Add model from wandb - run astroBERT-80-epochs
Browse files- model_architecture.txt +45 -0
model_architecture.txt
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
BertForSequenceClassification(
|
| 2 |
+
(bert): BertModel(
|
| 3 |
+
(embeddings): BertEmbeddings(
|
| 4 |
+
(word_embeddings): Embedding(30000, 768, padding_idx=0)
|
| 5 |
+
(position_embeddings): Embedding(512, 768)
|
| 6 |
+
(token_type_embeddings): Embedding(2, 768)
|
| 7 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 8 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 9 |
+
)
|
| 10 |
+
(encoder): BertEncoder(
|
| 11 |
+
(layer): ModuleList(
|
| 12 |
+
(0-11): 12 x BertLayer(
|
| 13 |
+
(attention): BertAttention(
|
| 14 |
+
(self): BertSdpaSelfAttention(
|
| 15 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 16 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 17 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 18 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 19 |
+
)
|
| 20 |
+
(output): BertSelfOutput(
|
| 21 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 22 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 23 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 24 |
+
)
|
| 25 |
+
)
|
| 26 |
+
(intermediate): BertIntermediate(
|
| 27 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 28 |
+
(intermediate_act_fn): GELUActivation()
|
| 29 |
+
)
|
| 30 |
+
(output): BertOutput(
|
| 31 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 32 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 33 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 34 |
+
)
|
| 35 |
+
)
|
| 36 |
+
)
|
| 37 |
+
)
|
| 38 |
+
(pooler): BertPooler(
|
| 39 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 40 |
+
(activation): Tanh()
|
| 41 |
+
)
|
| 42 |
+
)
|
| 43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 44 |
+
(classifier): Linear(in_features=768, out_features=36, bias=True)
|
| 45 |
+
)
|