mCLM_1k-3b / usage_example.py
cnedwards's picture
Upload mCLM model
10a47d3 verified
# mCLM Usage Example
import torch
from transformers import AutoTokenizer
from mCLM.model.qwen_based.model import Qwen2ForCausalLM
from mCLM.tokenizer.molecule_tokenizer import MoleculeTokenizer
# Load model and tokenizers
model = Qwen2ForCausalLM.from_pretrained(
"YOUR_REPO_ID",
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("YOUR_REPO_ID")
tokenizer.pad_token = tokenizer.eos_token
# Load molecule tokenizer
torch.serialization.add_safe_globals([MoleculeTokenizer])
molecule_tokenizer = torch.load("molecule_tokenizer.pth", weights_only=False)
# Run inference
user_input = "What is aspirin used for?"
messages = [{"role": "user", "content": user_input}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=inputs, max_new_tokens=256)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)