File size: 2,443 Bytes
3c4be43
 
5c7370f
3c4be43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7370f
 
 
 
 
 
 
3c4be43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c7370f
3c4be43
 
 
 
 
5c7370f
 
 
 
 
3c4be43
 
 
 
5c7370f
3c4be43
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: sentence-transformers/all-mpnet-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: IKT_classifier_netzero_best
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IKT_classifier_netzero_best

This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4126
- Precision Macro: 0.9246
- Precision Weighted: 0.9248
- Recall Macro: 0.9209
- Recall Weighted: 0.9211
- F1-score: 0.9219
- Accuracy: 0.9211

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 9.588722322096848e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400.0
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
| No log        | 1.0   | 113  | 0.7402          | 0.8808          | 0.8847             | 0.8697       | 0.8684          | 0.8694   | 0.8684   |
| No log        | 2.0   | 226  | 0.8484          | 0.84            | 0.8358             | 0.6752       | 0.6842          | 0.6675   | 0.6842   |
| No log        | 3.0   | 339  | 0.3188          | 0.9209          | 0.9229             | 0.9209       | 0.9211          | 0.9200   | 0.9211   |
| No log        | 4.0   | 452  | 0.5524          | 0.8889          | 0.8925             | 0.8718       | 0.8684          | 0.8689   | 0.8684   |
| 0.5553        | 5.0   | 565  | 0.4126          | 0.9246          | 0.9248             | 0.9209       | 0.9211          | 0.9219   | 0.9211   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3