--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: asr-whisper-helpline-sw-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: sw split: validation args: sw metrics: - name: Wer type: wer value: 23.61977361977362 --- # asr-whisper-helpline-sw-v1 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4024 - Wer: 23.6198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.5275 | 0.05 | 500 | 0.7083 | 43.6821 | | 0.4754 | 0.1 | 1000 | 0.5733 | 42.0651 | | 0.2844 | 0.15 | 1500 | 0.5390 | 36.2093 | | 0.2647 | 0.2 | 2000 | 0.5060 | 34.3151 | | 0.2939 | 0.25 | 2500 | 0.4761 | 34.8926 | | 0.285 | 1.0094 | 3000 | 0.4610 | 35.0427 | | 0.1837 | 1.0594 | 3500 | 0.4516 | 34.0725 | | 0.2148 | 1.1094 | 4000 | 0.4309 | 33.1023 | | 0.2611 | 1.1594 | 4500 | 0.4328 | 29.0945 | | 0.1923 | 1.2094 | 5000 | 0.4180 | 31.2428 | | 0.0849 | 1.2594 | 5500 | 0.4229 | 25.8027 | | 0.1913 | 2.0188 | 6000 | 0.4051 | 28.4592 | | 0.0693 | 2.0688 | 6500 | 0.4256 | 29.1753 | | 0.1261 | 2.1188 | 7000 | 0.4057 | 28.8750 | | 0.0808 | 2.1688 | 7500 | 0.4054 | 28.3899 | | 0.0524 | 2.2188 | 8000 | 0.4248 | 25.6757 | | 0.0845 | 2.2688 | 8500 | 0.4159 | 26.5073 | | 0.0611 | 3.0282 | 9000 | 0.4142 | 25.4447 | | 0.0562 | 3.0782 | 9500 | 0.4104 | 25.6872 | | 0.0867 | 3.1282 | 10000 | 0.4024 | 23.6198 | ### Framework versions - Transformers 4.56.2 - Pytorch 2.8.0+cu128 - Datasets 2.21.0 - Tokenizers 0.22.1