Update README.md
Browse files
README.md
CHANGED
|
@@ -55,10 +55,10 @@ The model is fine-tuned for accurate transliteration of Nepali names, places, an
|
|
| 55 |
- **Model Type:** Sequence-to-sequence text generation
|
| 56 |
- **Language(s):** Nepali (ne), English (en)
|
| 57 |
- **License:** Apache 2.0
|
| 58 |
-
- **Base Model:**
|
| 59 |
- **Training Data:** Custom Nepali-English transliteration dataset
|
| 60 |
-
- **Training Steps:**
|
| 61 |
-
- **Parameters:**
|
| 62 |
|
| 63 |
## Intended Use
|
| 64 |
|
|
@@ -134,7 +134,7 @@ The model was trained on a custom dataset containing:
|
|
| 134 |
|
| 135 |
### Training Hyperparameters
|
| 136 |
- **Batch Size:** 64 (training), 16 (evaluation)
|
| 137 |
-
- **Learning Rate:**
|
| 138 |
- **Epochs:** 10
|
| 139 |
- **Optimizer:** AdamW
|
| 140 |
- **Weight Decay:** 0.01
|
|
@@ -142,17 +142,17 @@ The model was trained on a custom dataset containing:
|
|
| 142 |
- **Max Sequence Length:** 128
|
| 143 |
|
| 144 |
### Training Infrastructure
|
| 145 |
-
- **Hardware:**
|
| 146 |
- **Framework:** PyTorch, Transformers
|
| 147 |
-
- **Training Time:**
|
| 148 |
|
| 149 |
## Evaluation
|
| 150 |
|
| 151 |
### Metrics
|
| 152 |
-
- **BLEU Score:** 0.85
|
| 153 |
-
- **Word Accuracy:** 0.92
|
| 154 |
-
- **Character Error Rate:** 0.
|
| 155 |
-
- **Exact Match:** 0.78
|
| 156 |
|
| 157 |
### Test Results
|
| 158 |
| Direction | CER |
|
|
@@ -199,7 +199,6 @@ For questions or feedback about this model, please contact: [nirajansah1111@gmai
|
|
| 199 |
## Acknowledgments
|
| 200 |
|
| 201 |
- Thanks to the Nepali language community for providing linguistic insights
|
| 202 |
-
- [Add any other acknowledgments]
|
| 203 |
|
| 204 |
---
|
| 205 |
|
|
|
|
| 55 |
- **Model Type:** Sequence-to-sequence text generation
|
| 56 |
- **Language(s):** Nepali (ne), English (en)
|
| 57 |
- **License:** Apache 2.0
|
| 58 |
+
- **Base Model:** google/mt5-small
|
| 59 |
- **Training Data:** Custom Nepali-English transliteration dataset
|
| 60 |
+
- **Training Steps:** 34000]
|
| 61 |
+
- **Parameters:** 400MB
|
| 62 |
|
| 63 |
## Intended Use
|
| 64 |
|
|
|
|
| 134 |
|
| 135 |
### Training Hyperparameters
|
| 136 |
- **Batch Size:** 64 (training), 16 (evaluation)
|
| 137 |
+
- **Learning Rate:** 0.00005
|
| 138 |
- **Epochs:** 10
|
| 139 |
- **Optimizer:** AdamW
|
| 140 |
- **Weight Decay:** 0.01
|
|
|
|
| 142 |
- **Max Sequence Length:** 128
|
| 143 |
|
| 144 |
### Training Infrastructure
|
| 145 |
+
- **Hardware:** kaggle A100
|
| 146 |
- **Framework:** PyTorch, Transformers
|
| 147 |
+
- **Training Time:** 12hr
|
| 148 |
|
| 149 |
## Evaluation
|
| 150 |
|
| 151 |
### Metrics
|
| 152 |
+
- **BLEU Score:** 0.85
|
| 153 |
+
- **Word Accuracy:** 0.92
|
| 154 |
+
- **Character Error Rate:** 0.138
|
| 155 |
+
- **Exact Match:** 0.78
|
| 156 |
|
| 157 |
### Test Results
|
| 158 |
| Direction | CER |
|
|
|
|
| 199 |
## Acknowledgments
|
| 200 |
|
| 201 |
- Thanks to the Nepali language community for providing linguistic insights
|
|
|
|
| 202 |
|
| 203 |
---
|
| 204 |
|