init
Browse files- .gitattributes +1 -0
- .gitignore +12 -0
- README.md +138 -195
- pipeline/kotoba_whisper.py +315 -0
- pipeline/push_pipeline.py +23 -0
- pipeline/test_pipeline.py +7 -0
- pipeline/test_speaker_diarization.py +48 -0
- sample_audio/sample_diarization_japanese.mp3 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
sample_audio/* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.idea
|
| 2 |
+
*.egg-info
|
| 3 |
+
build
|
| 4 |
+
dist
|
| 5 |
+
*.ipynb_checkpoints
|
| 6 |
+
.DS_Store
|
| 7 |
+
.python-version
|
| 8 |
+
*.pyc
|
| 9 |
+
__pycache__
|
| 10 |
+
*.nfs000*
|
| 11 |
+
.eggs
|
| 12 |
+
|
README.md
CHANGED
|
@@ -1,199 +1,142 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
-
|
| 21 |
-
|
| 22 |
-
-
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
-
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
[
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
[
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
language: ja
|
| 3 |
library_name: transformers
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- audio
|
| 7 |
+
- automatic-speech-recognition
|
| 8 |
+
- hf-asr-leaderboard
|
| 9 |
+
widget:
|
| 10 |
+
- example_title: Sample 1
|
| 11 |
+
src: >-
|
| 12 |
+
https://huggingface.co/datasets/japanese-asr/ja_asr.common_voice_8_0/resolve/main/sample.flac
|
| 13 |
+
pipeline_tag: automatic-speech-recognition
|
| 14 |
---
|
| 15 |
|
| 16 |
+
# Kotoba-Whisper-v2.2
|
| 17 |
+
_Kotoba-Whisper-v2.2_ is a Japanese ASR model based on [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0), with
|
| 18 |
+
additional postprocessing stacks integrated as [`pipeline`](https://huggingface.co/docs/transformers/en/main_classes/pipelines). The new features includes
|
| 19 |
+
(i) improved timestamp achieved by [stable-ts](https://github.com/jianfch/stable-ts) and (ii) adding punctuation with [punctuators](https://github.com/1-800-BAD-CODE/punctuators/tree/main).
|
| 20 |
+
These libraries are merged into Kotoba-Whisper-v2.1 via pipeline and will be applied seamlessly to the predicted transcription from [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0).
|
| 21 |
+
The pipeline has been developed through the collaboration between [Asahi Ushio](https://asahiushio.com) and [Kotoba Technologies](https://twitter.com/kotoba_tech)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
Following table presents the raw CER (unlike usual CER where the punctuations are removed before computing the metrics, see the evaluation script [here](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.1/blob/main/run_short_form_eval.py))
|
| 25 |
+
along with the.
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
| model | [CommonVoice 8 (Japanese test set)](https://huggingface.co/datasets/japanese-asr/ja_asr.common_voice_8_0) | [JSUT Basic 5000](https://huggingface.co/datasets/japanese-asr/ja_asr.jsut_basic5000) | [ReazonSpeech (held out test set)](https://huggingface.co/datasets/japanese-asr/ja_asr.reazonspeech_test) |
|
| 29 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------:|----------------------------------------------------------------------------------------:|------------------------------------------------------------------------------------------------------------:|
|
| 30 |
+
| [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) | 17.6 | 15.4 | 17.4 |
|
| 31 |
+
| [kotoba-tech/kotoba-whisper-v2.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.1) | 17.7 | 15.4 | 17 |
|
| 32 |
+
| [kotoba-tech/kotoba-whisper-v2.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.1) (punctuator + stable-ts) | 17.7 | 15.4 | 17 |
|
| 33 |
+
| [kotoba-tech/kotoba-whisper-v2.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.1) (punctuator) | 17.7 | 15.4 | 17 |
|
| 34 |
+
| [kotoba-tech/kotoba-whisper-v2.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.1) (stable-ts) | 17.7 | 15.4 | 17 |
|
| 35 |
+
| [kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 17.8 | 15.2 | 17.8 |
|
| 36 |
+
| [kotoba-tech/kotoba-whisper-v1.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.1) | 17.9 | 15 | 17.8 |
|
| 37 |
+
| [kotoba-tech/kotoba-whisper-v1.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.1) (punctuator + stable-ts) | 17.9 | 15 | 17.8 |
|
| 38 |
+
| [kotoba-tech/kotoba-whisper-v1.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.1) (punctuator) | 17.9 | 15 | 17.8 |
|
| 39 |
+
| [kotoba-tech/kotoba-whisper-v1.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.1) (stable-ts) | 17.9 | 15 | 17.8 |
|
| 40 |
+
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 15.3 | 13.4 | 20.5 |
|
| 41 |
+
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 15.9 | 10.6 | 34.6 |
|
| 42 |
+
| [openai/whisper-large](https://huggingface.co/openai/whisper-large) | 16.6 | 11.3 | 40.7 |
|
| 43 |
+
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 17.9 | 13.1 | 39.3 |
|
| 44 |
+
| [openai/whisper-base](https://huggingface.co/openai/whisper-base) | 34.5 | 26.4 | 76 |
|
| 45 |
+
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 21.5 | 18.9 | 48.1 |
|
| 46 |
+
| [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 58.8 | 38.3 | 153.3 |
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
Regarding to the normalized CER, since those update from v2.1 will be removed by the normalization, kotoba-tech/kotoba-whisper-v2.1 marks the same CER values as [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0).
|
| 50 |
+
|
| 51 |
+
### Latency
|
| 52 |
+
Please refer to the section of the latency in the kotoba-whisper-v1.1 [here](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.1#latency).
|
| 53 |
+
|
| 54 |
+
## Transformers Usage
|
| 55 |
+
Kotoba-Whisper-v2.1 is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first
|
| 56 |
+
install the latest version of Transformers.
|
| 57 |
+
|
| 58 |
+
```bash
|
| 59 |
+
pip install --upgrade pip
|
| 60 |
+
pip install --upgrade transformers accelerate torchaudio
|
| 61 |
+
pip install stable-ts==2.16.0
|
| 62 |
+
pip install punctuators==0.0.5
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
### Transcription
|
| 66 |
+
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 67 |
+
class to transcribe audio files as follows:
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
import torch
|
| 71 |
+
from transformers import pipeline
|
| 72 |
+
from datasets import load_dataset
|
| 73 |
+
|
| 74 |
+
# config
|
| 75 |
+
model_id = "kotoba-tech/kotoba-whisper-v2.1"
|
| 76 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 77 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 78 |
+
model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
|
| 79 |
+
generate_kwargs = {"language": "ja", "task": "transcribe"}
|
| 80 |
+
|
| 81 |
+
# load model
|
| 82 |
+
pipe = pipeline(
|
| 83 |
+
model=model_id,
|
| 84 |
+
torch_dtype=torch_dtype,
|
| 85 |
+
device=device,
|
| 86 |
+
model_kwargs=model_kwargs,
|
| 87 |
+
chunk_length_s=15,
|
| 88 |
+
batch_size=16,
|
| 89 |
+
trust_remote_code=True,
|
| 90 |
+
stable_ts=True,
|
| 91 |
+
punctuator=True
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# load sample audio
|
| 95 |
+
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
|
| 96 |
+
sample = dataset[0]["audio"]
|
| 97 |
+
|
| 98 |
+
# run inference
|
| 99 |
+
result = pipe(sample, return_timestamps=True, generate_kwargs=generate_kwargs)
|
| 100 |
+
print(result)
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
- To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
|
| 104 |
+
```diff
|
| 105 |
+
- result = pipe(sample, return_timestamps=True, generate_kwargs=generate_kwargs)
|
| 106 |
+
+ result = pipe("audio.mp3", return_timestamps=True, generate_kwargs=generate_kwargs)
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
- To deactivate stable-ts:
|
| 110 |
+
```diff
|
| 111 |
+
- stable_ts=True,
|
| 112 |
+
+ stable_ts=False,
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
- To deactivate punctuator:
|
| 116 |
+
```diff
|
| 117 |
+
- punctuator=True,
|
| 118 |
+
+ punctuator=False,
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
### Flash Attention 2
|
| 123 |
+
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
|
| 124 |
+
if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
|
| 125 |
+
|
| 126 |
+
```
|
| 127 |
+
pip install flash-attn --no-build-isolation
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
|
| 131 |
+
|
| 132 |
+
```diff
|
| 133 |
+
- model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
|
| 134 |
+
+ model_kwargs = {"attn_implementation": "flash_attention_2"} if torch.cuda.is_available() else {}
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
## Acknowledgements
|
| 139 |
+
* [OpenAI](https://openai.com/) for the Whisper [model](https://huggingface.co/openai/whisper-large-v3).
|
| 140 |
+
* Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration.
|
| 141 |
+
* Hugging Face 🤗 for the [Distil-Whisper codebase](https://github.com/huggingface/distil-whisper).
|
| 142 |
+
* [Reazon Human Interaction Lab](https://research.reazon.jp/) for the [ReazonSpeech dataset](https://huggingface.co/datasets/reazon-research/reazonspeech).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline/kotoba_whisper.py
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Union, Optional, Dict, List, Any
|
| 2 |
+
import requests
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 8 |
+
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline, chunk_iter
|
| 9 |
+
from transformers.utils import is_torchaudio_available
|
| 10 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 11 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 12 |
+
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
| 13 |
+
from pyannote.audio import Pipeline
|
| 14 |
+
from pyannote.core.annotation import Annotation
|
| 15 |
+
from punctuators.models import PunctCapSegModelONNX
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Punctuator:
|
| 19 |
+
|
| 20 |
+
ja_punctuations = ["!", "?", "、", "。"]
|
| 21 |
+
|
| 22 |
+
def __init__(self, model: str = "pcs_47lang"):
|
| 23 |
+
self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)
|
| 24 |
+
|
| 25 |
+
def punctuate(self, pipeline_chunk: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
| 26 |
+
|
| 27 |
+
def validate_punctuation(raw: str, punctuated: str):
|
| 28 |
+
if 'unk' in punctuated.lower() or any(p in raw for p in self.ja_punctuations):
|
| 29 |
+
return raw
|
| 30 |
+
if punctuated.count("。") > 1:
|
| 31 |
+
ind = punctuated.rfind("。")
|
| 32 |
+
punctuated = punctuated.replace("。", "")
|
| 33 |
+
punctuated = punctuated[:ind] + "。" + punctuated[ind:]
|
| 34 |
+
return punctuated
|
| 35 |
+
|
| 36 |
+
text_edit = self.punctuation_model.infer([c['text'] for c in pipeline_chunk])
|
| 37 |
+
return [
|
| 38 |
+
{
|
| 39 |
+
'timestamp': c['timestamp'],
|
| 40 |
+
'text': validate_punctuation(c['text'], "".join(e))
|
| 41 |
+
} for c, e in zip(pipeline_chunk, text_edit)
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class SpeakerDiarization:
|
| 47 |
+
|
| 48 |
+
def __init__(self, model_id: str, device: torch.device):
|
| 49 |
+
self.device = device
|
| 50 |
+
self.pipeline = Pipeline.from_pretrained(model_id)
|
| 51 |
+
self.pipeline = self.pipeline.to(self.device)
|
| 52 |
+
|
| 53 |
+
def __call__(self,
|
| 54 |
+
audio: Union[str, torch.Tensor, np.ndarray],
|
| 55 |
+
sampling_rate: Optional[int] = None) -> Annotation:
|
| 56 |
+
if type(audio) is torch.Tensor or type(audio) is np.ndarray:
|
| 57 |
+
if sampling_rate is None:
|
| 58 |
+
raise ValueError("sampling_rate must be provided")
|
| 59 |
+
if type(audio) is np.ndarray:
|
| 60 |
+
audio = torch.as_tensor(audio)
|
| 61 |
+
audio = torch.as_tensor(audio, dtype=torch.float32)
|
| 62 |
+
if len(audio.shape) == 1:
|
| 63 |
+
audio = audio.unsqueeze(0)
|
| 64 |
+
elif len(audio.shape) > 3:
|
| 65 |
+
raise ValueError("audio shape must be (channel, time)")
|
| 66 |
+
audio = {"waveform": audio.to(self.device), "sample_rate": sampling_rate}
|
| 67 |
+
output = self.pipeline(audio)
|
| 68 |
+
return output
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline):
|
| 72 |
+
|
| 73 |
+
def __init__(self,
|
| 74 |
+
model: "PreTrainedModel",
|
| 75 |
+
model_diarizarization: str="pyannote/speaker-diarization-3.1",
|
| 76 |
+
feature_extractor: Union["SequenceFeatureExtractor", str] = None,
|
| 77 |
+
tokenizer: Optional[PreTrainedTokenizer] = None,
|
| 78 |
+
device: Union[int, "torch.device"] = None,
|
| 79 |
+
device_diarizarization: Union[int, "torch.device"] = None,
|
| 80 |
+
torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
|
| 81 |
+
return_unique_speaker: bool = False,
|
| 82 |
+
punctuator: bool = False,
|
| 83 |
+
**kwargs):
|
| 84 |
+
self.type = "seq2seq_whisper"
|
| 85 |
+
if device is None:
|
| 86 |
+
device = "cpu"
|
| 87 |
+
if device_diarizarization is None:
|
| 88 |
+
device_diarizarization = device
|
| 89 |
+
if type(device_diarizarization) is str:
|
| 90 |
+
device_diarizarization = torch.device(device_diarizarization)
|
| 91 |
+
self.model_speaker_diarization = SpeakerDiarization(model_diarizarization, device_diarizarization)
|
| 92 |
+
self.return_unique_speaker = return_unique_speaker
|
| 93 |
+
if punctuator:
|
| 94 |
+
self.punctuator = Punctuator()
|
| 95 |
+
else:
|
| 96 |
+
self.punctuator = None
|
| 97 |
+
super().__init__(
|
| 98 |
+
model=model,
|
| 99 |
+
feature_extractor=feature_extractor,
|
| 100 |
+
tokenizer=tokenizer,
|
| 101 |
+
device=device,
|
| 102 |
+
torch_dtype=torch_dtype,
|
| 103 |
+
**kwargs
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None):
|
| 107 |
+
if isinstance(inputs, str):
|
| 108 |
+
if inputs.startswith("http://") or inputs.startswith("https://"):
|
| 109 |
+
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
|
| 110 |
+
# like http_huggingface_co.png
|
| 111 |
+
inputs = requests.get(inputs).content
|
| 112 |
+
else:
|
| 113 |
+
with open(inputs, "rb") as f:
|
| 114 |
+
inputs = f.read()
|
| 115 |
+
|
| 116 |
+
if isinstance(inputs, bytes):
|
| 117 |
+
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
|
| 118 |
+
|
| 119 |
+
stride = None
|
| 120 |
+
extra = {}
|
| 121 |
+
if isinstance(inputs, dict):
|
| 122 |
+
stride = inputs.pop("stride", None)
|
| 123 |
+
# Accepting `"array"` which is the key defined in `datasets` for
|
| 124 |
+
# better integration
|
| 125 |
+
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
|
| 126 |
+
raise ValueError(
|
| 127 |
+
"When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
|
| 128 |
+
'"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
|
| 129 |
+
"containing the sampling_rate associated with that array"
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
_inputs = inputs.pop("raw", None)
|
| 133 |
+
if _inputs is None:
|
| 134 |
+
# Remove path which will not be used from `datasets`.
|
| 135 |
+
inputs.pop("path", None)
|
| 136 |
+
_inputs = inputs.pop("array", None)
|
| 137 |
+
in_sampling_rate = inputs.pop("sampling_rate")
|
| 138 |
+
extra = inputs
|
| 139 |
+
inputs = _inputs
|
| 140 |
+
if in_sampling_rate != self.feature_extractor.sampling_rate:
|
| 141 |
+
if is_torchaudio_available():
|
| 142 |
+
from torchaudio import functional as F
|
| 143 |
+
else:
|
| 144 |
+
raise ImportError(
|
| 145 |
+
"torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
|
| 146 |
+
"The torchaudio package can be installed through: `pip install torchaudio`."
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
inputs = F.resample(
|
| 150 |
+
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
|
| 151 |
+
).numpy()
|
| 152 |
+
ratio = self.feature_extractor.sampling_rate / in_sampling_rate
|
| 153 |
+
else:
|
| 154 |
+
ratio = 1
|
| 155 |
+
if stride is not None:
|
| 156 |
+
if stride[0] + stride[1] > inputs.shape[0]:
|
| 157 |
+
raise ValueError("Stride is too large for input")
|
| 158 |
+
|
| 159 |
+
# Stride needs to get the chunk length here, it's going to get
|
| 160 |
+
# swallowed by the `feature_extractor` later, and then batching
|
| 161 |
+
# can add extra data in the inputs, so we need to keep track
|
| 162 |
+
# of the original length in the stride so we can cut properly.
|
| 163 |
+
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
|
| 164 |
+
if not isinstance(inputs, np.ndarray):
|
| 165 |
+
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
|
| 166 |
+
if len(inputs.shape) != 1:
|
| 167 |
+
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
|
| 168 |
+
|
| 169 |
+
if chunk_length_s:
|
| 170 |
+
if stride_length_s is None:
|
| 171 |
+
stride_length_s = chunk_length_s / 6
|
| 172 |
+
|
| 173 |
+
if isinstance(stride_length_s, (int, float)):
|
| 174 |
+
stride_length_s = [stride_length_s, stride_length_s]
|
| 175 |
+
|
| 176 |
+
# XXX: Carefuly, this variable will not exist in `seq2seq` setting.
|
| 177 |
+
# Currently chunking is not possible at this level for `seq2seq` so
|
| 178 |
+
# it's ok.
|
| 179 |
+
align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
|
| 180 |
+
chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
|
| 181 |
+
stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
|
| 182 |
+
stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)
|
| 183 |
+
|
| 184 |
+
if chunk_len < stride_left + stride_right:
|
| 185 |
+
raise ValueError("Chunk length must be superior to stride length")
|
| 186 |
+
|
| 187 |
+
for item in chunk_iter(
|
| 188 |
+
inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype
|
| 189 |
+
):
|
| 190 |
+
item["audio_array"] = inputs
|
| 191 |
+
yield item
|
| 192 |
+
else:
|
| 193 |
+
if inputs.shape[0] > self.feature_extractor.n_samples:
|
| 194 |
+
processed = self.feature_extractor(
|
| 195 |
+
inputs,
|
| 196 |
+
sampling_rate=self.feature_extractor.sampling_rate,
|
| 197 |
+
truncation=False,
|
| 198 |
+
padding="longest",
|
| 199 |
+
return_tensors="pt",
|
| 200 |
+
)
|
| 201 |
+
else:
|
| 202 |
+
processed = self.feature_extractor(
|
| 203 |
+
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
if self.torch_dtype is not None:
|
| 207 |
+
processed = processed.to(dtype=self.torch_dtype)
|
| 208 |
+
if stride is not None:
|
| 209 |
+
processed["stride"] = stride
|
| 210 |
+
yield {"is_last": True, "audio_array": inputs, **processed, **extra}
|
| 211 |
+
|
| 212 |
+
def _forward(self, model_inputs, **generate_kwargs):
|
| 213 |
+
attention_mask = model_inputs.pop("attention_mask", None)
|
| 214 |
+
stride = model_inputs.pop("stride", None)
|
| 215 |
+
is_last = model_inputs.pop("is_last")
|
| 216 |
+
audio_array = model_inputs.pop("audio_array")
|
| 217 |
+
encoder = self.model.get_encoder()
|
| 218 |
+
# Consume values so we can let extra information flow freely through
|
| 219 |
+
# the pipeline (important for `partial` in microphone)
|
| 220 |
+
if "input_features" in model_inputs:
|
| 221 |
+
inputs = model_inputs.pop("input_features")
|
| 222 |
+
elif "input_values" in model_inputs:
|
| 223 |
+
inputs = model_inputs.pop("input_values")
|
| 224 |
+
else:
|
| 225 |
+
raise ValueError(
|
| 226 |
+
"Seq2Seq speech recognition model requires either a "
|
| 227 |
+
f"`input_features` or `input_values` key, but only has {model_inputs.keys()}"
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# custom processing for Whisper timestamps and word-level timestamps
|
| 231 |
+
generate_kwargs["return_timestamps"] = True
|
| 232 |
+
if inputs.shape[-1] > self.feature_extractor.nb_max_frames:
|
| 233 |
+
generate_kwargs["input_features"] = inputs
|
| 234 |
+
else:
|
| 235 |
+
generate_kwargs["encoder_outputs"] = encoder(inputs, attention_mask=attention_mask)
|
| 236 |
+
|
| 237 |
+
tokens = self.model.generate(attention_mask=attention_mask, **generate_kwargs)
|
| 238 |
+
# whisper longform generation stores timestamps in "segments"
|
| 239 |
+
out = {"tokens": tokens}
|
| 240 |
+
if self.type == "seq2seq_whisper":
|
| 241 |
+
if stride is not None:
|
| 242 |
+
out["stride"] = stride
|
| 243 |
+
|
| 244 |
+
# Leftover
|
| 245 |
+
extra = model_inputs
|
| 246 |
+
return {"is_last": is_last, "audio_array": audio_array, **out, **extra}
|
| 247 |
+
|
| 248 |
+
def postprocess(self,
|
| 249 |
+
model_outputs,
|
| 250 |
+
decoder_kwargs: Optional[Dict] = None,
|
| 251 |
+
return_language=None,
|
| 252 |
+
*args,
|
| 253 |
+
**kwargs):
|
| 254 |
+
assert len(model_outputs) > 0
|
| 255 |
+
audio_array = list(model_outputs)[0]["audio_array"]
|
| 256 |
+
sd = self.model_speaker_diarization(audio_array, sampling_rate=self.feature_extractor.sampling_rate)
|
| 257 |
+
timelines = sd.get_timeline()
|
| 258 |
+
outputs = super().postprocess(
|
| 259 |
+
model_outputs=model_outputs,
|
| 260 |
+
decoder_kwargs=decoder_kwargs,
|
| 261 |
+
return_timestamps=True,
|
| 262 |
+
return_language=return_language
|
| 263 |
+
)
|
| 264 |
+
pointer_ts = 0
|
| 265 |
+
pointer_chunk = 0
|
| 266 |
+
new_chunks = []
|
| 267 |
+
while True:
|
| 268 |
+
if pointer_ts == len(timelines):
|
| 269 |
+
ts = timelines[-1]
|
| 270 |
+
for chunk in outputs["chunks"][pointer_chunk:]:
|
| 271 |
+
chunk["speaker"] = sd.get_labels(ts)
|
| 272 |
+
new_chunks.append(chunk)
|
| 273 |
+
break
|
| 274 |
+
if pointer_chunk == len(outputs["chunks"]):
|
| 275 |
+
break
|
| 276 |
+
ts = timelines[pointer_ts]
|
| 277 |
+
|
| 278 |
+
chunk = outputs["chunks"][pointer_chunk]
|
| 279 |
+
if "speaker" not in chunk:
|
| 280 |
+
chunk["speaker"] = []
|
| 281 |
+
|
| 282 |
+
start, end = chunk["timestamp"]
|
| 283 |
+
if ts.end <= start:
|
| 284 |
+
pointer_ts += 1
|
| 285 |
+
elif end <= ts.start:
|
| 286 |
+
if len(chunk["speaker"]) == 0:
|
| 287 |
+
chunk["speaker"] += list(sd.get_labels(ts))
|
| 288 |
+
new_chunks.append(chunk)
|
| 289 |
+
pointer_chunk += 1
|
| 290 |
+
else:
|
| 291 |
+
chunk["speaker"] += list(sd.get_labels(ts))
|
| 292 |
+
if ts.end >= end:
|
| 293 |
+
new_chunks.append(chunk)
|
| 294 |
+
pointer_chunk += 1
|
| 295 |
+
else:
|
| 296 |
+
pointer_ts += 1
|
| 297 |
+
for i in new_chunks:
|
| 298 |
+
if "speaker" in i:
|
| 299 |
+
if self.return_unique_speaker:
|
| 300 |
+
i["speaker"] = [i["speaker"][0]]
|
| 301 |
+
else:
|
| 302 |
+
i["speaker"] = list(set(i["speaker"]))
|
| 303 |
+
else:
|
| 304 |
+
i["speaker"] = []
|
| 305 |
+
outputs["chunks"] = new_chunks
|
| 306 |
+
if self.punctuator:
|
| 307 |
+
outputs["chunks"] = self.punctuator.punctuate(outputs["chunks"])
|
| 308 |
+
outputs["text"] = "".join([c["text"] for c in outputs["chunks"]])
|
| 309 |
+
outputs["speakers"] = sd.labels()
|
| 310 |
+
outputs.pop("audio_array")
|
| 311 |
+
for s in outputs["speakers"]:
|
| 312 |
+
outputs[f"text/{s}"] = "".join([c["text"] for c in outputs["chunks"] if s in c["speaker"]])
|
| 313 |
+
outputs[f"chunks/{s}"] = [c for c in outputs["chunks"] if s in c["speaker"]]
|
| 314 |
+
return outputs
|
| 315 |
+
|
pipeline/push_pipeline.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pprint import pprint
|
| 2 |
+
from kotoba_whisper import KotobaWhisperPipeline
|
| 3 |
+
from transformers.pipelines import PIPELINE_REGISTRY, pipeline
|
| 4 |
+
from transformers import WhisperForConditionalGeneration, TFWhisperForConditionalGeneration
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
model_alias = "kotoba-tech/kotoba-whisper-v2.2"
|
| 8 |
+
PIPELINE_REGISTRY.register_pipeline(
|
| 9 |
+
"kotoba-whisper",
|
| 10 |
+
pipeline_class=KotobaWhisperPipeline,
|
| 11 |
+
pt_model=WhisperForConditionalGeneration,
|
| 12 |
+
tf_model=TFWhisperForConditionalGeneration
|
| 13 |
+
)
|
| 14 |
+
test_audio = "/Users/asahiu/Desktop/speaker_diariazation_sample_1.wav"
|
| 15 |
+
pipe = pipeline(task="kotoba-whisper", model="kotoba-tech/kotoba-whisper-v2.0", chunk_length_s=15, batch_size=16, return_unique_speaker=True)
|
| 16 |
+
output = pipe(test_audio)
|
| 17 |
+
pprint(output)
|
| 18 |
+
pipe = pipeline(task="kotoba-whisper", model="kotoba-tech/kotoba-whisper-v2.0", chunk_length_s=15, batch_size=16)
|
| 19 |
+
output = pipe(test_audio)
|
| 20 |
+
pprint(output)
|
| 21 |
+
pipe.push_to_hub(model_alias)
|
| 22 |
+
|
| 23 |
+
|
pipeline/test_pipeline.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pprint import pprint
|
| 2 |
+
from transformers.pipelines import pipeline
|
| 3 |
+
|
| 4 |
+
test_audio = "/Users/asahiu/Desktop/speaker_diariazation_sample_1.wav"
|
| 5 |
+
pipe = pipeline(model="kotoba-tech/kotoba-whisper-v2.2", chunk_length_s=15, batch_size=16, trust_remote_code=True)
|
| 6 |
+
output = pipe(test_audio)
|
| 7 |
+
pprint(output)
|
pipeline/test_speaker_diarization.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Setup:
|
| 2 |
+
# pip install pyannote.audio>=3.1
|
| 3 |
+
# Requirement: Sumit access request for the following models.
|
| 4 |
+
# https://huggingface.co/pyannote/speaker-diarization-3.1
|
| 5 |
+
# https://huggingface.co/pyannote/segmentation-3.0
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
import numpy as np
|
| 8 |
+
from typing import Union, Optional, Dict, List
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from pyannote.audio import Pipeline
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class SpeakerDiarization:
|
| 15 |
+
|
| 16 |
+
def __init__(self, model_id: str):
|
| 17 |
+
self.pipeline = Pipeline.from_pretrained(model_id)
|
| 18 |
+
|
| 19 |
+
def __call__(self,
|
| 20 |
+
audio: Union[str, torch.Tensor, np.ndarray],
|
| 21 |
+
sampling_rate: Optional[int] = None) -> Dict[str, List[List[float]]]:
|
| 22 |
+
if type(audio) is torch.Tensor or type(audio) is np.ndarray:
|
| 23 |
+
if sampling_rate is None:
|
| 24 |
+
raise ValueError("sampling_rate must be provided")
|
| 25 |
+
if type(audio) is np.ndarray:
|
| 26 |
+
audio = torch.as_tensor(audio)
|
| 27 |
+
audio = torch.as_tensor(audio, dtype=torch.float32)
|
| 28 |
+
if len(audio.shape) == 1:
|
| 29 |
+
audio = audio.unsqueeze(0)
|
| 30 |
+
elif len(audio.shape) > 3:
|
| 31 |
+
raise ValueError("audio shape must be (channel, time)")
|
| 32 |
+
audio = {"waveform": audio, "sample_rate": sampling_rate}
|
| 33 |
+
output = self.pipeline(audio)
|
| 34 |
+
# dictionary: {speaker_id: [[start, end],...]}
|
| 35 |
+
return {s: [[i.start, i.end] for i in output.label_timeline(s)] for s in output.labels()}
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
pipeline = SpeakerDiarization("pyannote/speaker-diarization-3.1")
|
| 39 |
+
root_dir = "/Users/asahiu/Desktop"
|
| 40 |
+
sample_audio_files = ["speaker_diariazation_sample_1.wav", "speaker_diariazation_sample_2.wav"]
|
| 41 |
+
|
| 42 |
+
print(sample_audio_file)
|
| 43 |
+
a, sr = sf.read(f"{root_dir}/{sample_audio_file}")
|
| 44 |
+
output = pipeline(a, sampling_rate=sr)
|
| 45 |
+
print(output)
|
| 46 |
+
output = pipeline(f"{root_dir}/{sample_audio_file}")
|
| 47 |
+
print(output)
|
| 48 |
+
print()
|
sample_audio/sample_diarization_japanese.mp3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7252359b53264c767da33a48e39ff57a8f31641c4a80a1702c6940f8914697b
|
| 3 |
+
size 780064
|