Upload generate.py with huggingface_hub
Browse files- generate.py +122 -0
generate.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Generation script for text-conditional diffusion model."""
|
| 2 |
+
import torch
|
| 3 |
+
import argparse
|
| 4 |
+
import os
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
|
| 8 |
+
import config
|
| 9 |
+
from model import TextConditionedUNet
|
| 10 |
+
from scheduler import SimpleDDPMScheduler
|
| 11 |
+
from text_encoder import CLIPTextEncoder
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def tensor_to_image(tensor):
|
| 15 |
+
"""Convert tensor to PIL Image."""
|
| 16 |
+
# tensor is in range [-1, 1], convert to [0, 1]
|
| 17 |
+
tensor = (tensor + 1.0) / 2.0
|
| 18 |
+
tensor = torch.clamp(tensor, 0, 1)
|
| 19 |
+
|
| 20 |
+
# Convert to PIL
|
| 21 |
+
transform = transforms.ToPILImage()
|
| 22 |
+
return transform(tensor.squeeze(0))
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def generate_samples(checkpoint_path, prompt="a drawing of a cat", num_samples=4, guidance_scale=3.0, device='cuda'):
|
| 26 |
+
"""Generate samples using text prompts with classifier-free guidance.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
checkpoint_path: Path to model checkpoint
|
| 30 |
+
prompt: Text prompt for generation
|
| 31 |
+
num_samples: Number of samples to generate
|
| 32 |
+
guidance_scale: CFG scale (1.0 = no guidance, 3.0-7.0 typical, higher = stronger)
|
| 33 |
+
device: Device to use
|
| 34 |
+
"""
|
| 35 |
+
print(f"π¨ Generating {num_samples} samples with prompt: '{prompt}'")
|
| 36 |
+
print(f"π Guidance scale: {guidance_scale}")
|
| 37 |
+
|
| 38 |
+
# Load checkpoint
|
| 39 |
+
if not os.path.exists(checkpoint_path):
|
| 40 |
+
print(f"β Checkpoint not found: {checkpoint_path}")
|
| 41 |
+
return
|
| 42 |
+
|
| 43 |
+
print(f"π Loading checkpoint: {checkpoint_path}")
|
| 44 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 45 |
+
|
| 46 |
+
# Get config from checkpoint
|
| 47 |
+
ckpt_config = checkpoint.get('config', {})
|
| 48 |
+
text_dim = ckpt_config.get('text_dim', config.TEXT_DIM)
|
| 49 |
+
clip_model = ckpt_config.get('clip_model', config.CLIP_MODEL)
|
| 50 |
+
|
| 51 |
+
# Create model
|
| 52 |
+
model = TextConditionedUNet(text_dim=text_dim).to(device)
|
| 53 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 54 |
+
model.eval()
|
| 55 |
+
|
| 56 |
+
# Create text encoder
|
| 57 |
+
text_encoder = CLIPTextEncoder(model_name=clip_model, freeze=True).to(device)
|
| 58 |
+
text_encoder.eval()
|
| 59 |
+
|
| 60 |
+
# Create scheduler
|
| 61 |
+
scheduler = SimpleDDPMScheduler(config.TIMESTEPS)
|
| 62 |
+
|
| 63 |
+
print(f"π Model loaded (text_dim={text_dim})")
|
| 64 |
+
print(f"π CLIP model: {clip_model}")
|
| 65 |
+
|
| 66 |
+
# Encode the text prompt once
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
text_embedding = text_encoder(prompt)
|
| 69 |
+
# Repeat for batch generation
|
| 70 |
+
text_embeddings = text_embedding.repeat(num_samples, 1)
|
| 71 |
+
|
| 72 |
+
# Create outputs directory
|
| 73 |
+
os.makedirs("outputs", exist_ok=True)
|
| 74 |
+
|
| 75 |
+
# Generate samples
|
| 76 |
+
print(f"π¨ Generating {num_samples} samples...")
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
# Generate all samples in a batch
|
| 79 |
+
shape = (num_samples, 1, config.IMAGE_SIZE, config.IMAGE_SIZE)
|
| 80 |
+
samples = scheduler.sample_text(model, shape, text_embeddings, device, guidance_scale)
|
| 81 |
+
|
| 82 |
+
# Save each sample
|
| 83 |
+
for i in range(num_samples):
|
| 84 |
+
# Create safe filename from prompt
|
| 85 |
+
safe_prompt = "".join(c if c.isalnum() or c in " _-" else "" for c in prompt)
|
| 86 |
+
safe_prompt = safe_prompt.replace(" ", "_")[:50] # Limit length
|
| 87 |
+
sample_name = f"text_sample_{i+1}_{safe_prompt}"
|
| 88 |
+
|
| 89 |
+
# Convert to image and save
|
| 90 |
+
img = tensor_to_image(samples[i])
|
| 91 |
+
img_path = f"outputs/{sample_name}.png"
|
| 92 |
+
img.save(img_path)
|
| 93 |
+
print(f"πΎ Saved: {img_path}")
|
| 94 |
+
|
| 95 |
+
print("β
Generation complete!")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def main():
|
| 99 |
+
parser = argparse.ArgumentParser(description='Generate samples from text-conditional diffusion model')
|
| 100 |
+
parser.add_argument('--checkpoint', type=str, required=True,
|
| 101 |
+
help='Path to checkpoint file')
|
| 102 |
+
parser.add_argument('--prompt', type=str, default="a drawing of a cat and dog",
|
| 103 |
+
help='Text prompt for generation')
|
| 104 |
+
parser.add_argument('--num-samples', type=int, default=4,
|
| 105 |
+
help='Number of samples to generate (default: 4)')
|
| 106 |
+
parser.add_argument('--guidance-scale', type=float, default=config.CFG_GUIDANCE_SCALE,
|
| 107 |
+
help=f'Classifier-free guidance scale (1.0 = no guidance, 3.0-7.0 typical, default: {config.CFG_GUIDANCE_SCALE})')
|
| 108 |
+
parser.add_argument('--device', type=str, default='cuda',
|
| 109 |
+
help='Device to use (default: cuda)')
|
| 110 |
+
|
| 111 |
+
args = parser.parse_args()
|
| 112 |
+
|
| 113 |
+
# Check device availability
|
| 114 |
+
if args.device == 'cuda' and not torch.cuda.is_available():
|
| 115 |
+
print("β οΈ CUDA not available, using CPU")
|
| 116 |
+
args.device = 'cpu'
|
| 117 |
+
|
| 118 |
+
generate_samples(args.checkpoint, args.prompt, args.num_samples, args.guidance_scale, args.device)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
main()
|