Game Generation via Large Language Models
Abstract
Large language models are used to generate game rules and levels simultaneously through a video game description language framework, extending procedural content generation applications.
Recently, the emergence of large language models (LLMs) has unlocked new opportunities for procedural content generation. However, recent attempts mainly focus on level generation for specific games with defined game rules such as Super Mario Bros. and Zelda. This paper investigates the game generation via LLMs. Based on video game description language, this paper proposes an LLM-based framework to generate game rules and levels simultaneously. Experiments demonstrate how the framework works with prompts considering different combinations of context. Our findings extend the current applications of LLMs and offer new insights for generating new games in the area of procedural content generation.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper