EvoCorps: An Evolutionary Multi-Agent Framework for Depolarizing Online Discourse
Abstract
EvoCorps is an evolutionary multi-agent framework that proactively addresses polarization in online discourse through dynamic social game coordination and closed-loop learning for real-time discourse governance.
Polarization in online discourse erodes social trust and accelerates misinformation, yet technical responses remain largely diagnostic and post-hoc. Current governance approaches suffer from inherent latency and static policies, struggling to counter coordinated adversarial amplification that evolves in real-time. We present EvoCorps, an evolutionary multi-agent framework for proactive depolarization. EvoCorps frames discourse governance as a dynamic social game and coordinates roles for monitoring, planning, grounded generation, and multi-identity diffusion. A retrieval-augmented collective cognition core provides factual grounding and action--outcome memory, while closed-loop evolutionary learning adapts strategies as the environment and attackers change. We implement EvoCorps on the MOSAIC social-AI simulation platform for controlled evaluation in a multi-source news stream with adversarial injection and amplification. Across emotional polarization, viewpoint extremity, and argumentative rationality, EvoCorps improves discourse outcomes over an adversarial baseline, pointing to a practical path from detection and post-hoc mitigation to in-process, closed-loop intervention. The code is available at https://github.com/ln2146/EvoCorps.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper