Forbu14 commited on
Commit
ae7108c
·
verified ·
1 Parent(s): 34c6de1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +128 -0
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - weather-forecasting
5
+ - diffusion-models
6
+ - rectified-flow
7
+ - meteorology
8
+ - pytorch
9
+ - deep-learning
10
+ license: mit
11
+ datasets:
12
+ - meteolibre
13
+ ---
14
+
15
+ # MeteoLibre Rectified Flow Model
16
+
17
+ This is a rectified flow diffusion model trained for meteorological data forecasting using the MeteoLibre dataset. The model uses a 3D U-Net architecture with FiLM conditioning for efficient weather pattern generation.
18
+
19
+ ## Model Description
20
+
21
+ - **Model type**: Rectified Flow Diffusion Model
22
+ - **Architecture**: 3D DC-AE U-Net with FiLM conditioning
23
+ - **Input**: Meteorological data patches (12 channels, 3D spatio-temporal)
24
+ - **Output**: Generated weather forecast data
25
+ - **Training data**: MeteoLibre meteorological dataset
26
+ - **Language(s)**: Python
27
+ - **License**: MIT
28
+
29
+ ## Intended Use
30
+
31
+ This model is designed for:
32
+ - Weather pattern generation and forecasting
33
+ - Meteorological data augmentation
34
+ - Research in atmospheric science and weather prediction
35
+ - Educational purposes in machine learning for climate modeling
36
+
37
+ ## Model Architecture
38
+
39
+ The model consists of:
40
+ - **UNet_DCAE_3D**: 3D convolutional U-Net with encoder-decoder architecture
41
+ - **FiLM Conditioning**: Feature-wise linear modulation for temporal context
42
+ - **Rectified Flow**: Efficient generative modeling approach
43
+ - **Input channels**: 12 (meteorological variables)
44
+ - **Output channels**: 12 (forecast variables)
45
+ - **Features**: [64, 128, 256] channel progression
46
+ - **Context frames**: 4 (temporal conditioning)
47
+
48
+ ## Training
49
+
50
+ The model was trained using:
51
+ - **Framework**: PyTorch with Hugging Face Accelerate
52
+ - **Optimizer**: Adam (lr=5e-4)
53
+ - **Batch size**: 64
54
+ - **Epochs**: 200
55
+ - **Precision**: Mixed precision (bf16)
56
+ - **Distributed training**: Multi-GPU support
57
+
58
+ ## Usage
59
+
60
+ ### Loading the Model
61
+
62
+ ```python
63
+ from safetensors.torch import load_file
64
+ import torch
65
+ from meteolibre_model.models.dc_3dunet_film import UNet_DCAE_3D
66
+
67
+ # Load model weights
68
+ state_dict = load_file("epoch_141_rectified_flow.safetensors")
69
+
70
+ # Create model
71
+ model = UNet_DCAE_3D(
72
+ in_channels=12,
73
+ out_channels=12,
74
+ features=[64, 128, 256],
75
+ context_dim=4,
76
+ context_frames=4,
77
+ num_additional_resnet_blocks=2
78
+ )
79
+
80
+ model.load_state_dict(state_dict)
81
+ model.eval()
82
+ ```
83
+
84
+ ### Inference
85
+
86
+ ```python
87
+ # Example inference code
88
+ with torch.no_grad():
89
+ generated_data = model(input_batch)
90
+ ```
91
+
92
+ ## Performance
93
+
94
+ The model checkpoints are saved at regular intervals:
95
+ - epoch_1_rectified_flow.safetensors through epoch_141_rectified_flow.safetensors
96
+ - Best performing checkpoints available for different training stages
97
+
98
+ ## Limitations
99
+
100
+ - Model trained on specific meteorological dataset
101
+ - May not generalize to all weather patterns or regions
102
+ - Requires significant computational resources for inference
103
+ - Temporal context limited to 4 frames
104
+
105
+ ## Ethical Considerations
106
+
107
+ - Weather forecasting models should be used responsibly
108
+ - Consider environmental impact of computational requirements
109
+ - Validate predictions against ground truth data
110
+ - Not intended for critical decision-making without human oversight
111
+
112
+ ## Citation
113
+
114
+ If you use this model in your research, please cite:
115
+
116
+ ```bibtex
117
+ @misc{meteolibre-rectified-flow,
118
+ title={MeteoLibre Rectified Flow Weather Forecasting Model},
119
+ author={MeteoLibre Development Team},
120
+ year={2025},
121
+ publisher={Hugging Face},
122
+ url={https://huggingface.co/meteolibre-dev/meteolibre-rectified-flow}
123
+ }
124
+ ```
125
+
126
+ ## Contact
127
+
128
+ For questions or issues, please open an issue on the [MeteoLibre GitHub repository](https://github.com/meteolibre-dev/meteolibre_model).