BTCUSDT 1-Hour Tokenizer
Tokenizer Description
This is a specialized tokenizer designed for time-series cryptocurrency data encoding, specifically fine-tuned for BTCUSDT (Bitcoin/USDT) 1-hour candlestick data. It converts numerical trading data (OHLCV - Open, High, Low, Close, Volume) into token representations suitable for transformer-based models.
Tokenizer Details
- Type: Numeric Time-Series Tokenizer
- Vocabulary Size: Model-specific
- Input Format: BTCUSDT candlestick data (OHLCV)
- Output: Token sequences for model inference
- Framework: Hugging Face Transformers compatible
Purpose
This tokenizer is used to preprocess historical BTCUSDT 1-hour trading data before feeding it into the fine-tuned prediction model. It handles:
- Price normalization: Converts raw price values to a standardized token space
- Volume encoding: Encodes trading volume information
- Temporal sequences: Preserves time-series relationships in data
- Model compatibility: Ensures proper input format for the BTCUSDT 1h fine-tuned model
How to Use
Installation
pip install transformers torch
Loading the Tokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("your-huggingface-username/BTCUSDT-1h-tokenizer")
Tokenizing BTCUSDT Data
# Example: Tokenize BTCUSDT candlestick data
candlestick_data = "BTCUSDT 1h: Open=45230.5, High=45600.2, Low=45100.3, Close=45450.8, Volume=2345.67"
tokens = tokenizer.encode(candlestick_data, return_tensors="pt")
print(tokens)
# Decode tokens back to readable format
decoded = tokenizer.decode(tokens[0])
print(decoded)
Integration with Model
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("your-huggingface-username/BTCUSDT-1h-tokenizer")
model = AutoModelForCausalLM.from_pretrained("your-huggingface-username/BTCUSDT-1h-finetuned")
# Prepare data
historical_data = "OHLCV data here..."
tokens = tokenizer.encode(historical_data, return_tensors="pt")
# Get predictions
outputs = model.generate(tokens, max_length=50)
predictions = tokenizer.decode(outputs[0])
Technical Specifications
- Compatible with: BTCUSDT 1-Hour Fine-tuned Model
- Data Format: Open, High, Low, Close, Volume (OHLCV)
- Time Granularity: 1-hour candlesticks
- Supported Operations: Encoding, decoding, tokenization
- Framework: PyTorch / TensorFlow compatible
Training Data
- Dataset: BTCUSDT 1-hour historical candles
- Source: Cryptocurrency exchange data
- Time Coverage: Historical trading data up to October 2025
- Data Points: Thousands of 1-hour candles
Limitations
- Specialized for BTCUSDT: Not recommended for other cryptocurrency pairs or timeframes
- 1-Hour Granularity: Designed specifically for 1-hour candlestick data
- Numeric Focus: Optimized for OHLCV data format
- Normalization: Assumes price ranges similar to historical BTCUSDT data
Usage Notes
โ ๏ธ Important:
- This tokenizer should be used exclusively with the BTCUSDT 1h fine-tuned model
- Do not use this tokenizer with other models or datasets
- Ensure your input data follows the OHLCV format
- Maintain consistent data normalization across datasets
Related Models
- Fine-tuned Model: BTCUSDT 1h Fine-tuned Model
- Base Model: Kronos
License
This tokenizer is released under the MIT License.
Citation
If you use this tokenizer, please cite:
@misc{btcusdt_tokenizer_2025,
title={BTCUSDT 1-Hour Tokenizer},
author={Your Name},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/your-username/BTCUSDT-1h-tokenizer}}
}
Acknowledgments
- Base framework: Hugging Face Transformers
- Compatible with: BTCUSDT 1h Fine-tuned Model
Contact & Support
For questions:
Last Updated: October 20, 2025
- Downloads last month
- 24
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support