design problems
This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using three test networks, two NDP variants and an exact solver as benchmark, we show that on average, our proposed framework can provide solutions within 1.5% gap of the best results in less than 0.5% of the time used by the exact solution procedure. Our framework can be utilized within an expert system for infrastructure planning to determine the best infrastructure planning and management decisions under different scenarios. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we foreseen interesting future research directions, thus we also put forward a brief research agenda for this topic. The key observation from our research that can shape future research is that the fitness function evaluation time using the inferences made by the GNN model was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by deep learning models, and 2) can use the significantly enlarged efficiency of the evaluation step to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.
