File size: 2,985 Bytes
f98cb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
tags:
- generated_from_trainer
datasets:
- roneneldan/TinyStories
metrics:
- accuracy
model-index:
- name: gpt2_u090_tiny-stories_1024_dpos
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: roneneldan/TinyStories
      type: roneneldan/TinyStories
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6847785435700166
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/scads-nlp/morph-gpt_gpt2_tiny-stories_dpos/runs/4b1lo9lo)
# gpt2_u090_tiny-stories_1024_dpos

This model is a fine-tuned version of [](https://huggingface.co/) on the roneneldan/TinyStories dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1862
- Accuracy: 0.6848

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 2.8979        | 0.0516 | 1000  | 2.4237          | 0.4552   |
| 1.9485        | 0.1032 | 2000  | 1.7736          | 0.5751   |
| 1.6997        | 0.1548 | 3000  | 1.5877          | 0.6077   |
| 1.579         | 0.2063 | 4000  | 1.4891          | 0.6261   |
| 1.5078        | 0.2579 | 5000  | 1.4237          | 0.6382   |
| 1.457         | 0.3095 | 6000  | 1.3794          | 0.6467   |
| 1.4178        | 0.3611 | 7000  | 1.3463          | 0.6529   |
| 1.3857        | 0.4127 | 8000  | 1.3157          | 0.6587   |
| 1.3583        | 0.4643 | 9000  | 1.2949          | 0.6626   |
| 1.3406        | 0.5158 | 10000 | 1.2756          | 0.6667   |
| 1.3224        | 0.5674 | 11000 | 1.2575          | 0.6701   |
| 1.3063        | 0.6190 | 12000 | 1.2455          | 0.6725   |
| 1.2955        | 0.6706 | 13000 | 1.2323          | 0.6752   |
| 1.278         | 0.7222 | 14000 | 1.2199          | 0.6777   |
| 1.2714        | 0.7738 | 15000 | 1.2117          | 0.6794   |
| 1.2587        | 0.8253 | 16000 | 1.2042          | 0.6810   |
| 1.2527        | 0.8769 | 17000 | 1.1961          | 0.6826   |
| 1.2469        | 0.9285 | 18000 | 1.1906          | 0.6838   |
| 1.2434        | 0.9801 | 19000 | 1.1872          | 0.6846   |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.2.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1