File size: 1,292 Bytes
015a757 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
language:
- en
tags:
- mlx
- apple-silicon
- liquidai
- lfm2
- moe
- transformer
- long-context
- instruct
- quantized
- 8bit
- Mixture of Experts
- coding
- mlx
- mlx-my-repo
pipeline_tag: text-generation
library_name: mlx
license: other
license_name: lfm1.0
license_link: LICENSE
base_model: mlx-community/LFM2-8B-A1B-8bit-MLX
model-index:
- name: LFM2-8B-A1B — MLX (Apple Silicon), **8-bit** (with guidance on MoE + RAM planning)
results: []
---
# introvoyz041/LFM2-8B-A1B-8bit-MLX-mlx-8Bit
The Model [introvoyz041/LFM2-8B-A1B-8bit-MLX-mlx-8Bit](https://huggingface.co/introvoyz041/LFM2-8B-A1B-8bit-MLX-mlx-8Bit) was converted to MLX format from [mlx-community/LFM2-8B-A1B-8bit-MLX](https://huggingface.co/mlx-community/LFM2-8B-A1B-8bit-MLX) using mlx-lm version **0.28.3**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("introvoyz041/LFM2-8B-A1B-8bit-MLX-mlx-8Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|