Papers
arxiv:2510.25839

Establishing Baselines for Photonic Quantum Machine Learning: Insights from an Open, Collaborative Initiative

Published on Oct 29, 2025
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

The Perceval Challenge establishes a reproducible benchmark for photonic quantum computing in machine learning, evaluating variational, hardware-native, and hybrid approaches through collaborative experimentation.

AI-generated summary

The Perceval Challenge is an open, reproducible benchmark designed to assess the potential of photonic quantum computing for machine learning. Focusing on a reduced and hardware-feasible version of the MNIST digit classification task or near-term photonic processors, it offers a concrete framework to evaluate how photonic quantum circuits learn and generalize from limited data. Conducted over more than three months, the challenge attracted 64 teams worldwide in its first phase. After an initial selection, 11 finalist teams were granted access to GPU resources for large-scale simulation and photonic hardware execution through cloud service. The results establish the first unified baseline of photonic machine-learning performance, revealing complementary strengths between variational, hardware-native, and hybrid approaches. This challenge also underscores the importance of open, reproducible experimentation and interdisciplinary collaboration, highlighting how shared benchmarks can accelerate progress in quantum-enhanced learning. All implementations are publicly available in a single shared repository (https://github.com/Quandela/HybridAIQuantum-Challenge), supporting transparent benchmarking and cumulative research. Beyond this specific task, the Perceval Challenge illustrates how systematic, collaborative experimentation can map the current landscape of photonic quantum machine learning and pave the way toward hybrid, quantum-augmented AI workflows.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2510.25839 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2510.25839 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.