{ "model_type": "resnet", "task": "image-classification", "framework": "pytorch", "pipeline_tag": "image-classification", "num_classes": 3, "class_labels": ["fa", "p_def", "blb"], "input_shape": [224, 224, 3], "preprocessing": { "resize": 256, "center_crop": 224, "normalize": [0.485, 0.456, 0.406], "normalize_std": [0.229, 0.224, 0.225] }, "metrics": { "validation_accuracy": "93.82%", "per_class_accuracy": { "fa": "100.00%", "p_def": "86.21%", "blb": "95.00%" } }, "license": "apache-2.0", "tags": [ "image-classification", "crop-anomaly-detection", "agriculture", "resnet50", "deep-learning" ], "description": "ResNet50 model for 3-class anomaly detection. The model classifies images as Fall Armyworm (fa), Phosphorus Deficiency (p_def), or Bacterial Leaf Blight (blb)." }