Papers
arxiv:2602.02276

Kimi K2.5: Visual Agentic Intelligence

Published on Feb 2
ยท Submitted by
taesiri
on Feb 3
#2 Paper of the day
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

Kimi K2.5 is an open-source multimodal agentic model that enhances text and vision processing through joint optimization techniques and introduces Agent Swarm for parallel task execution.

AI-generated summary

We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to 4.5times over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.

Community

amazing <3

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2602.02276 in a dataset README.md to link it from this page.

Spaces citing this paper 46

Collections including this paper 6