Approximation of Log-Partition Function in Policy Mirror Descent Induces Implicit Regularization for LLM Post-Training
Abstract
Policy mirror descent with mean approximation addresses challenges in training large language models by using adaptive regularization for more stable and efficient reinforcement learning.
Policy mirror descent (PMD) provides a principled framework for reinforcement learning (RL) by iteratively solving KL-regularized policy improvement subproblems. While this approach has been adopted in training advanced LLMs such as Kimi K1.5/K2, the ideal closed-form PMD updates require reliable partition function estimation, a significant challenge when working with limited rollouts in the vast action spaces of LLMs. We investigate a practical algorithm, termed PMD-mean, that approximates the log-partition term with the mean reward under the sampling policy and performs regression in log-policy space. Specifically, we characterize the population solution of PMD-mean and demonstrate that it implicitly optimizes mirror descent subproblems with an adaptive mixed KL--χ^2 regularizer. This additional χ^2 regularization constrains large probability changes, producing more conservative updates when expected rewards are low and enhancing robustness against finite-sample estimation errors. Experiments on math reasoning tasks show that PMD-mean achieves superior performance with improved stability and time efficiency. These findings deepen our understanding of PMD-mean and illuminate pathways toward principled improvements in RL algorithms for LLMs. Code is available at https://github.com/horizon-rl/OpenKimi.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper